-
Similar Content
-
By KopalniaWiedzy.pl
Z raportu „Living planet report 2020” [PDF] przygotowanego przez WWF i Zoological Society London dowiadujemy się, że pomiędzy rokiem 1970 a 2016 liczba dziko żyjących ssaków, ptaków, płazów, gadów i ryb zmniejszyła się aż o 64%. Raport został przygotowany w oparciu o badania 20 811 populacji dzikich zwierząt z 4392 gatunków. Dane na ich temat zebrano z niemal 4000 źródeł. Większość z nich jest publicznie dostępnych i można je znaleźć w literaturze naukowej lub online'owych bazach danych.
Jak czytamy w podsumowaniu raportu bioróżnorodność jest podstawowym czynnikiem do utrzymania się człowieka na Ziemi, a dostępne dowody są jednoznaczne. Ulega ona zniszczeniu w bezprecedensowym tempie. Od czasu rewolucji przemysłowej ludzie coraz bardziej niszczą lasy, mokradła, tereny trawiaste i inne ważne ekosystemy, zagrażając w ten sposób samej ludzkości. Dotychczas w znaczącym stopniu zmieniliśmy 75% powierzchni lądów wolnej od lodu, większa część oceanów jest zanieczyszczona, utraciliśmy też 85% powierzchni mokradeł.
Sytuacja z roku na rok się pogarsza. Jeszcze do roku 1970 ludzkość zużywała zasoby Ziemi na tyle wolno, że planeta była w stanie je odtworzyć.Jednak od 50 lat tempo zużywania zasobów jest szybsze, niż tempo ich regeneracji. Na przykład w bieżącym roku Earth Overshoot Day, czyli dzień, w którym zużyliśmy wszystkie zasoby, jakie Ziemia jest w stanie zastąpić do końca roku, nastąpił już 22 sierpnia. To i tak wyjątkowo późno, gdyż z powodu pandemii gospodarka pracowała na wolniejszych obrotach.
Najbardziej niszczącym elementem działalności człowieka jest zmiana użycia ziemi i wód. Powodujemy takie modyfikacje terenów, na których żyją gatunki, że ich habitaty zostają albo całkowicie zniszczone, albo też zostają pofragmentowane i zdegradowane. W każdym z pięciu wyodrębnionych regionów (Ameryka Północna, Europa i Azja Środkowa, region Azji i Pacyfiku, Afryka oraz Ameryka Łacińska i Karaiby) zmiany te były odpowiedzialne za od 43% (Azja-Pacyfik) do 57,9% (Europa i Azja Środkowa) zniszczeń ekosystemu.
Kolejnym poważnym problemem jest nadmierne eksploatacja gatunków, od polowań i połowów, poprzez kłusownictwo. Jeszcze inny problem to wprowadzanie gatunków inwazyjnych na nowe tereny. Gatunki takie konkurują z gatunkami rodzimymi o żywność czy przestrzeń życiową, mogą też dziesiątkować gatunki rodzime czy to poprzez polowania czy wprowadzając do ich ekosystemów nowe choroby. Zanieczyszczenie środowiska jest jednym z mniejszych problemów. Odpowiada ono za od 2,3% (Ameryka Południowa i Karaiby) po 11% (Azja-Pacyfik) utraty bioróżnorodności. Ostatnim z wymienionych powodów utraty bioróżnorodności są zmiany klimatyczne. W tej chwili odpowiadają one za od 4% (Europa/Azja Centralna) do 12,5% (Ameryka Południowa i Karaiby) utraty bioróżnorodności.
Nie we wszystkich regionach świata utrata bioróżnorodności jest taka sama. Najgorzej jest tam, gdzie dotychczas bioróżnorodność była największa. W Ameryce Południowej i na Karaibach doszło do 94% spadku, w Afryce spadek sięgnął 65%, region Azji i Pacyfiku odnotował 45-procentowy spadek, w Ameryce Północnej wyniósł on 33%, a w Europie i Azji Środkowej – 24%.
Niestety, mimo – jakby się pozornie wydawało – rosnącej świadomości ludzkości, coraz bardziej niszczymy Ziemię. Od 30 lat monitorujemy sytuację i stwierdzamy, że spadek bioróżnorodności przyspiesza. Wszystko idzie w złym kierunku, mówi dyrektor generalny WWF International, Marco Lambertini. W raporcie z 2016 roku (obejmującym lata 1970–2012) spadek populacji dzikich zwierząt wynosił 58%. W ciągu zaledwie 4 lat liczba dzikich zwierząt spadła aż o 6 punktów procentowych. A trzeba pamiętać, że te 4 lata to mgnienie oka w porównaniu z milionami lat, jakie gatunki te przetrwały na Ziemi.
