Znajdź zawartość
Wyświetlanie wyników dla tagów ' neurony' .
Znaleziono 19 wyników
-
Zaburzenia neurologiczne, jak choroba Parkinsona czy epilepsja, są częściowo leczone poprzez głęboką stymulację mózgu. Jednak taka metoda wymaga chirurgicznego wszczepienia implantów. Naukowcy z Washington University poinformowali o opracowaniu nowej techniki precyzyjnego stymulowania wybranych obszarów mózgu za pomocą ultradźwięków. Mogli dzięki niej włączać i wyłączać wybrane neurony, kontrolując motorykę organizmu, bez potrzeby chirurgicznej implementacji urządzenia. Zespół pracujący pod kierunkiem profesor Hong Chen wykazał, że możliwe jest aktywacji konkretnych rodzajów neuronów za pomocą indukowanych ultradźwiękami zmian temperatury i genetyki. Twórcy nowej techniki nazwali ją sonotermogenetyką. W trakcie naszych badań dostarczyliśmy dowodów na to, że sonotermogenetyka – biorąc na cel głębokie struktury mózgu – wywołuje reakcję behawioralną u swobodnie przemieszczającej się myszy. Sonotermogenetyka może zmienić nasze podejście do badań neurologicznych i ułatwi opracowanie nowych metod rozumienia i leczenia schorzeń mózgu, mówi Chen. Najpierw naukowcy, za pomocą wektora wirusowego, dostarczyli do neuronów, wybranych na podstawie cech genetycznych, receptor TRPV1. Następnie za pomocą ultradźwięków o niskiej częstotliwości zmienili temperaturę tych neuronów. Ciepło, o kilka stopni wyższe niż temperatura organizmu, doprowadziło do aktywacji kanału jonowego TRPV1, który zadziałał jak przełącznik umożliwiający aktywowanie i dezaktywowanie neuronów. Możemy swobodnie przesuwać urządzenie umieszczone na głowie myszy tak, by brać na cel różne miejsca w mózgu. To nieinwazyjna technika, którą można skalować na większe zwierzęta, w tym na człowieka, mówi Yaoheng Yang, główny autor artykułu. Twórcy sonotermogenetyki już teraz zapewniają, że ich technika jest w stanie brać na cel milimetrowej wielkości struktury w całym mózgu, nie czyniąc przy tym żadnej szkody. « powrót do artykułu
-
- sonotermogenetyka
- neurony
-
(i 3 więcej)
Oznaczone tagami:
-
Samce i samice nie tylko wykazują różne zachowania seksualne, ale różnice te są ewolucyjnie zaprogramowane, dowiadujemy się z nowych badań przeprowadzonych na Uniwersytecie Oksfordzkim. Zespół pod kierownictwem doktora Tesuyi Noimy i doktor Anniki Rings wykazał, że układ nerwowy obu płci, pomimo bardzo podobnej budowy, przekazuje różne sygnały samcom, a różne samicom. Naukowcy z Wydziału Fizjologii, Anatomii i Genetyki stwierdzili, że samce i samice muszek owocówek, pomimo niezwykle podobnego genomu i systemu nerwowego różnią się głęboko w sposobie inwestowania w strategie rozrodcze, które wymagają odmiennych adaptacji behawioralnych, morfologicznych i fizjologicznych. U większości gatunków zwierząt występują międzypłciowe różnice w kosztach reprodukcji. Samice często odnoszą największe korzyści z wydania na świat młodych jak najwyższej jakości, podczas gdy samce często odnoszą korzyści z łączenia się z jak największą liczbą samic. W wyniku ewolucji pojawiły się więc głębokie różnice, służące zaspokojeniu tych potrzeb. Uczeni z Oxfordu chcieli odpowiedzieć na pytanie, w jaki sposób różnice w międzypłciowych strategiach rozrodczych objawiają się na poziomie układu nerwowego i jak się mają do ograniczeń fizycznych, w tym ograniczeń dotyczących rozmiaru ciała czy wydatkowania energii, które są spowodowane faktem posiadania przez obie płcie bardzo podobnego genomu. Naukowcy odkryli, że w mózgach samic i samców – pomimo podobieństw genetycznych – istnieją różnice w niektórych obszarach mózgu. Pozwalają one na istnienie znacząco odmiennych strategii, pomimo niewielkich różnic w samej architekturze połączeń pomiędzy neuronami. Samce muszek owocówek zdobywają samice poprzez odpowiednie zachowania godowe. Zatem w ich strategii rozrodczej dużą rolę odgrywa możliwość gonienia samicy. Dla samic takie zachowania praktycznie nie mają znacznia. W ich przypadku ważny jest sukces potomstwa, a tutaj bardzo ważną rolę odgrywa umiejętność wyboru jak najlepszego miejsca złożenia jaj. Brytyjscy uczeni badali różnice w działaniu czterech grup neuronów umieszczonych parami po jednej w każdej z półkul mózgu samców i samic. Odkryli, że połączenia pomiędzy neuronami w tych grupach przebiegają nieco inaczej, w zależności od płci badanego zwierzęcia. Okazało się, że dzięki tym różnicom samce odbierają więcej bodźców wzrokowych, a samice – węchowych. Co więcej, uczeni wykazali, że to właśnie te różnice odpowiadają za różnice w zachowaniu zwierząt. W przypadku samców jest to sterowana wzrokiem zdolność do podążania za samicą, w przypadku samic – zdolność do wspólnego składania jaj w najlepszych miejscach. Te niewielkie różnice w połączeniach pomiędzy neuronami pozwalają na istnienie specyficznej dla płci strategii ewolucyjnej. Ostateczny cel tych różnic jest taki sam – odniesienie sukcesu reprodukcyjnego, stwierdzają autorzy badań. To pierwsze badania, które wykazały istnienie bezpośredniego silnego związku pomiędzy różnicami w budowie mózgu, a zachowaniami typowymi dla danej płci. Wcześniejsze badania na ten temat sugerowały, że istnienie międzypłciowych różnic w przetwarzaniu informacji sensorycznych może prowadzić do zachowań typowych dla płci. Jednak badania te ograniczały się do wykazania istnienia różnic neuroanatomicznych i fizjologicznych, bez udowodnienia ich związku z zachowaniami. My poszliśmy dalej. Powiązaliśmy anatomiczne różnice z charakterystyczną dla płci fizjologią, zachowaniem i rolami płciowymi, mówi profesor Stephen Goodwin, w którego zespole pracują autorzy badań. Artykuł A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behaviour jest dostępny na łamach Current Biology. « powrót do artykułu
-
