Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' ruchy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Bakterie jelitowe kontrolują ruchy muszek owocowych (Drosophila melanogaster). To badanie zapewnia dodatkowe dowody na powiązania jelita i mózgu, a w szczególności wskazuje, w jaki sposób bakterie mogą wpływać na zachowanie, w tym na ruchy - podkreśla dr Margaret Sutherland z amerykańskiego Narodowego Instytutu Zaburzeń Neurologicznych i Udaru (NINDS). Zespół prof. Sarkisa K. Mazmaniana z Kalifornijskiego Instytutu Technologii i Catherine E. Schretter zaobserwował, że pozbawione bakterii sterylne muszki były nadaktywne: chodziły szybciej, pokonywały większe odległości i robiły sobie krótsze przerwy niż owady z normalnym poziomem bakterii. Mazmanian badał, jakie bakterie jelitowe mogą oddziaływać na zachowanie D. melanogaster. Lokomocja jest ważna dla wielu aktywności, w tym dla spółkowania i poszukiwania pokarmu. Okazuje się [więc], że bakterie mogą być krytyczne dla podstawowych zachowań zwierząt. U owocówek występuje 5-20 gatunków bakterii, dlatego ekipa Mazmaniana podawała sterylnym (aksenicznym) muszkom pojedyncze szczepy bakterii. Gdy podano Lactobacillus brevis, ruchy powróciły do normalnej prędkości (L. brevis to jeden z 2 gatunków, które przywracały normalne zachowanie). Amerykanie ustalili także, że krytyczna dla tego procesu może być izomeraza ksylozy (ksylozoizomeraza, Xi), występujący u L. brevis enzym rozkładający cukier. Wyizolowanie ksylozoizomerazy i podanie jej muszkom wystarczyło, by spowolnić ruchy. Dodatkowe eksperymenty pokazały, że Xi może wpływać ruchy, precyzyjnie regulując poziom określonych węglowodanów, np. trehalozy, która jest podstawowym cukrem owocówek (to główny cukier krążący w hemolimfie owadów). Okazało się, że owocówki, którym podano Xi, miały niższe poziomy trehalozy niż muszki akseniczne z grupy kontrolnej. Gdy muszkom potraktowanym Xi, które po tym zabiegu przejawiały normalne zachowanie, dawano trehalozę, ponownie pojawiały się szybkie ruchy. To sugeruje, że cukier odwraca działanie Xi. W kolejnym etapie badań autorzy publikacji z Nature przyglądali się układowi nerwowemu, by sprawdzić, które z neuronów mają coś wspólnego z ruchami sterowanymi przez bakterie. W ten sposób stwierdzono, że aktywacja neuronów wytwarzających oktopaminę wyłączała wpływ L. brevis na muszki. W efekcie muszki, które zwolniły po podaniu bakterii lub ksylozoizomerazy, znowu stawały się hiperaktywne. Aktywacja neuronów oktodopaminergicznych (produkujących oktodopaminę) u D. melanogaster z normalnym poziomem bakterii także sprawiała, że poruszały się one szybciej. Włączenie neuronów wytwarzających inne neuroprzekaźniki nie wpływało na ruchy owadów. Mazmanian i inni uważają, że Xi może monitorować stan metaboliczny muszek, w tym poziom składników odżywczych, a później sygnalizować neuronom oktodopaminergicznym, czy powinny się włączyć, czy wyłączyć, prowadząc do określonych zmian w zachowaniu. Amerykanie dodają, że zamiast oktodopaminy ssaki produkują noradrenalinę, która, jak wykazano, również kontroluje ruchy. Mikrobiom jelitowy może odgrywać podobną rolę w lokomocji ssaków, a także w zaburzeniach poruszania, takich jak choroba Parkinsona - podsumowuje Mazmanian.   « powrót do artykułu
  2. Monitorując fale sejsmiczne wywołane przez ruchy słoni i wydawane przez nie infradźwięki, można by wykrywać nietypowe zachowania, np. bieg w panice. To ułatwiłoby odpowiednim służbom walkę z kłusownikami. Byliśmy zaskoczeni wielkością sił działających na grunt, które są generowane przez wokalizujące słonie. Odkryliśmy, że przypominają one siły generowane przez szare olbrzymy podczas szybkiego chodu. To oznacza, że via grunt zawołania słoni mogą się przemieszczać na duże odległości i w sprzyjających okolicznościach docierają dalej niż w powietrzu - wyjaśnia Beth Mortimer z Uniwersytetów w Oksfordzie i Bristolu. Mortimer sprawdza, jak zwierzęta wykorzystują drgania w materiałach do celów komunikacyjno-informacyjnych. Wcześniej badała pająki i ich sieci, teraz by lepiej zrozumieć słonie, nawiązała współpracę z geofizykiem dr. Tarje Nissenem-Meyerem. Choć już od jakiegoś czasu przypuszczano, że słonie wykorzystują drgania gruntu w komunikacji, sama transmisja nie była dobrze poznana. Badając to zjawisko, Mortimer i student Nissena-Meyera - Will Rees - utrwalali wibracje generowane przez dzikie słonie z Kenii przy różnych zachowaniach, w tym podczas chodzenia i wokalizacji. Zespół polegał na technikach stosowanych m.in. do monitorowania trzęsień ziemi. Naukowcom zależało na ustaleniu, jak daleko przemieszczają się drgania generowane przez słonie, a także jak wpływają na nie dźwięki generowane przez ludzi czy rodzaj terenu. Autorzy publikacji z pisma Current Biology zauważyli, że dzięki zapisowi wibracji gruntu można klasyfikować konkretne słoniowe zachowania. Należy jednak brać poprawkę na różne czynniki, w tym właśnie na hałas i typ terenu. Wiele wskazuje na to, że przez swą aktywność akustyczną ludzie mogą zaburzać komunikację słoni. Na szczęście ustalenia brytyjskiego zespołu pozwalają równocześnie zaplanować strategie ich badania i ochrony. Sugerujemy, że monitoring wibracji gruntu da się wykorzystać w praktyce nie tylko do wykrywania słoni, ale i do określania ich zachowań. Mortimer tłumaczy, że dzięki zastosowaniu rejestratorów sejsmicznych możliwe będzie stworzenie algorytmów detekcji, lokalizacji i klasyfikacji, które pozwolą na monitorowanie słoni w czasie rzeczywistym. Naukowcy podkreślają, że potrzeba dalszych eksperymentów, by potwierdzić potencjał sejsmicznego "podsłuchiwania" słoni z dużych odległości. Nissen-Meyer opowiada, że w najbliższej przyszłości zespół chce utworzyć większą, działającą przez dłuższy czas sieć czujników sejsmicznych. Różne instrumenty rozmieszczone poza gruntem mają zaś pomóc w zbadaniu reakcji słoni na "odesłanie" im nagranych wcześniej ich własnych sygnałów. « powrót do artykułu
×
×
  • Create New...