« powrót do artykułu -
By KopalniaWiedzy.pl
Analiza roślinności na jednej z wysp Morza Beringa wykazała, że zasięg lodu pływającego na tym akwenie jest obecnie najmniejszy od 5500 lat. Badania, opublikowane na łamach Science Advances, opisują, w jaki sposób rdzeń torfowy z Wyspy Św. Mateusza pozwala zbadać przeszłość klimatu. Pobrany rdzeń pozwolił na cofnięcie się w czasie o 5500 lat i ocenę zmian zasięgu lodu pływającego.
To niewielka wyspa na środku Morza Beringa. Jest na niej zapis tego, co działo się w atmosferze i na morzu wokół niej, mówi główna autorka badań Miriam Jones ze Służby Geologicznej Stanów Zjednoczonych i University of Alaska Faribanks. Pani Jones prowadzi swoje badania od 2012 roku.
Dane na temat lodu pływającego można odczytać ze względnego stosunku izotopów tlenu-16 do tlenu-18. Stosunek tych izotopów względem siebie zmienia się w zależności od opadów, co odzwierciedla zmiany w atmosferze i oceanie. Więcej tlenu-18 oznacza obecność większych opadów, a rosnący tlen-16 to znak, że opady były lżejsze.
Na potrzeby swoich badań naukowcy przeanalizowali też dane z modelu cyrkulacji powietrza i stwierdzili, że bardziej intensywne opady nadchodzą z północnego Pacyfiku, a lżejsze opady są zapoczątkowywane nad Arktyką. Uczeni przyjrzeli się też zbieranym od 1979 roku danym satelitarnym na temat zasięgu lodu pływającego i stwierdzili, że okresy bardziej intensywnych opadów związane są z mniejszym zasięgiem lodu pływającego, a mniej intensywne opady – z większym jego zasięgiem. Analizy te znajdują potwierdzenie w przeprowadzonych w przeszłości badaniach mikroorganizmów obecnych w rdzeniach.
Po przeprowadzeniu analizy izotopów we wspomnianym na początku rdzeniu torfowym stwierdzono, że obecny zasięg lodu pływającego na Morzu Beringa jest wyjątkowo mały. To, co obserwujemy obecnie nie ma precedensu w ciągu ostatnich 5500lat. W tym czasie zasięg lodu pływającego na Morzu Beringa nigdy nie był tak mały jak obecnie, mówi współautor badań Matthew Wooller, dyrektor Alaska Stable Isotope Facility, gdzie były prowadzone analizy rdzenia.
Jones dodaje, że analizy potwierdzają, iż zmniejszenie zasięgu lodu pływającego na Morzu Beringa nie jest związane wyłącznie z rosnącą temperaturą. Większe znaczenie mają tutaj – wywołane zmianami klimatu – zmiany cyrkulacji atmosferycznej i oceanicznej. Tutaj w grę wchodzi znacznie więcej czynników niż tylko rosnące temperatury. Obserwujemy zmiany wzorców cyrkulacji w atmosferze i oceanie, stwierdza Jones.
Z artykułem High sensitivity of Bering Sea winter sea ice to winter insolation and carbon dioxide over the last 5500 years można zapoznać się na łamach Science Advances.
« powrót do artykułu -
By KopalniaWiedzy.pl
Generowany przez zwarte korony drzew chłód chroni organizmy leśne przed ekstremalnymi temperaturami i ma znaczący wpływ na ich przystosowanie do globalnego ocieplenia – tak wynika z badań naukowców zaangażowanych w projekt Swiss Federal Institute for Forest, Snow and Landscape Research, opublikowanych w czasopiśmie Science. Do międzynarodowego zespołu należą pracownicy Wydziału Nauk Biologicznych Uniwersytetu Wrocławskiego, dr Kamila Reczyńska i dr hab. Krzysztof Świerkosz, oraz badacze z innych polskich ośrodków: Uniwersytetu Rolniczego im. Hugona Kołłątaja w Krakowie, Uniwersytetu Rzeszowskiego oraz Uniwersytetu Warszawskiego.