Wyjście z łóżka w ciemny zimowy poranek jest dla wielu nie lada wyzwaniem. Nie ma jednak co robić sobie z tego powodu wyrzutów. Neurobiolodzy z Northwestern University odkryli właśnie mechanizm wskazujący, że zachowanie takie ma biologiczne podstawy. Naukowcy zauważyli otóż, że muszki owocówki posiadają rodzaj termometru, który przekazuje informacje o temperaturze z czułków zwierzęcia do bardziej rozwiniętych części mózgu. Wykazali też, że gdy jest ciemno i zimno sygnały te tłumią działanie neuronów odpowiedzialnych za przebudzenie się i aktywność, a tłumienie to jest najsilniejsze o poranku. To pomaga wyjaśnić dlaczego, zarówno w przypadku muszek owocówek jak i ludzi, tak trudno jest obudzić się w zimie. Badając zachowanie muszek możemy lepiej zrozumieć jak i dlaczego temperatury są tak ważne dla regulacji snu, mówi profesor Marco Gallio z Winberg College of Arts and Sciences. W artykule opublikowanym na łamach Current Biology autorzy badań jako pierwsi opisali receptory „absolutnego zimna” znajdujące się w czułkach muszki. Reagują one wyłącznie na temperatury poniżej strefy komfortu termicznego zwierzęcia, czyli poniżej 25 stopni Celsjusza. Po zidentyfikowaniu tych neuronów uczeni zbadali ich interakcję z mózgiem. Okazało się, że głównym odbiorcą przesyłanych przez nie informacji jest mała grupa neuronów mózgu, która jest częścią większego obszaru odpowiedzialnego za kontrolę rytmu aktywności i snu. Gdy obecne w czułkach receptory zimna zostają aktywowane, wówczas komórki w mózgu, które zwykle są aktywowane przez światło, pozostają uśpione. Odczuwanie temperatury to jeden z najważniejszych stymulantów. Podstawy jego działania, jakie znaleźliśmy u owocówki, mogą być identyczne u ludzi. Niezależnie bowiem od tego, czy mamy do czynienia z człowiekiem czy z muszką, narządy zmysłów mają do rozwiązania te same problemy i często jest to robione w ten sam sposób, dodaje Gallio. « powrót do artykułu
- 1 odpowiedź
-
- temperatura
- sen
-
(i 5 więcej)
Oznaczone tagami:
-
Międzynarodowy zespół naukowców wykazał, że neurony, w których zachodzi ekspresja receptora dopaminowego D2 (D2R), wykazują w zależności od lokalizacji w prążkowiu różne cechy molekularne i funkcje. Badania na modelu mysim otwierają drogę do opracowania lepszych metod terapii chorób, w przypadku których poziom dopaminy jest zmieniony, np. schizofrenii czy choroby Parkinsona. Prążkowie (łac. striatum) to obszar mózgu zaangażowany m.in. w kontrolę motoryczną, tworzenie nawyków, podejmowanie decyzji, motywację czy wzmocnienie. Jego dysfunkcje powiązano z różnymi zaburzeniami neurologicznymi i psychiatrycznymi. Jednym z najważniejszych neuroprzekaźników w prążkowiu jest dopamina; jej działanie zależy od rodzaju receptora, z którym się zwiąże. Badanie, którego wyniki ukazały się w piśmie Nature Communications, koncentrowało się na receptorach dopaminowych D2. Akademicy wykazali, że wbrew oczekiwaniom, nie wszystkie neurony z ekspresją D2 w prążkowiu mają tę samą tożsamość molekularną czy funkcję. Kluczem jest ich lokalizacja neuroanatomiczna. Zespół zidentyfikował setki nowych regionospecyficznych markerów molekularnych, które można będzie wykorzystać do celowania w pewne subpopulacje. Uzyskane rezultaty pokazują, że istnieje znacząca molekularna i funkcjonalna heterogeniczność populacji neuronalnych prążkowia. Jeśli je lepiej poznamy, może nam się udać osiągnąć lepszą wybiórczość podczas projektowania terapii na choroby, w przypadku których poziom dopaminy jest zmieniony - podkreśla Emma Puighermanal-Puigvert z Instytutu Neuronauk Uniwersytetu Autonomicznego w Barcelonie. Naukowcy sprawdzali, jakie geny ulegają ekspresji w neuronach z D2R występujących w dwóch regionach prążkowia: 1) prążkowiu brzusznym (ventral striatum), składającym się głównie z jądra półleżącego i 2) grzbietowym. Stwierdzono spore różnice. W zależności od lokalizacji, ekspresji ulegają inne białka, co zmienia cechy i funkcje neuronów. W ramach studium naukowcy skupili się na zlokalizowanych głównie w jądrze półleżącym neuronach, w których zachodzi ekspresja białka WFS1. Analizowano wpływ delecji ich D2R. Okazało się, że myszy po knock-oucie znacznie mniej kopały; jest to wrodzone zachowanie, przejawiane przez wiele gatunków podczas poszukiwania i gromadzenia pokarmu czy chowania się przed drapieżnikami. Dodatkowo stwierdzono, że takie zwierzęta wykazywały silniejszą reakcję hiperlokomotoryczną, gdy poziom dopaminy wzrastał po podaniu amfetaminy. Wg ekipy, to sugeruje, że receptory D2 z neuronów WFS1 pełnią kluczową rolę w odpowiedzi na psychostymulanty. « powrót do artykułu
-
Studenci medycyny od dekad uczą się, że oczy komunikują się z mózgiem za pomocą jednego typu sygnałów, pobudzających. Jednak naukowcy z Northwestern University odkryli właśnie, że część neuronów siatkówki wysyła też sygnały hamujące. Naukowcy zauważyli również, że ten sam zestaw neuronów jest zaangażowany w takie działania jak synchronizacja rytmu dobowego z cyklem dnia oraz ze zwężaniem źrenicy w reakcji na jasne światło. Postanowili się więc przyjrzeć temu bliżej. Okazało się, że wysyłane z oka sygnały hamujące zapobiegają zresetowaniu się rytmu dobowego w reakcji na przytłumione światło i zapobiegają zwężaniu się źrenic, gdy jest mało światła. Oba te zjawiska zapewniają nam odpowiednie widzenie i funkcjonowanie za dnia. Sądzimy, że badania te mogą pomóc nam w zrozumieniu, dlaczego nasze oczy są tak wrażliwe na światło, ale podświadome reakcje naszego organizmu są stosunkowo niewrażliwe, mówi główna autorka badań, Tiffany Schmidt. W ramach badań Schmidt i jej zespół zablokowali u myszy neurony wysyłające sygnały hamujące. Wówczas za pomocą przytłumionego światła łatwiej było zmienić rytm dobowy myszy. To wskazuje, że sygnały z oczu w sposób aktywny powstrzymują nasz organizm przed zmianą rytmu dobowego w reakcji na przytłumione światło. To niespodziewane zjawisko. Ma to jednak sens, gdyż nie chcielibyśmy, by nasze organizmy zmieniały rytm dobowy w reakcji na zwykłe zmiany oświetlenia. Zmiana rytmu dobowego jest pożądana tylko wtedy, gdy rzeczywiście dochodzi do dużych zmian ilości dostępnego światła, stwierdziła Schmidt. Naukowcy zauważyli też, że po zablokowaniu sygnałów hamujących z oczu, źrenice myszy były znacznie bardziej wrażliwe na światło. Sądzimy, że mechanizm ten zapobiega kurczeniu się źrenic w słabym oświetleniu. Do rozszerzonej źrenicy wpada więcej światła, więc lepiej widzimy w takich warunkach. To częściowo wyjaśnia, dlaczego nasze źrenice zwężają się dopiero gdy jasne światło stanie się jeszcze jaśniejsze. Ze szczegółami badań można zapoznać się na łamach Science. « powrót do artykułu
-
W jakim wieku są nasze organy wewnętrzne? Odpowiedź może zaskoczyć
KopalniaWiedzy.pl dodał temat w dziale Medycyna
Kiedyś sądzono, że najstarszymi komórkami w organizmie człowieka są neurony i, być może, komórki serca. Teraz naukowcy z Salk Institute udowodnili, że u myszy komórki oraz białka mózgu, wątroby i trzustki są także bardzo stare. Niektóre równie stare co neurony. Metoda wykorzystana w Salk może zostać użyta do zdobycia bezcennych informacji na temat funkcji niedzielących się komórek oraz o tym, jak z wiekiem tracą one kontrolę nad jakością i integralnością protein oraz innych ważnych struktur komórkowych. Byliśmy zaskoczeni faktem, że odnaleźliśmy struktury komórkowe równie stare co organizm. To sugeruje, że złożoność komórkowa jest większa niż sobie to wyobrażaliśmy, co niesie ze sobą intrygujące implikacje dotyczące naszej wiedzy o starzeniu się organów takich jak mózg, serce czy trzustka, mówi dyrektor ds. naukowych Salk Institute profesor Martin Hetzer. Większość neuronów w mózgu nie ulega w życiu dorosłym podziałowi, zatem doświadczają starzenia się i związanego z tym spadku jakości. Dotychczas jednak naukowcy mieli problemy z określeniem czasu życia komórek znajdujących się poza mózgiem. Biolodzy zadawali sobie pytanie, jak stare są komórki w organizmie. Istnieje powszechne przekonanie, że neurony są stare, ale inne komórki są stosunkowo młode, gdyż ulegają regeneracji, stwierdził Rafael Arrojo e Drigo, główny autor najnowszych badań. Uczeni wykorzystali neurony jako punkt odniesienia dla określenia wieku innych komórek. Wykorzystali technikę oznaczania izotopami w połączeniu z hybrydową metodą obrazowania MIMS-EM do wizualizacji i oceny komórek oraz białek w móżgu, trzustce i wątrobie u młodych i starych myszy. Na samym początku ocenie poddali wiek neuronów i, jak się spodziewali, stwierdzili, że są one w tym samym wieku co sam organizm. Później jednak ze zdumieniem zauważyli, że w nabłonku naczyń krwionośnych występują równie stare komórki. To zaś oznaczało, że poza neuronami istnieją komórki, które się nie dzielą i nie zostają zastąpione. Również w trzustce zauważono komórki w różnym wieku. Najbardziej zdziwiły naukowców wysepki Langerhansa, które są mieszaniną starych i młodych komórek. Niektóre z komórek beta były młode, ulegały podziałowi, inne zaś były równie stare co neurony. Z kolei komórki delta w ogóle się nie dzieliły i wszystkie były stare. Trzustka okazała się zdumiewającym przykładem mozaicyzmu wiekowego, czyli organem, w którym identyczne komórki są w bardzo różnym wieku. Jako, że wiemy, iż wątroba potrafi się regenerować nawet w dorosłości, naukowcy zwrócili uwagę również na ten organ. Ku ich zdumieniu okazało się, że większość komórek wątroby jest w tym samym wieku, co sama mysz, podczas gdy komórki układu krwionośnego wątroby są znacznie młodsze. Mozaicyzm wiekowy wątroby może prowadzić do opracowania nowych metod regeneracji tego organu. Dzięki nowej technice wizualizacji jesteśmy w stanie określić wiek komórek i ich złożoność molekularnych lepiej, niż wcześniej. To otwiera nowe drzwi w badaniu komórek, tkanek i organów oraz trapiących je chorób, stwierdził współautor badań profesor Mark Ellisman z Uniwersytetu Kalifornijskiego w San Diego. Na następnym etapie badań naukowcy chcą zbadać różnice w długości życia kwasów nukleinowych i lipidów. Spróbują też zrozumieć, jak mozaicyzm wiekowy wpływa na zdrowie i na choroby takie jak cukrzyca typu 2. « powrót do artykułu- 2 odpowiedzi
-
- wiek
- organy wewnętrzne
- (i 5 więcej)
-
Związanym z wiekiem spadkom dopływu krwi do mózgu i pogorszeniu pamięci można zapobiegać za pomocą sirolimusa (rapamycyny), leku immunosupresyjnego stosowanego w transplantologii. Zespół z Centrum Nauk o Zdrowiu Uniwersytetu Teksańskiego w San Antonio zaczął aplikować szczurom sirolimus, gdy miały 19 miesięcy. Niewielką dawkę leku dodawano do jedzenia do momentu, aż gryzonie skończyły 34 miesiące i były w naprawdę podeszłym wieku. [...] Osobniki te osiągnęły sędziwy wiek, ale ich krążenie w mózgu było dokładnie takie samo, jak wtedy, gdy zaczynały terapię - opowiada prof. Veronica Galvan. Niepoddawane terapii szczury przechodziły zmiany obserwowane u starszych dorosłych: widoczne były spadki dopływu krwi do mózgu i pogorszenie pamięci. [...] Stare szczury leczone rapamycyną przypominały zaś szczury w średnim wieku z naszego studium - dodaje dr Candice Van Skike. Starzenie to najsilniejszy czynnik ryzyka demencji, ekscytująco jest więc stwierdzić, że rapamycyna, substancja znana z wydłużania życia, może też pomóc w zachowaniu integralności krążenia mózgowego i osiągów pamięciowych starszych dorosłych. Obecnie badamy bezpieczeństwo leku u osób z łagodnymi zaburzeniami poznawczymi (MCI) - wyjaśnia prof. Sudha Seshadri. Trzeba podkreślić, że przyglądano się zwykłemu starzeniu. Szczury doświadczały naturalnego spadku możliwości poznawczych, który nie był wymuszony żadnym procesem chorobowym - zaznacza Van Skike. Sirolimus należy do inhibitorów mTOR. Szlak mTOR odgrywa istotną rolę w kontroli cyklu komórkowego. Jego aktywacja bierze udział w patogenezie niektórych chorób, a także jak sądzą Amerykanie, napędza utratę synaps i przepływu krwi do mózgu w czasie starzenia. Z tego powodu długotrwałe podawanie rapamycyny szczurom skutkowało ograniczeniem deficytów uczenia i pamięci, zapobiegało zanikowi sprzężenia naczyniowo-nerwowego, a także korzystnie wpływało na perfuzję mózgową. « powrót do artykułu