Las jako „klimatyczna kapsuła czasu”
Stacje pogodowe na całym świecie są zazwyczaj umieszczone na otwartych przestrzeniach, a pomiar temperatury odbywa się w nich na wysokości od 1,5 do 2 metrów od powierzchni gruntu (zatem nie w środowisku leśnym i nie blisko powierzchni ziemi, gdzie żyje znaczna część lądowych gatunków roślin i zwierząt). W rezultacie dane klimatyczne zebrane z otwartych przestrzeni mają w przypadku zbiorowisk leśnych jedynie ograniczone znaczenie i niewiele mówią o stopniu ich zagrożenia.
Międzynarodowy zespół badawczy kierowany przez Floriana Zellwegera z WSL oraz University of Cambridge uzyskał pierwsze szczegółowe dane dotyczące ocieplania się klimatu pod okapem drzew, ukazując tym samym różnice w przebiegu tego procesu w lesie i na otwartej przestrzeni. Było to możliwe dzięki pomiarom temperatury wykonanym we wnętrzu lasu w 100 różnych punktach, które następnie połączono w modelu matematycznym z danymi o zmianach w zwarciu koron drzew na przestrzeni nawet 80 lat, pochodzącymi z prawie 3 000 lokalizacji w Europie.
Wszyscy wiemy, że świat dookoła się zmienia, i wielu naukowców chce dowiedzieć się na czym dokładnie te zmiany polegają. Nas szczególnie interesuje, jak zmieniają się lasy – zarówno pod wpływem czynników naturalnych, globalnych zmian klimatycznych jak i presji człowieka – mówi dr hab. Krzysztof Świerkosz z Uniwersytetu Wrocławskiego. W tym celu wyszukujemy miejsca, które były dokładnie zbadane jakiś czas temu – sięgamy wstecz do lat 50. XX w. – i powtarzamy badania w tym samym miejscu.
W takich lokalizacjach wykonujemy tzw. zdjęcie fitosocjologiczne, które stanowi spis gatunków ze wszystkich warstw leśnych: drzew, krzewów i runa, na powierzchni 200-400 m2 – wyjaśnia dr Kamila Reczyńska z UWr. Porównując zdjęcia archiwalne ze współczesnymi, sprawdzamy, jak zmieniła się roślinność – które gatunki zniknęły, a jakie się pojawiły – i przy użyciu specjalistycznego oprogramowania statystycznego staramy się dociec, dlaczego takie, a nie inne, zmiany zaszły. To standardowa procedura przy takich publikacjach.
Badania zbiorowisk leśnych wielu ludziom kojarzą się z podziwianiem nieskażonej przyrody i słuchaniem śpiewu ptaków. Rzeczywistość jednak nie jest taka romantyczna – większość badaczy wielokrotnie leczyła boreliozę, niektórzy zapalenie opon mózgowych.
Gryzą nas komary, meszki i strzyżaki, a na niżu coraz częściej spotykamy gniazda groźnych szerszeni. Coraz bardziej nieprzewidywalna staje się też pogoda, przynosząca gwałtowne burze i powalające drzewa wichry. To nie jest praca dla każdego – mówi Krzysztof Świerkosz.
W czasopiśmie Science naukowcy podają, że pomiary ocieplenia klimatu wykonane na otwartych przestrzeniach nie odzwierciedlają w wystarczającym stopniu zmian temperatury występujących pod okapem drzew. Jeśli zwarcie drzewostanu jest wysokie, buforuje ono zmiany klimatu, tworząc swoistą „kapsułę czasu”, gdzie ocieplenie nie zachodzi tak szybko. Jeśli drzewostan stanie się rzadszy, temperatura niższych warstw lasu gwałtownie wzrośnie. Jak wyjaśnia kierownik zespołu Florian Zellweger, jest to wiedza kluczowa dla zrozumienia wpływu zmian klimatu na różnorodność biologiczną lasów.
To, że świat przyrody reaguje na zmiany klimatyczne, nie jest dla nikogo zaskoczeniem. Skala, tempo tego procesu, a także zależności występujące między różnymi czynnikami a żywymi organizmami, są przedmiotem bezustannych badań.
Skala buforowania ocieplenia klimatu poprzez utrzymywanie stabilnego mikroklimatu w środowisku leśnym zaskoczyła jednak chyba nas wszystkich – mówi dr Kamila Reczyńska. Implikacje tego odkrycia mają też swoją ciemną stronę. Jeszcze do niedawna mogliśmy sądzić, że odsłonięcie dna lasu w trakcie wycinek – tak jak kiedyś – może zostać szybko zabliźnione dzięki rozwojowi nowych pokoleń drzew i powrotowi typowych roślin leśnego runa na wcześniej odsłonięte miejsca. Dowiedzieliśmy się natomiast, że ten proces może dziś przebiegać już inaczej. Typowe rośliny leśne mogą po prostu nie zdążyć powrócić i zostaną wyparte przez gatunki o wyższych wymaganiach cieplnych – a z innych, niedawno opublikowanych badań naszego zespołu wynika, że także azotolubnych i obcych geograficznie. Nasze lasy stają się więc coraz bardziej zubożałe i zagrożone – chyba że znacznie zmniejszymy presję, przynajmniej na najcenniejsze ich fragmenty.
Opóźnienia w adaptacji do zmian klimatu
Wszystkie organizmy mają optymalny zakres temperatur, w których najlepiej się rozwijają. Gdy klimat się ociepla, korzyści odnoszą gatunki ciepłolubne, wypierając te, dla których optimum termiczne znajduje się poniżej pewnej granicy. Ponieważ optymalna temperatura dla organizmów leśnych jest znacznie niższa niż rzeczywiste zmierzone temperatury w ich bezpośrednim otoczeniu, organizmy te pozostają w tyle, jeśli chodzi o dostosowanie do zmian klimatycznych.
W kontekście globalnych zmian klimatu wiele gatunków żyje w coraz mniej optymalnym zakresie temperatur – mówi Zellweger.
W konsekwencji, jeśli chroniąca runo przed nadmiernym ogrzewaniem warstwa koron zostanie utracona – naturalnie lub w wyniku interwencji człowieka – rośliny żyjące pod nią doświadczą dodatkowego drastycznego ocieplenia, na które nie są przygotowane. Wiele gatunków nie jest w stanie przystosować się wystarczająco szybko, są one wypierane przez gatunki ciepłolubne i mogą wymierać w skali lokalnej.
Biorąc pod uwagę spodziewany wzrost letnich fal upałów w Europie, prawdopodobnie zmieni to różnorodność biologiczną lasów i może, według badaczy, oznaczać problemy dla roślin i zwierząt przystosowanych do chłodniejszych i wilgotniejszych mikroklimatów leśnych. Zarządzający lasem powinni zatem wziąć pod uwagę wpływ prac leśnych na warunki klimatyczne we wnętrzu lasu, a tym samym na jego różnorodność biologiczną. Zbyt intensywne cięcia w naturalnych lasach liściastych powodują w nich gwałtowne i nieodwracalne zmiany.
Badania opisane w Science prowadzone są w wielu różnych ośrodkach na całym świecie, jednak w skali lokalnej dają różne wyniki. Dopiero synteza danych z wielu różnych punktów położonych w różnych krajach, a nawet na różnych kontynentach, zapewnia większy, całościowy obraz. Dlatego zajmujący się tą tematyką naukowcy łączą siły, tworząc duże bazy danych, nad którymi potem mogą wspólnie pracować. Ta, z którą związani są badacze z Uniwersytetu Wrocławskiego, nosi nazwę forestREplot i została utworzona 7 lat temu przez Forest & Nature Lab przy belgijskim Uniwersytecie w Gandawie. Do dziś rozrosła się do 4646 powierzchni na 87 stanowiskach położonych na terenie całej Europy i Ameryki Północnej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Zmiany klimatyczne zbliżają się do punktu, w którym na Oceanie Indyjskim może pojawić się zjawisko podobne do El Niño, ostrzegają naukowcy z University of Texas w Austin. Jeśli tak się stanie, możemy spodziewać się większych i bardziej regularnych powodzi, burz i susz, które uderzą przede wszystkim w najuboższych ludzi na świecie.
Modelowanie komputerowe przeprowadzone w Instytucie Geofizyki przez zespół Pedro DiNezio wykazało, że w drugiej połowie wieku zmiany klimatyczne mogą zaburzyć temperatury wód powierzchniowych Oceanu Indyjskiego. Spowoduje to bardziej gwałtowne niż obecnie wzrosty i spadki tych temperatur. To z kolei pociągnie za sobą pojawienie się zjawiska bardzo podobnego do El Niño, które występuje na Pacyfiku.
Nasze badania pokazały, że podniesienie lub obniżenie globalnych temperatur o kilka stopni spowoduje, że Ocean Indyjski będzie zachowywał się tak samo jak inne tropikalne oceany, z mniej jednorodnymi temperaturami wód powierzchniowych na równiku, bardziej zmiennym klimatem i własnym El Niño, mówi DiNezio. Jeśli obecne trendy klimatyczne będą kontynuowane, to indyjski odpowiednik El Niño może pojawić się już w 2050 roku.