- 1 odpowiedź
-
W młodej krwi występują 2 białka, które działają ożywczo na mózg
KopalniaWiedzy.pl dodał temat w dziale Psychologia
W młodej krwi występują spore ilości dwóch białek, które pomagają odmładzać ważne struktury neuronów. To one mogą odpowiadać za korzystny wpływ takiej krwi na osiągi poznawcze starszych mózgów. Ponieważ w ramach wcześniejszych badań stwierdzono, że podawanie młodej krwi/przygotowanych z niej produktów krwiopochodnych zmniejsza ryzyko różnych chorób, np. alzheimera i że zabieg ten poprawia funkcjonowanie poznawcze starszych zwierząt, zespół Thomasa Südhofa z Uniwersytetu Stanforda postanowił sprawdzić, jaki mechanizm może za to odpowiadać. Obserwowano wpływ surowicy krwi młodych - 2-tygodniowych - i starych - 12-15-miesięcznych - myszy na ludzkie neurony. Okazało się, że pod wpływem surowicy młodych myszy powstawało więcej synaps, rozwijało się drzewo dendrytyczne, rosła liczba receptorów NMDA i podwajała się liczba struktur przypominających kolce dendrytyczne. Surowica starych myszy nie wywierała takiego wpływu. Südhof i inni odkryli, że surowica młodych myszy jest bogata w dwa białka: THBS4 i SPARCL1. Co istotne, oba odgrywają ważne role we wzroście i organizacji komórek w organizmie. Kiedy do neuronów podano same rekombinowane białka, stwierdzono to samo zjawisko: wzmocnienie procesu tworzenia i aktywności synaps. Komentatorzy publikacji z pisma PNAS podkreślają, że w przyszłości THBS4 i SPARCL1 będzie można wykorzystywać do zagwarantowania zdrowego starzenia i w leczeniu chorób neurodegeneracyjnych. « powrót do artykułu-
- młoda krew
- neurony
-
(i 4 więcej)
Oznaczone tagami:
-
Nowe neurony powstają w mózgu nawet w 10. dekadzie życia
KopalniaWiedzy.pl dodał temat w dziale Psychologia
Nowe neurony powstają w mózgach do 10. dekady życia. Dotyczy to również osób z chorobą Alzheimera (ChA). Naukowcy z Uniwersytetu Illinois w Chicago badali pośmiertnie tkankę mózgu osób w wieku 79-99 lat. Okazało się, że neurogeneza zachodzi do późnego wieku. Co więcej, Amerykanie zauważyli, że nowe neurony powstają także u ludzi z łagodnymi zaburzeniami poznawczymi (ang. mild cognitive impairment, MCI) i z ChA. W porównaniu do zdrowych osób, neurogeneza jest w ich przypadku znacząco ograniczona. Badanie zespołu z Uniwersytetu Illinois po raz pierwszy zapewniło dowody, że w tkance hipokampalnej starszych ludzi, także tych cierpiących na choroby oddziałujące na hipokamp, występuje znacząca liczba nerwowych komórek macierzystych i rozwijających się neuronów. Odkryliśmy, że aktywna neurogeneza występuje u ludzi, którzy przekroczyli dziewięćdziesiątkę już jakiś czas temu. Interesujące jest to, że widzieliśmy nowe neurony u pacjentów z ChA i zaburzeniami poznawczymi - opowiada prof. Orly Lazarov. Lazarov ustaliła także, że bez względu na zakres zmian patologicznych, osoby, które lepiej wypadały w testach poznawczych, w chwili śmierci miały w hipokampie więcej rozwijających się neuronów. Niższy stopień neurogenezy wiąże się więc raczej z objawami spadku możliwości poznawczych i pogorszeniem plastyczności synaptycznej niż ze stopniem zmian patologicznych w mózgu. Wpływ patologii i neurogenezy jest złożony i [obecnie] nie rozumiemy dokładnie, jak te dwa procesy są ze sobą połączone. Oczywiste jest jednak, że występuje tu duże zróżnicowanie osobnicze. Lazarov jest zafascynowana terapeutycznymi możliwościami swojego odkrycia. Fakt, że w hipokampie seniorów znaleźliśmy nerwowe komórki macierzyste i nowe neurony, oznacza, że jeśli znajdziemy sposób wspomagania neurogenezy, np. za pomocą jakiegoś drobnocząsteczkowego związku, będziemy w stanie spowolnić albo zapobiec spadkowi formy poznawczej. Dotyczy to zwłaszcza początkowych faz choroby, kiedy wszelkie interwencje są najbardziej skuteczne. Autorzy publikacji z pisma Cell Stem Cell analizowali tkanki hipokampa 18 osób w średnim wieku 90,6 r. Dzięki barwieniu wykryli średnio ok. 2000 nerwowych komórek progenitorowych i ok. 150 tys. rozwijających się neuronów na mózg. Liczba namnażających się komórek była znacząco niższa u osób z MCI i ChA. Amerykanie chcą sprawdzić, czy nowe neurony, które powstają w mózgach starszych osób, zachowują się tak samo, jak nowe neurony w młodszych mózgach. Nadal nie wiemy wielu rzeczy o procesie dojrzewania nowych neuronów i funkcji neurogenezy w starszych mózgach, dlatego trudno powiedzieć, w jakim stopniu może to znosić skutki zaburzeń poznawczych i choroby Alzheimera. « powrót do artykułu-
- neurogeneza
- neurony
-
(i 5 więcej)
Oznaczone tagami:
-
Na horyzoncie pojawiły się nowe możliwości zapobiegania chorobie Alzheimera (ChA). Badacze zidentyfikowali bowiem związki z ambrozji bylicolistnej (Ambrosia artemisiifolia), które pomagają neuronom przeżyć w obecności beta-amyloidu. A. artemisiifolia jest rośliną inwazyjną. Pochodzi z Ameryki Północnej, lecz obecnie ma kosmopolityczny zasięg. Jej pyłek jest silnym alergenem. Blaszki beta-amyloidu są neurotoksyczne. Pięć leków zatwierdzonych do terapii ChA tylko opóźnia rozwój choroby. Nic więc dziwnego, że naukowcy nie ustają w poszukiwaniu nowych, skuteczniejszych, metod terapii/zapobiegania. Won Keun Oh z Seulskiego Uniwersytetu Narodowego analizował 300 ekstraktów roślinnych pod kątem aktywności anty-ChA. Wtedy właśnie Koreańczycy natknęli się na ambrozję bylicolistną. Postanowili wyizolować i scharakteryzować strukturę związków z A. artemisiifolia, które odpowiadają za zaobserwowaną aktywność neuroprotekcyjną. Z całych roślin wyizolowano 14 związków, które wydawały się chronić neurony przed toksycznością beta-amyloidu. Ich budowę określono m.in. za pomocą spektrometrii mas i spektroskopii magnetycznego rezonansu jądrowego. Siedem z nich, w tym terpenoidy i koniugaty spermidyny, opisano już wcześniej, pozostałe to całkowicie nowe terpenoidy. Gdy 2 najbardziej aktywne nowe związki dodano do szalek, w obecności beta-amyloidu przeżyło ok. 20% więcej komórek (w porównaniu do sytuacji, kiedy nie stosowano żadnej interwencji). « powrót do artykułu
-
- ambrozja bylicolistna
- Ambrosia artemisiifolia
- (i 6 więcej)
-
Neurogeneza, czyli proces powstawania nowych neuronów, zachodzi w ludzkich mózgach nawet w wieku 87 lat. Do takich wniosków doszli hiszpańscy naukowcy, którzy badali mózgi niedawno zmarłych osób. W ostatnich latach naukowcy nie byli zgodni co do neurogenezy. Zastanawiano się m.in., jak długo (do jakiego wieku) zjawisko to się utrzymuje i jakich ewentualnie regionów mózgu dotyczy. Sporo badań dotyczyło hipokampa, ponieważ to część mózgu najsilniej związana z pamięcią, a logika podpowiada, że do magazynowania nowych wspomnień potrzebne są nowe neurony. Poza tym hipokamp to jedna ze struktur, które ulegają uszkodzeniu w przebiegu chorób neurodegeneracyjnych. W zeszłym roku międzynarodowa grupa naukowców stwierdziła, że neurogeneza w hipokampie kończy się wraz z dzieciństwem. W artykule, który ukazał się w piśmie Nature Medicine, zespół Maríi Llorens-Martín z Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) w Madrycie dowodzi, że to nieprawda i neurogeneza utrzymuje się do bardzo zaawansowanego wieku. Wcześniejsze badania wykazały, że na wczesnych etapach rozwoju komórki nerwowe zawierają DCX – białko związane z mikrotubulami, charakterystyczne dla migrujących neuronów (ang. doublecortin). Hiszpanie opierali się na tej informacji. Badano ludzi, od których śmierci minęło maksymalnie 10 godzin. Ich mózgi umieszczano w roztworze, który podtrzymuje świeżość tkanki nerwowej. Pobierano cienkie wycinki hipokampa i oglądano je pod mikroskopem w poszukiwaniu DCX. Akademicy podkreślają, że do 9. dekady życia włącznie u zdrowych neurologicznie osób w zakręcie zębatym, który wchodzi w skład formacji hipokampa, identyfikowano liczne niedojrzałe neurony (komórki z DCX). Neurogeneza występowała w mózgach ludzi, którzy zmarli w wieku 43-87 lat. Te same testy przeprowadzono na ludziach, którzy mieli chorobę Alzheimera (ChA). Tutaj znaleziono jednak niewiele przykładów neurogenezy, co sugeruje, że ChA nie tylko pozbawia pacjentów starych wspomnień, ale i nie dopuszcza do powstawania nowych. W tym przypadku liczba i proces dojrzewania neuronów pogarszały się wraz z postępami choroby. Tłumacząc, czemu wyniki są inne od opublikowanych w zeszłym roku, ekipa Llorens-Martín powołuje się na połączenie ścisłej procedury pozyskiwania tkanek do badań i najnowocześniejszych technologii. « powrót do artykułu
-
- DCX
- mikrotubule
-
(i 6 więcej)
Oznaczone tagami:
-
Witamina D jest niezbędna do prawidłowego działania sieci perineuronalnej, która stabilizuje połączenia między neuronami. To może wyjaśniać, czemu jej niedobory prowadzą do takich zaburzeń, jak depresja. Ponad miliard ludzi na świecie ma niedobór witaminy D. Związek między niedoborami tej witaminy i problemami poznawczymi jest zaś badaczom dobrze znany - opowiada prof. Thomas Burne z Uniwersytetu Queensland. Niestety, nie wiadomo, jak dokładnie witamina D wpływa na budowę i działanie mózgu. Australijski zespół odkrył, że poziom witaminy D oddziałuje na sieć perineuronalną. Gdy jest jej tyle, co trzeba, silna, wspierająca sieć wokół neuronów [...] stabilizuje połączenia między komórkami. Gdy podczas eksperymentów z diety zdrowych dorosłych myszy wyeliminowano witaminę D, po 20 tygodniach okazało się, że w porównaniu do grupy kontrolnej, znacząco gorzej przebiegało u nich uczenie i zapamiętywanie. Naukowcy stwierdzili, że w hipokampie, rejonie mózgu kluczowym dla uczenia, doszło do silnie zaznaczonego zaniku sieci perinneuronalnych. Zaobserwowaliśmy także spadek liczby i siły połączeń między neuronami w tym obszarze. Wiele wskazuje więc na to, że deficyty uczenia przestrzennego można przypisać zaburzeniu właściwej łączności strukturalnej hipokampa. Australijczycy uważają, że witamina D odgrywa ważną rolę w stabilizowaniu sieci. Kiedy jej poziom spada, rusztowanie jest łatwiej rozkładane przez enzymy. Kiedy neurony w hipokampie tracą swoje wspierające sieci perineuronalne, mają problem z zachowaniem połączeń, co ostatecznie prowadzi do utraty funkcji poznawczych. Burne uważa, że niedobór witaminy D może silniej oddziaływać na hipokamp, bo jest on bardziej aktywną strukturą. Można go porównać do kanarka w kopalni - szwankuje w pierwszej kolejności, bo wyższe zapotrzebowanie energetyczne uwrażliwia go na niedobór niezbędnych składników odżywczych [...]. Intrygujące jest to, że niedobór witaminy D silniej wpływa na prawy niż na lewy hipokamp. Burne podkreśla, że utrata funkcji tego obszaru może się w istotny sposób przyczyniać do flagowych objawów schizofrenii: dużych deficytów pamięciowych oraz zaburzonego postrzegania rzeczywistości. Akademicy cieszą się, że zmiany dot. sieci perineuronalnych wykryto u dorosłych myszy. Mam nadzieję, że skoro są one dynamiczne, istnieje szansa na ich odbudowanie, co pozwala myśleć o nowych metodach terapii. « powrót do artykułu
-
- niedobór
- witamina D
-
(i 7 więcej)
Oznaczone tagami:
-