Nie będzie to jednak zjawisko nowe dla naszej planety. W ubiegłym roku ten sam zespół poinformował, że w muszlach otwornic żyjących 21 000 lat temu znalazł dowody, na istnienie w przeszłości „indyjskiego El Niño”. Wówczas jednak za ziemi panowała epoka lodowa.
Naukowcy chcieli się dowiedzieć, czy zjawisko to może mieć miejsce również w cieplejszym klimacie. Przeprowadzili zatem szereg symulacji komputerowych, kategoryzując je w zależności od tego, na ile dobrze oddają one zjawiska, które obserwujemy obecnie. Okazało się, że najbardziej dokładne z tych symulacji wskazują, iż w warunkach globalnego ocieplenia odpowiednik El Niño na Oceanie Indyjskim pojawi się przed rokiem 2100.
Ocieplający się klimat tworzy nam planetę, która będzie zupełnie inna od tej, jaką znamy obecnie, czy jaką znaliśmy w XX wieku, mówi DiNezio. Badania jego zespołu przynoszą zatem kolejne w ostatnich latach dowody wskazujące, że Ocean Indyjski ma znacznie większy potencjał wywoływania wahań klimatycznych niż jest to obecnie widoczne. To zaś oznacza, że w rzeczywistości to obecny stan Oceanu Indyjskiego jest czymś niezwykłym, stwierdza Kaustubh Thirumalai, główny autor badań, w ramach których odkryto istnienie w przeszłości „indyjskiego El Niño”.
Współcześnie Ocean Indyjski jest bardzo spokojny, doświadcza niewielkich zmian klimatu z roku na rok. Dzieje się tak, gdyż przeważają na nim łagodne wiatry z zachodu na wschód, które utrzymują stałe warunki klimatyczne na tym akwenie. Jednak symulacje wykazały, że globalne ocieplenie może odwrócić kierunek wiatru, zdestabilizować klimat nad Oceanem Indyjskim i spowodować, że pojawią się na nim nieregularne okresy ocieplenia i ochłodzenia, jak El Niño i La Niña na Pacyfiku. To zaś będzie oznaczało pojawienie się nowych ekstremów i całkowite zaburzenie dotychczasowych wzorców klimatycznych, w tym monsunów nad Afryką Wschodnią i Azją, od których zależy byt milionów ludzi.
Jeśli emisja gazów cieplarnianych będzie postępowała tak, jak obecnie, to do końca bieżącego wieku kraje otaczające Ocean Indyjski, takie jak Indonezja, Australia, kraje Afryki Wschodniej, doświadczą coraz potężniejszych ekstremów klimatycznych. Nawet w obecnych warunkach klimatycznych wiele państw tego regionu jest bardziej narażonych, mówi oceanograf Michael McPhaden z NOAA, pionier badań nad zmiennością klimatu tropikalnego.
Z pracą zespołu DiNezio można zapoznać się na łamach Science.
« powrót do artykułu -
By KopalniaWiedzy.pl
Po raz pierwszy długoterminowe rokowania dla Wielkiej Rafy Koralowej uznano za "bardzo złe". W najnowszym 5-letnim raporcie Great Barrier Reef Marine Park Authority stwierdziła, że głównym zagrożeniem dla rafy są rosnące temperatury morza.
Pokłosiem znaczącego i wielkoskalowego oddziaływania rekordowych temperatur powierzchni morza jest przejście tutejszego habitatu ze stanu złego do bardzo złego.
By spowolnić zniszczenie ekosystemu Rafy i wesprzeć jego regenerację [...], konieczne są globalne działania przeciwko zmianie klimatu.
Przedstawiciele agendy dodają, że de facto zagrożenia dla Rafy są liczne, kumulatywne i narastające. Poza ociepleniem klimatu (stresem cieplnym) należą do nich spływy rolnicze czy działalność żarłocznych rozgwiazd - koron cierniowych (Acanthaster planci).
Specjaliści podkreślają, że spadek "ratingu" rokowań z oceny "złe" w 2014 r. na "bardzo złe" w 2019 r. odzwierciedla większy zakres zniszczeń koralowców; są one skutkiem bieleń spowodowanych wzrostami temperatury morza w 2016 i 2017 r.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.