Wypalanie ponad 20 papierosów dziennie może prowadzić do uszkodzenia wzroku. W badaniu uwzględniono 71 zdrowych osób, które w ciągu życia wypaliły mniej niż 15 papierosów, oraz 63 osoby ze zdiagnozowanym uzależnieniem, które nigdy nie próbowały zerwać z nałogiem i wypalały ponad 20 papierosów dziennie. Ochotników w wieku 25-45 lat zbadano za pomocą tablic służących do oceny ostrości wzroku; wszyscy mieli wzrok normalny bądź skorygowany do normalnego. Podczas eksperymentu sprawdzano, jak dobrze badani radzą sobie z rozróżnianiem subtelnych różnic odcieni (poziomów kontrastu) i kolorów. Naukowcy sadzali ich w odległości 1,5 m od 19-calowego monitora CRT. Okazało się, że u palaczy występowały znaczące zmiany w widzeniu barwnym w zakresie niebiesko-żółtym i czerwono-zielonym (cechowała ich obniżona zdolność dyskryminacji kontrastów i barw). To sugeruje, że przyjmowanie substancji o działaniu neurotoksycznym może prowadzić do utraty widzenia barwnego. Wcześniejsze badania wskazywały, że długotrwałe palenie podwaja ryzyko związanego z wiekiem zwyrodnienia plamki żółtej. Powiązano je także z żółknięciem soczewki oraz zapaleniem [błony naczyniowej]. Nasze badania pokazują, że wypalanie dużej liczby papierosów lub przewlekła ekspozycja na substancje związane z ich używaniem wpływają na rozróżnianie wzrokowe [...] - podkreśla Steven Silverstein z Rutgers University. Badania, których wyniki ukazały się w Psychiatry Research, nie dają fizjologicznego wyjaśnienia zaobserwowanych zjawisk, ale naukowcy podejrzewają, że przyczyną są uszkodzenia naczyń i neuronów siatkówki. « powrót do artykułu
-
- palenie
- widzenie barwne
-
(i 4 więcej)
Oznaczone tagami:
-
Selektywne inhibitory zwrotnego wychwytu serotoniny (SSRI) pomagają wielu pacjentom z depresją. U ok. 1/3 osób z ciężkim zaburzeniem depresyjnym (MDD) nie dają jednak efektów. Badacze z Instytutów Studiów Biologicznych Salk sądzą, że odkryli przyczynę tego zjawiska: przynajmniej u części tych ludzi neurony mogą być nadreaktywne w obecności SSRI. To obiecujący krok w kierunku zrozumienia, czemu niektórzy pacjenci nie reagują SSRI. Przybliża nas to do spersonalizowanej terapii depresji - cieszy się prof. Rusty Gage. Amerykanie podkreślają, że MDD powiązano z nierównowagą sygnalizacji serotoninowej, ale dokładny mechanizm tego zjawiska nie został poznany. Wyjaśniają, że SSRI hamują wychwyt serotoniny ze szczeliny synaptycznej. Jej podwyższone stężenie powoduje wzrost neuroprzekaźnictwa z jednej komórki nerwowej do drugiej. Zespół Gage'a i współpracownicy z Mayo Clinic przeanalizowali reakcje na SSRI występujące u 803 pacjentów z MDD. Z tej grupy wybrano 3 osoby z całkowitą remisją i 3 osoby, u których po 8 tygodniach terapii nie wystąpiła poprawa. Od tych 6 ludzi i od 3 zdrowych osób wyizolowano komórki skóry. Najpierw uzyskano z nich indukowane pluripotencjalne komórki macierzyste (ang. induced pluripotent stem cells, iPSC), a później neurony. Ekscytujące jest to, że mogliśmy patrzeć na [...] neurony, do których zwykle nie mamy dostępu u żywych pacjentów - podkreśla Krishna Vadodaria i dodaje, że dzięki tej metodzie można badać komórki osób o znanej historii leczenia, genomie i profilach reakcji. W tym przypadku autorzy artykułu z pisma Molecular Psychiatry przyglądali się reakcjom neuronów poszczególnych osób na podwyższony poziom serotoniny (miało to oddawać działanie SSRI). Okazało się, że niektóre neurony pozyskane od osób niereagujących na SSRI wykazywały średnio znacząco wyższą aktywność niż neurony osób zdrowych i reagujących na SSRI. Dalsze eksperymenty wskazały na 2 receptory serotoninowe: 5-HT2A i 5-HT7. Kiedy je zablokowano, neurony osób niereagujących na selektywne inhibitory zwrotnego wychwytu serotoniny nie były już hiperaktywne w obecności serotoniny. Mam nadzieję, że to otwiera drogę kolejnym badaniom nad ludźmi, którzy pod względem reakcji na leczenie są skrajnymi przypadkami - podsumowuje Vadodaria. « powrót do artykułu
- 1 odpowiedź
-
- depresja
- ciężkie zaburzenie depresyjne
- (i 6 więcej)
-
Bakterie jelitowe kontrolują ruchy muszek owocowych (Drosophila melanogaster). To badanie zapewnia dodatkowe dowody na powiązania jelita i mózgu, a w szczególności wskazuje, w jaki sposób bakterie mogą wpływać na zachowanie, w tym na ruchy - podkreśla dr Margaret Sutherland z amerykańskiego Narodowego Instytutu Zaburzeń Neurologicznych i Udaru (NINDS). Zespół prof. Sarkisa K. Mazmaniana z Kalifornijskiego Instytutu Technologii i Catherine E. Schretter zaobserwował, że pozbawione bakterii sterylne muszki były nadaktywne: chodziły szybciej, pokonywały większe odległości i robiły sobie krótsze przerwy niż owady z normalnym poziomem bakterii. Mazmanian badał, jakie bakterie jelitowe mogą oddziaływać na zachowanie D. melanogaster. Lokomocja jest ważna dla wielu aktywności, w tym dla spółkowania i poszukiwania pokarmu. Okazuje się [więc], że bakterie mogą być krytyczne dla podstawowych zachowań zwierząt. U owocówek występuje 5-20 gatunków bakterii, dlatego ekipa Mazmaniana podawała sterylnym (aksenicznym) muszkom pojedyncze szczepy bakterii. Gdy podano Lactobacillus brevis, ruchy powróciły do normalnej prędkości (L. brevis to jeden z 2 gatunków, które przywracały normalne zachowanie). Amerykanie ustalili także, że krytyczna dla tego procesu może być izomeraza ksylozy (ksylozoizomeraza, Xi), występujący u L. brevis enzym rozkładający cukier. Wyizolowanie ksylozoizomerazy i podanie jej muszkom wystarczyło, by spowolnić ruchy. Dodatkowe eksperymenty pokazały, że Xi może wpływać ruchy, precyzyjnie regulując poziom określonych węglowodanów, np. trehalozy, która jest podstawowym cukrem owocówek (to główny cukier krążący w hemolimfie owadów). Okazało się, że owocówki, którym podano Xi, miały niższe poziomy trehalozy niż muszki akseniczne z grupy kontrolnej. Gdy muszkom potraktowanym Xi, które po tym zabiegu przejawiały normalne zachowanie, dawano trehalozę, ponownie pojawiały się szybkie ruchy. To sugeruje, że cukier odwraca działanie Xi. W kolejnym etapie badań autorzy publikacji z Nature przyglądali się układowi nerwowemu, by sprawdzić, które z neuronów mają coś wspólnego z ruchami sterowanymi przez bakterie. W ten sposób stwierdzono, że aktywacja neuronów wytwarzających oktopaminę wyłączała wpływ L. brevis na muszki. W efekcie muszki, które zwolniły po podaniu bakterii lub ksylozoizomerazy, znowu stawały się hiperaktywne. Aktywacja neuronów oktodopaminergicznych (produkujących oktodopaminę) u D. melanogaster z normalnym poziomem bakterii także sprawiała, że poruszały się one szybciej. Włączenie neuronów wytwarzających inne neuroprzekaźniki nie wpływało na ruchy owadów. Mazmanian i inni uważają, że Xi może monitorować stan metaboliczny muszek, w tym poziom składników odżywczych, a później sygnalizować neuronom oktodopaminergicznym, czy powinny się włączyć, czy wyłączyć, prowadząc do określonych zmian w zachowaniu. Amerykanie dodają, że zamiast oktodopaminy ssaki produkują noradrenalinę, która, jak wykazano, również kontroluje ruchy. Mikrobiom jelitowy może odgrywać podobną rolę w lokomocji ssaków, a także w zaburzeniach poruszania, takich jak choroba Parkinsona - podsumowuje Mazmanian. « powrót do artykułu
-
- mikrobiom
- poruszanie
-
(i 5 więcej)
Oznaczone tagami:
-
Dotąd sądzono, że istnieją tylko dwa typy neuronów zwoju spiralnego ślimaka. Tymczasem naukowcy z Karolinska Institutet odkryli, że typ I to de facto trzy rodzaje neuronów, co pokrywa się z wcześniejszymi badaniami, które wskazywały na zróżnicowanie właściwości elektrycznych i reakcji na dźwięki. Analiza tych komórek może doprowadzić do powstania nowych terapii zaburzeń słyszenia, w tym szumów usznych. Szwedzi zmapowali geny aktywne w poszczególnych typach komórek (stworzyli ich katalog). Posłużyli się nową metodą, zwaną sekwencjonowaniem RNA pojedynczej komórki. Nasze studium otwiera drogę rozwojowi nowych narzędzi genetycznych, które znajdą zastosowanie w leczeniu różnych zaburzeń słyszenia, np. szumów usznych lub [nadwrażliwości słuchowej] - podkreśla dr Francois Lallemend. Autorzy publikacji z pisma Nature Communications sądzą, że trzy podtypy neuronów typu I odgrywają pewną rolę w dekodowaniu natężenia dźwięku, co np. pozwala prowadzić rozmowy w głośnym otoczeniu czy odfiltrować szum tła. Teraz, gdy wiemy, które neurony powodują nadwrażliwość słuchową [ang. hyperacusis], będziemy mogli zacząć prace nad metodami zapobiegania bądź terapii. Kolejnym etapem będzie wykazanie, jaki wpływ mają te komórki na układ słuchowy, co może doprowadzić do stworzenia np. lepszych [...] implantów ślimakowych. Badania wykazały, że 3 omawiane rodzaje neuronów występują już przy urodzeniu. « powrót do artykułu
-
- Francois Lallemend
- typy
-
(i 2 więcej)
Oznaczone tagami:
-
Za pomocą zileutonu (leku sprzedawanego pod nazwą ZYLFO) udało się u myszy odwrócić objawy demencji wywołane patologią białka tau. Wykazaliśmy, że można interweniować już po wystąpieniu choroby i farmakologicznie pomóc myszom, u których pojawiły się zaburzenia pamięciowe wywołane przez patologię białka tau - podkreśla dr Domenico Praticò ze Szkoły Medycyny Lewisa Katza na Temple University. Badania autorów publikacji z pisma Molecular Neurobiology zainspirowało odkrycie, że w chorobie Alzheimera (ChA) i pokrewnych demencjach obserwuje się dysregulację cząsteczek zapalnych zwanych leukotrienami. Podczas eksperymentów na zwierzętach naukowcy stwierdzili, że szlak leukotrienowy odgrywa szczególnie ważną rolę na późniejszych etapach choroby. Na początku demencji leukotrieny próbują chronić neurony, lecz w dłuższym okresie powodują uszkodzenia. Odkrywszy to, chcieliśmy wiedzieć, czy zablokowanie leukotrienów może odwrócić uszkodzenia i czy możemy coś zrobić, by naprawić pamięć i zaburzenia uczenia u myszy, u których patologia tau jest już nasilona. Amerykanie prowadzili badania na transgenicznych myszach, u których, tak jak u ludzi, rozwija się patologia białka tau - splątki neurofibrylarne (zwyrodnienie włókienkowe), zaburzenia funkcji synaps, a także problemy z pamięcią i uczeniem. Gdy gryzonie osiągały wiek 12 miesięcy (odpowiednik 60 lat u ludzi), podawano im zileuton - lek blokujący powstawanie leukotrienów na drodze hamowania enzymu 5-lipooksygenazy. Po 16 tygodniach terapii myszy poddawano testowi labiryntu (w ten sposób oceniano ich pamięć roboczą i uczenie przestrzenne). Okazało się, że w porównaniu do nieleczonej grupy kontrolnej, zwierzęta po zileutonie osiągały znacząco lepsze rezultaty. By ustalić, czemu się tak stało, naukowcy zbadali najpierw poziom leukotrienów. Zauważyli, że u leczonych gryzoni ich stężenie było aż o 90% niższe. Poziom fosforylowanego białka tau, które bezpośrednio uszkadza synapsy, także był o połowę niższy. Dodatkowo o ile nieleczone gryzonie miały poważnie zniszczone synapsy, o tyle synaps myszy poddawanych terapii zileutonem nie dało się odróżnić od synaps zdrowych zwierząt. Po przeleczeniu stan zapalny całkowicie zniknął. [...] Dzięki temu możliwe było usunięcie uszkodzeń [wywołanych przez] tau. Naukowcy podkreślają, że zileuton jest lekiem dopuszczonym przez amerykańską Agencję ds. Żywności i Leków (FDA) do terapii astmy. To stary lek na nową chorobę. Badania mogą [więc] szybko znaleźć przełożenie kliniczne i pomóc pacjentom z ChA. « powrót do artykułu
-
- patologia białka tau
- choroba Alzheimera
-
(i 6 więcej)
Oznaczone tagami:
-
Udane testy żelu wspomagającego odtwarzanie tkanek mózgu po udarze
KopalniaWiedzy.pl dodał temat w dziale Medycyna
Nowy usuwający skutki udaru żel pomaga w odtwarzaniu neuronów i naczyń krwionośnych myszy. Badanie sugeruje, że tkanka mózgu może być zregenerowana na obszarze czegoś, co wcześniej było zwykłą nieaktywną blizną poudarową - opowiada prof. Thomas Carmichael z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Wyniki sugerują, że pewnego dnia takie podejście może się stać terapią dla pacjentów z udarami - dodaje dr Tatiana Segura. Mózg ma ograniczoną zdolność regeneracji po udarze i innych chorobach. Nie odtwarza połączeń, naczyń krwionośnych i struktur tkankowych. Tkanka, która obumiera w wyniku udaru, zostaje wchłonięta - pozostaje pozbawiona naczyń, neuronów i aksonów pusta przestrzeń. By sprawdzić, czy otaczającą tę jamę zdrową tkankę można skłonić do naprawy, zespół Segury opracował żel do wstrzykiwania w pustą przestrzeń, który gęstnieje po iniekcji, naśladując właściwości tkanki mózgu. W ten sposób powstaje rusztowanie. Żel jest wysycony substancjami stymulującymi wzrost naczyń (angiogenezę) i hamującymi stan zapalny; stan zapalny skutkuje bliznowaceniem i utrudnia/uniemożliwia wzrost prawidłowej tkanki. Autorzy publikacji z pisma Nature Materials podkreślają, że po 16 tygodniach jama zawierała zregenerowaną tkankę mózgu, w tym sieci neuronalne (nigdy wcześniej nie obserwowano czegoś takiego). U myszy z nowymi neuronami poprawie ulegało zachowanie motoryczne. Dokładny mechanizm zjawiska nie jest jednak znany. Nowe aksony naprawdę mogą działać. Albo odtworzona tkanka poprawia działanie nieuszkodzonej, zdrowej tkanki. Ostatecznie żel był wchłaniany przez organizm. Pozostawała tylko nowa tkanka. Opisywane badanie dot. okresu okołoudarowego (5 dni u myszy i 2 miesięcy u ludzi). Teraz Carmichael i Segura chcą ustalić, czy tkankę mózgu da się zregenerować w późniejszym terminie. « powrót do artykułu -
Podczas eksperymentu finansowanego przez amerykańskie Narodowe Instytuty Zdrowia naukowcy wyeliminowali u grupy szczurów szumy uszne (tinnitus). Dokonali tego, stymulując nerw błędny (X) i odtwarzając jednocześnie zestaw dźwięków o różnych częstotliwościach. Procedurę powtarzali kilkaset razy dziennie przez kilka tygodni. Dzwonienie w uszach bardzo uprzykrza ludziom życie, ale dotąd było nieuleczalne. Dotychczasowe terapie generalnie polegały na maskowaniu dźwięku lub nauce ignorowania go – opowiada dr James F. Battey, dyrektor Narodowego Instytutu Głuchoty i Innych Zaburzeń Komunikacyjnych (National Institute on Deafness and Other Communication Disorders, NIDCD). Najnowsza metoda przypomina zaś przyciśnięcie w mózgu guzika reset. Pomaga w ponownym przetrenowaniu części mózgu interpretującej dźwięki. W ten sposób nieprawidłowo działające neurony zostają zawrócone ze złej ścieżki i wracają do swojego pierwotnego stanu. Wskutek tego piszczenie ustaje. Badania zostały przeprowadzone przez naukowców z Uniwersytetu Teksańskiego oraz firmy MicroTransponder z Dallas. Tinnitus to objaw doświadczany przez niektóre osoby w wyniku utraty słuchu. Kiedy komórki czuciowe ucha wewnętrznego ulegają uszkodzeniu, np. pod wpływem głośnego dźwięku, doprowadza to do zmiany sygnału wysyłanego z ucha do mózgu. Z nie w pełni wyjaśnionych przyczyn część pacjentów zaczyna wtedy słyszeć szumy. Sądzimy, że [...] kora słuchowa deleguje za dużo neuronów do pewnych częstotliwości i wtedy wszystko zaczyna iść źle. Jako że zbyt wiele komórek nerwowych przetwarza te same częstotliwości, wyładowują się silniej, niż powinny – tłumaczy dr Michael Kilgard. Poza tym neurony wyładowują się częściej, gdy jest cicho. Na początku zespół próbował wywołać zmiany w korze słuchowej szczurów, kojarząc stymulację nerwu błędnego z odtwarzaniem pojedynczego dźwięku. Gdy nerw jest pobudzany, wydziela się acetylocholina, norepinefryna i inne związki, które wspomagają zachodzenie zmian w mózgu. Amerykanie chcieli sprawdzić, czy można spowodować, by po pewnym czasie więcej neuronów zaczęło reagować na odtwarzany dźwięk. Przez 20 dni 300 razy dziennie ośmiu gryzoniom odtwarzano wysoki dźwięk o częstotliwości 9 kiloherców. W czasie, gdy dźwięk wybrzmiewał, elektroda delikatnie stymulowała nerw błędny. Okazało się, że w porównaniu do kontrolnej grupy zwierząt, liczba neuronów dostrojonych do częstotliwości 9 herców wzrosła aż o 79%. W następnej grupie szczurów ekipa Kilgarda losowo odtwarzała dwa dźwięki – jeden o częstotliwości 4 kHz i drugi o częstotliwości 19 kHz. Nerw błędny stymulowano jednak wyłącznie przy odgrywaniu wyższego dźwięku. O ile liczba komórek nerwowych reagujących na 19 kHz wzrosła o 70%, o tyle w grupie 4-hercowej neuronów wręcz ubyło. W ten sposób wykazano, że nie wystarczy sam dźwięk i trzeba jeszcze pobudzać nerw X. Na kolejnym etapie eksperymentu badacze sprawdzali, czy można wyeliminować tinnitus u zwierząt wystawionych na oddziaływanie hałasu, zwiększając liczbę neuronów dostrojonych do częstotliwości innej niż częstotliwość szumów usznych. Grupa zwierząt przechodziła więc 300 razy na dobę stymulację nerwu błędnego (ang. vagus nerve stimulation, VNS), połączoną z odtwarzaniem różnych dźwięków o częstotliwości zbliżonej do szumów. Procedurę powtarzano przez ok. 3 tygodnie. Część grupy kontrolnej poddawano VNS, podczas gdy reszta nie robiła nic lub słuchała tylko dźwięków. W obu grupach pomiary przeprowadzono w miesiąc po ekspozycji na hałas, dziesięć dni po rozpoczęciu terapii oraz dzień, tydzień i 3 tygodnie po zakończeniu leczenia. U gryzoni z grupy eksperymentalnej obiecujące rezultaty występowały na każdym etapie terapii, także w połowie – wszystko wskazuje więc na to, iż tinnitus zniknął. U zwierząt z grupy kontrolnej szumy uszne cały czas były obecne. Gdy naukowcy obserwowali 2 szczury kontrolne i 2 eksperymentalne przez dodatkowe dwa miesiące, u leczonych VNS i dźwiękami osobników korzyści utrzymywały się przez 3,5 miesiąca od potraktowania uszkadzającym słuch hałasem. U szczurów kontrolnych deficyty były nadal zauważalne. Badanie kory słuchowej zademonstrowało, że w wyniku terapii neurony powróciły do pierwotnego (zdrowego) stanu. W zestawieniu z innymi metodami kluczowa różnica polega więc na tym, że my nie maskujemy szumów, ale przestrajamy mózg ze stanu, kiedy generuje on tinnitus, do stanu, kiedy tego nie robi. Eliminujemy więc źródło – cieszy się Kilgard. Akademicy nadal pracują nad ulepszeniem techniki. Ustalają, ile częstotliwości trzeba optymalnie zestawić ze stymulacją nerwu, jak długo terapia powinna trwać i czy równie dobrze sprawdzi się ona na nowych, jak i utrzymujących się od dawna przypadkach szumów usznych. W najbliższej przyszłości w Europie rozpoczną się pilotażowe testy metody na ludziach. « powrót do artykułu
-
- tinnitus
- szumy uszne
-
(i 5 więcej)
Oznaczone tagami: