Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' komórka'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 9 results

  1. Fale dźwiękowe o niskiej intensywności mogą selektywnie zabijać komórki nowotworowe, nie uszkadzając przy tym zdrowej tkanki. Dotychczas w onkologii używano ultradźwięków o wysokiej intensywności, za pomocą których podgrzewa się komórki do wysokiej temperatury. Ta metoda zabija jednak wszystkie komórki na danym obszarze. Badania nad wykorzystaniem pulsujących ultradźwięków o niskiej intensywności (low-intensity pulsed ultrasound – LIPUS) rozpoczęły się przed pięcioma laty na California Institute of Technology (Caltech). Wtedy to profesor Michael Ortiz zzaczł się zastanawiać, czy fizyczne różnice pomiędzy komórkami nowotworowymi a zdrowymi – ich wielkość, grubość ściany komórkowej czy rozmiary struktur wewnętrznych – mogą wpłynąć na to, w jaki sposób wibrują pod wpływem ultradźwięków i czy w ten sposób można zabić komórkę nowotworową. Ortiz stworzył więc model matematyczny, za pomocą którego badał, jak komórki będą reagowały na ultradźwięki o róznej częstotliwości. W 2016 roku naukowiec poinformował, że istnieją różnice w rezonansie pomiędzy komórkami zdrowymi i nowotworowymi. Te różnice oznaczały, że – przynajmniej teoretycznie – precyzyjnie dobierając częstotliwość fali dźwiękowej, można wprowadzić komórki nowotworowe w taki rezonans, że ich ściany ulegną zniszczeniu. Jednocześnie zaś nie będzie to szkodziło zdrowym komórkom. Ortiz nazwał cały proces onkotripsją, od greckich słów ὄγκος (guz) i τρίβω (ścieram). Uczony, podekscytowany uzyskanymi wynikami, zaprosił do współpracy kilu innych naukowców z Caltechu, w tym wynalazcę Mory'ego Ghariba, który specjalizuje się w technologiach medycznych i ich komercjalizacji, współpracującego z nim doktoranta Davida Mittelsteina, pracującego nad różnymi protezami czy eksperta od ultradźwięków profesora Mikhaila Shapiro. Do grupy dołączyło też kilku ekspertów w dziedzinie onkologii. Gdy usłyszałem o tym pomyśle, byłem zaintrygowany. Jeśli to się powiedzie, powstanie rewolucyjna metoda walki z nowotworami, mówi profesor Peter P. Lee, dyrektor Wydziału Immunoterapii Onkologicznej w City of Hope, centrum badawczym w Duarte. Naukowcy zbudowali prototypowe urządzenie i rozpoczęli testy. Badali różne typy komórek nowotworowych, poddając je ultradźwiękom o różnej częstotliwości. Sprawdzali też, w jaki sposób częstotliwości te wpływają na zdrową tkankę. Profesor Lee mówi, że celem zespołu jest nie tylko zabijanie komórek nowotworowych, ale też przywabienie na miejsce zniszczonego guza komórek układu odpornościowego, by zabiły one te komórki, które przeżyły terapię ultradźwiękami. Guzy nowotworowe są heterogeniczne. Jest niemal niemożliwe znalezienie takiej częstotliwości dźwięku, by zabił on wszystkie komórki pojedynczego guza. Jeśli jakieś komórki przetrwają, to guz odrośnie, mówi Lee. Stąd potrzeba zaangażowania w terapii również układu odpornościowego. Każdego dnia w organizmie człowieka giną dziesiątki milionów komórek. Większość z nich umiera w wyniku naturalnego procesu zwanego apoptozą. Bywa jednak i tak, że komórki giną w wyniku infekcji czy zranienia. Układ odpornościowy potrafi odróżnić apoptozę od zranienia. Ignoruje śmierć komórki w wyniku apoptozy, gdy jednak komórka ginie w wyniku infekcji, komórki układu odpornościowego zjawiają się na miejscu, by walczyć z patogenami. Grupa Ortiza ma zamiar stworzyć taki system ultradźwiękowy, by układ odpornościowy otrzymywał informację, że doszło do śmierci komórek w wyniku ich uszkodzenia. To spowodowałoby mobilizację limfocytów, które po przybyciu na miejsce zabiją, jak mają naukowcy nadzieję, pozostałe przy życiu komórki nowotworowe. Na razie udane eksperymenty przeprowadzono na różnego typu komórkach hodowanych w laboratorium. Na ich podstawie udoskonalono prototypowe urządzenie do ultrasonografii. Dowiadujemy się coraz więcej na temat tego, jak wibrują poszczególne rodzaje komórek nowotworowych i jak pojawiają się u nich uszkodzenia, stwierdzają uczeni. W następnym etapie badań mają zamiar sprawdzić, jak system ultradźwiękowy poradzi sobie z całymi guzami nowotworowymi. Jeśli wszystko pójdzie zgodnie z planem, w przyszłości rozpoczną się testy na zwierzętach, a później na ludziach. Szczegóły badań ukazały się na łamach Applied Physics Letters, w artykule zatytułowanym Selective ablation of cancer cells with low intensity pulsed ultrasound. « powrót do artykułu
  2. Amerykańscy naukowcy stworzyli pierwsze żywe maszyny. Zbudowali je z komórek żaby szponiastej (Xenopus laevis), bezogonowego płaza zamieszkującego Afrykę. Roboty poruszają się i można je dostosowywać do swoich potrzeb. Jednym z najbardziej udanych jest miniaturowa maszyna wyposażona w dwie nogi. Z kolei inny projekt zawiera wewnątrz otwór, w którym może transportować niewielkie ładunki. Jak zapewnia Michael Levin, dyrektor Allen Discovery Center na Tufts University, to całkowicie nowe formy życia. Nigdy wcześniej nie istniały one na Ziemi. To żywe, programowalne organizmy. Tego typu rozwiązanie ma olbrzymie zalety w porównaniu z tradycyjnymi robotami. Po pierwsze, żywe roboty potrafią samodzielnie się naprawić. Po drugie zaś, można je zaprogramować tak, by po wykonaniu zadania ginęły, ulegając naturalnemu rozkładowi, jak inne organizmy żywe. Ich twórcy uważają, że w przyszłości tego typu roboty mogą np. oczyszczać oceany z mikroplastiku, samodzielnie lokalizować i przetwarzać toksyczne substancje, dostarczać leki do wyznaczonego miejsca w organizmie czy w końcu oczyszczać ze złogów ściany naczyń krwionośnych. Projektowaniem robotów zajmuje się specjalny „algorytm ewolucyjny” działający na superkomputerze. Projektowanie zaczyna się od symulacji przypadkowego połączenia 500 do 1000 komórek skóry i serca. Następnie każdy z takich robotów jest wirtualnie testowany. Te projekty, które najlepiej odpowiadają oczekiwaniu naukowców, mają największą szansę wykonać założone zadania, są dalej rozwijane i na ich podstawie tworzy się nowe roboty. Urządzenia są napędzane przez komórki serca, które spontanicznie kurczą się i rozszerzają, działając jak niewielkie silniki. Robotów nie trzeba niczym zasilać. Komórki mają na tyle dużo energii, że żyją przez 7-10 dni. Grupa Levina poczekała na 100. generację robotów stworzonych przez algorytm i z niej wybrała niektóre projekty do zbudowania ich w laboratorium. Jako, że do stworzenia maszyn użyto komórek Xenopus, urządzenia zyskały miano „xenobotów”. Architektura xenobotów jest, jak zapewniają twórcy, skalowalna. Podczas eksperymentów z prawdziwymi robotami powstały takie, które poruszały się w wodzie po linii prostej, inne krążyły w kółko, jeszcze inne tworzyły grupy. Można je wyposażyć w naczynia krwionośne, układ nerwowy czy komórki odbierające np. bodźce świetlne i stworzyć w ten sposób proste oczy. Jeśli do zbudowania robotów użyjemy komórek ssaków, urządzenia będą mogły pracować na suchym lądzie. Głównym celem prac zespołu Levina jest zrozumienie życia i tego, jak ono powstaje i funkcjonuje. Oczywiście rodzi to wiele pytań etycznych, chociażby o status xenobotów. Czy należy uznawać je za roboty, czy za organizmy żywe. I do jakiego stopnia złożony powinien być ich układ nerwowy. Xenoboty zostały szczegółowo opisane na łamach PNAS, w artykule A scalable pipeline for designing reconfigurable organisms. « powrót do artykułu
  3. Kiedyś sądzono, że najstarszymi komórkami w organizmie człowieka są neurony i, być może, komórki serca. Teraz naukowcy z Salk Institute udowodnili, że u myszy komórki oraz białka mózgu, wątroby i trzustki są także bardzo stare. Niektóre równie stare co neurony. Metoda wykorzystana w Salk może zostać użyta do zdobycia bezcennych informacji na temat funkcji niedzielących się komórek oraz o tym, jak z wiekiem tracą one kontrolę nad jakością i integralnością protein oraz innych ważnych struktur komórkowych. Byliśmy zaskoczeni faktem, że odnaleźliśmy struktury komórkowe równie stare co organizm. To sugeruje, że złożoność komórkowa jest większa niż sobie to wyobrażaliśmy, co niesie ze sobą intrygujące implikacje dotyczące naszej wiedzy o starzeniu się organów takich jak mózg, serce czy trzustka, mówi dyrektor ds. naukowych Salk Institute profesor Martin Hetzer. Większość neuronów w mózgu nie ulega w życiu dorosłym podziałowi, zatem doświadczają starzenia się i związanego z tym spadku jakości. Dotychczas jednak naukowcy mieli problemy z określeniem czasu życia komórek znajdujących się poza mózgiem. Biolodzy zadawali sobie pytanie, jak stare są komórki w organizmie. Istnieje powszechne przekonanie, że neurony są stare, ale inne komórki są stosunkowo młode, gdyż ulegają regeneracji, stwierdził Rafael Arrojo e Drigo, główny autor najnowszych badań. Uczeni wykorzystali neurony jako punkt odniesienia dla określenia wieku innych komórek. Wykorzystali technikę oznaczania izotopami w połączeniu z hybrydową metodą obrazowania MIMS-EM do wizualizacji i oceny komórek oraz białek w móżgu, trzustce i wątrobie u młodych i starych myszy. Na samym początku ocenie poddali wiek neuronów i, jak się spodziewali, stwierdzili, że są one w tym samym wieku co sam organizm. Później jednak ze zdumieniem zauważyli, że w nabłonku naczyń krwionośnych występują równie stare komórki. To zaś oznaczało, że poza neuronami istnieją komórki, które się nie dzielą i nie zostają zastąpione. Również w trzustce zauważono komórki w różnym wieku. Najbardziej zdziwiły naukowców wysepki Langerhansa, które są mieszaniną starych i młodych komórek. Niektóre z komórek beta były młode, ulegały podziałowi, inne zaś były równie stare co neurony. Z kolei komórki delta w ogóle się nie dzieliły i wszystkie były stare. Trzustka okazała się zdumiewającym przykładem mozaicyzmu wiekowego, czyli organem, w którym identyczne komórki są w bardzo różnym wieku. Jako, że wiemy, iż wątroba potrafi się regenerować nawet w dorosłości, naukowcy zwrócili uwagę również na ten organ. Ku ich zdumieniu okazało się, że większość komórek wątroby jest w tym samym wieku, co sama mysz, podczas gdy komórki układu krwionośnego wątroby są znacznie młodsze. Mozaicyzm wiekowy wątroby może prowadzić do opracowania nowych metod regeneracji tego organu. Dzięki nowej technice wizualizacji jesteśmy w stanie określić wiek komórek i ich złożoność molekularnych lepiej, niż wcześniej. To otwiera nowe drzwi w badaniu komórek, tkanek i organów oraz trapiących je chorób, stwierdził współautor badań profesor Mark Ellisman z Uniwersytetu Kalifornijskiego w San Diego. Na następnym etapie badań naukowcy chcą zbadać różnice w długości życia kwasów nukleinowych i lipidów. Spróbują też zrozumieć, jak mozaicyzm wiekowy wpływa na zdrowie i na choroby takie jak cukrzyca typu 2. « powrót do artykułu
  4. Dotąd wiadomo było, jak wygląda ciąg reakcji uruchamianych przez nikotynę do momentu jej związania z receptorami nikotynowymi na powierzchni neuronów. Słabiej poznano za to proces zachodzący po dostaniu się alkaloidu do komórki. Najnowsze eksperymenty ze specjalnym bioczujnikiem uchyliły jednak rąbka tajemnicy. Naukowcy mają nadzieję, że dzięki temu uda się lepiej zrozumieć naturę uzależnienia od nikotyny. Zespół prof. Henry'ego Lestera z Caltechu wyjaśnia, że siateczka śródplazmatyczna (ER) pełni funkcję fabryki i magazynu. To tu powstają różne białka, które są następnie pakowane do pęcherzyków transportowych. Należą do nich m.in. acetylocholinergiczne receptory nikotynowe (NACh-R), które ostatecznie trafiają na powierzchnię komórki. Gdy nikotyna dostanie się do organizmu, za pośrednictwem krwiobiegu dociera do mózgu i neuronów z NACh-R. Związanie z receptorami powoduje uwalnianie dopaminy (wzrost stężenia dopaminy w układzie mezolimbicznym jest odpowiedzialny za uczucie szczęścia). O wiele mniej wiadomo o tym, co dzieje się po dostaniu nikotyny do komórek. Na razie Lester ustalił, że niektóre receptory NACh-R zostają w siateczce śródplazmatycznej i także mogą się wiązać z nikotyną. By dokładnie zbadać oddziaływania alkaloidu w komórce, Amerykanie stworzyli bioczujnik iNicSnFRs, złożony ze specjalnego białka, które może się otwierać i zamykać jak pułapka muchołówki oraz inaktywowanego fluorescencyjnego białka. Sensor ma się "zamykać" na nikotynie. Proces ten aktywuje fluorescencyjne białko, które zaczyna świecić. Na tej podstawie wiadomo, gdzie cząsteczki nikotyny występują i ile ich jest. Naukowcy mogą umieszczać bioczujniki w konkretnych miejscach. Tym razem zlokalizowali je w siateczce śródplazmatycznej i na powierzchni komórek. Zespół z Caltechu nagrywał filmy z komórkami z bioczujnikami. Autorzy artykułu z Journal of General Physiology prowadzili eksperymenty na 4 liniach komórkowych (HeLa, SH-SY5Y, N2a i HEK293), a także na mysich neuronach hipokampa i ludzkich neuronach dopaminergicznych uzyskanych z komórek macierzystych. Okazało się, że w przypadku wszystkich nikotyna docierała do retikulum endoplazmatycznego w ciągu 10 sekund od pojawienia się na zewnątrz komórki. Poziom nikotyny w ER to ok. 2-krotność stężenia zewnątrzkomórkowego. Stwierdzono także, że nikotyna odgrywa rolę stabilizującego farmakologicznego szaperonu dla niektórych podtypów NACh-R, co oznacza, że ułatwia ich właściwe fałdowanie. Dzieje się tak nawet przy stężeniach ~10 nM, a u typowego palacza takie wartości mogą się utrzymywać w ciągu dnia przez 12 godzin. Zwiększa się aktywacja szlaku prowadzącego na zewnątrz, co z kolei sprawia, że neurony stają się wrażliwsze na nikotynę. Można więc powiedzieć, że im więcej ktoś pali, tym szybciej i łatwiej nikotyna na niego zadziała (wzrasta nagradzająca wartość palenia). Na razie badania prowadzono w laboratorium na izolowanych komórkach, ale naukowcy już myślą o sprawdzeniu, czy wewnątrzkomórkowe poczynania nikotyny są takie same w neuronach żywych myszy. Co ważne, rozpoczęły się już prace nad biosensorami innych substancji psychoaktywnych, w tym opiodów i antydepresantów.   « powrót do artykułu
  5. Wirus zabijający komórki nowotworowe został wyposażony w nową broń. Naukowcy uzbroili go w proteinę, dzięki której bierze on na cel i zabija również przyległe komórki, chroniące nowotwór przed atakiem ze strony układ odpornościowego. Po raz pierwszy udało się w ten sposób wziąć na cel fibroblasty znajdujące się w guzie. Fibroblasty te to zdrowe komórki, które zostały zaprzęgnięte przez nowotwór do jego ochrony i dostarczania mu pożywienia. Naukowcy z Uniwersytetu w Oksfordzie informują, że wstępne testy, przeprowadzone na hodowlach ludzkich komórek oraz na myszach wykazały, iż nowa technologia jest bezpieczna. Jeśli wyniki te się potwierdzą, to pierwsze testy na ludziach mogą rozpocząć się już w przyszłym roku. Obecnie używane techniki, które prowadzą do śmierci fibroblastów w guzie, zabijają też fibroblasty w innych częściach organizmu, przez są są wysoce szkodliwe. Autorzy najnowszych badań, których wyniki opublikowano w piśmie Cancer Research, wykorzystali wirusa o nazwie enadenotucirev, który od kilku lat jest testowany pod kątem zwalczania komórek nowotworowych. Do genomu wirusa dodali informację genetyczną, która powodowała, że zainfekowane nim komórki nowotworowe zaczęły wytwarzać podwójnie specyficzne przeciwciała monoklonalne (BiTE). Proteina ta łączy się z dwoma typami komórek. W tym przypadku jeden z jej końców łączył się z fibroblastami, a drugi z limfocytami T, powodując, że limfocyty zabijały fibroblasty. Przejęliśmy mechanizm wirusa, dzięki czemu BiTE były wytwarzane tylko w zainfekowanych komórkach nowotworowych i nigdzie indziej w organizmie. To tak potężne molekuły, że mogą aktywować komórki układu odpornościowego wewnątrz guza i skłonić je do ataku na fibroblasty, mówi główny autor badań doktor Joshua Freedman z Uniwersytetu w Oksfordzie. Nawet gdy większość komórek nowotworowych zostaje zabitych, to fibroblasty mogą ochronić te pozostałe i pomóc w nawrocie choroby. Dotychczas nie istniał żaden sposób, by zabić komórki nowotworowe i fibroblasty, a jednocześnie ochronić fibroblasty w innych częściach organizmu. Nasza nowa technika może być ważnym krokiem w kierunku zmniejszenia siły tłumienia układu odpornościowego przez nowotwór i może pomóc w ponownym uruchomieniu procesu ochrony organizmu. Wykorzystany przez nas wirus jest już testowany na ludziach, mamy więc nadzieję, że nasz zmodyfikowany wirus zostanie dopuszczony do testów klinicznych już w przyszłym roku, dodaje doktor Kerry Fisher z Wydziału Onkologii Oxford University. Dotychczas zmodyfikowany wirus został pomyślnie przetestowany na próbkach guzów nowotworowych oraz próbkach zdrowego szpiku kostnego. Nie zauważono żadnego toksycznego działania czy też niewłaściwej aktywacji limfocytów T. Wspomniany wirus infekuje raki, najbardziej rozpowszechnione typy nowotworów, które rozpoczynają się w skórze lub tkankach otaczających organy wewnętrzne, takie jak trzustka, płuca, jajniki, prostatę i inne. « powrót do artykułu
  6. Składnik zielonej herbaty - flawonoid galusan epigallokatechiny (EGCG) - pomaga terapeutycznemu krótkiemu interferującemu RNA (ang. small interfering RNA, siRNA) wniknąć do komórki. Naukowcy wspominają o dużym potencjale terapeutycznym siRNA, który może wyciszać ekspresję genów związanych z chorobami. Problemem jest jednak, by siRNA dostał się do komórki i mógł zacząć wykonywać swoje zadanie. Ponieważ siRNA są stosunkowo duże i mają ujemny ładunek, niełatwo im pokonać błonę komórkową. Poza tym są one podatne na rozkład przez enzymy - rybonukleazy (RN-azy). By jakoś rozwiązać te problemy, naukowcy próbowali powlekać siRNA różnymi polimerami. Niewiele to jednak pomogło; te o niskiej masie molekularnej nie były toksyczne, ale nie potrafiły dostarczyć siRNA do cytozolu, zaś te o dużej masie dawały radę, ale były silnie cytotoksyczne. Zespół Yiyuna Chenga zaczął się więc zastanawiać nad wykorzystaniem EGCG, który silnie wiąże się z RNA. Gdyby jeszcze dodać polimer o niskiej masie molekularnej, można by uzyskać nanocząstki, które bezpiecznie dostarczą siRNA do komórek. Podczas eksperymentów EGCG i siRNA samoorganizowały się w ujemnie naładowany rdzeń, który naukowcy powlekali skorupą z polimeru o niskiej masie molekularnej. W hodowlach komórkowych nanocząstki skutecznie wyłączały ekspresję kilku wybranych genów, a to znaczy, że potrafiły pokonać barierę błony komórkowej. Później autorzy publikacji z pisma ACS Central Science testowali swoje nanocząstki na myszach, u których stan zapalny (uraz) jelita wywołano za pomocą soli sodowej siarczanu dekstranu (ang. dextran sodium sulfate, DSS). W tym przypadku miały one obrać na cel enzym prozapalny. Okazało się, że zastosowanie nanocząstek doprowadziło do zelżenia/wyeliminowania objawów, w tym utraty wagi czy skrócenia jelita grubego. Cheng i inni uważają, że zaobserwowane zjawiska to nie tylko skutek wyciszenia genów przez siRNA, ale także wynik przeciwutleniającej i przeciwzapalnej aktywności galusanu epigallokatechiny. « powrót do artykułu
  7. Dzięki nowemu związkowi uzyskanemu na University of Exeter udało się odwrócić efekty starzenia się komórek. Uczeni za cel wzięli mitochondria komórek śródbłonka, wyścielającego naczynia krwionośne. Podczas eksperymentów udało się aż o 50% zmniejszyć liczbę komórek, które z powodu wieku przestały się dzielić. "W miarę, jak się starzejemy, w naszym organizmie pojawia się coraz starszych więcej komórek, które nie działają tak dobrze, jak młode komórki", mówi profesor Lorna Harries. To nie jest tylko wynik starzenia się. To przyczyna, dl aktórej się starzejemy. Opracowany przez nas środek może zmienić mechanizm starzenia się komórek, stwierdza. Zwykle myślimy o chorobach związanych z wiekiem, takich jak nowotwory, demencja czy cukrzyca, jako o mających różne unikatowe przyczyny. Jednak gdy cofniemy się w czasie możemy ich przyczyny powiązać z jednym lub dwoma powszechnie występującymi mechanizmami. Nasze badania skupiły się na jednym z tych mechanizmów, a ich wyniki dają nadzieję na opracowanie w przyszłości nowych terapii, dodaje uczona. Jeśli uda się opracować leki zapobiegające degeneracji komórek, ludzie będą mogli dłużej cieszyć się zdrowym życiem. Tutaj chodzi zarówno o długość jak i o jakość życia, nie tylko o jego przedłużanie. Naukowcy, za pomocą nowych środków chemicznych, byli w stanie wpływać na czynnik splicingowy SRSF2, który odgrywa kluczową rolę w zmianie zachowania starzejących się komórek. Niemal połowa komórek, jakie wzięliśmy na cel, wykazała objawy odmłodzenia, zapewnia profesor Harries. Uczeni przetestowali trzy różne środki chemiczne – AP39, AP123 i RT01 – i okazało się, że pod wpływem każdego z nich liczba starych komórek spadła o 40–50 procent. Wspomniane środki zostały wykorzystane do dostarczenia do mitochondriów niewielkich ilości siarkowodoru do mitochondriów. Gaz wspomógł produkcję energii potrzebnej do przetrwania i uzyskania lepszej kondycji przez komórkę. Wiele chorób można opisać jako wynik przyspieszonego procesu starzenia się komórek. Utrzymanie mitochondriów w zdrowiu pomaga zapobiegać chorobom lub powstrzymać proces chorobowy, wyjaśnia profesor Matt Whiteman. « powrót do artykułu
  8. Studenci z Uniwersytetu Utah mogą się teraz wypłakać w samotności w specjalnej komórce, która stanęła w bibliotece. Instalacja powstała na zajęciach ze stolarki. Jej autorami są Nemo Miller, Tony Miller i David Meyer. Wnętrze wyścielono ciemnym materiałem. Do kompletu dołożono parę pluszaków. Na drzwiach znajduje się regulamin użytkowania, z którego wynika, że przed wejściem do kryjówki należy zapukać. W komórce może przebywać wyłącznie jedna osoba, a maksymalny czas użytkowania wynosi 10 min. Przed wyjściem z "przybytku" należy wyłączyć światło i licznik. Wspominając o komórce w mediach społecznościowych, należy wykorzystywać hasztag #cryclosetuofu. Jak można się domyślić, komórka szybko stała się viralem. Większość osób twierdzi, że to doskonały pomysł, który warto by wcielić w życie na innych uczelniach. Reszta podaje w wątpliwość praktyczność takiego rozwiązania - ponieważ ściany nie są dźwiękoszczelne, trudno mówić o prawdziwej prywatności.   « powrót do artykułu
  9. Nie od dzisiaj wiadomo, że wysiłek fizyczny jest korzystny dla serca. Dotychczas jednak nie do końca rozumiano mechanizm tego dobroczynnego wpływu. Badania przeprowadzone przez naukowców z Uniwersytetu Harvarda oraz Massachusetts General Hospital przyniosły interesujące wyniki. Okazuje się, że ćwiczenia fizyczne stymulują serce do produkcji nowych komórek mięśnia sercowego, zarówno podczas normalnej pracy jak i po zawale. Ludzkie serce ma ograniczone możliwości regeneracji. U młodych dorosłych każdego roku dochodzi do wymiany zaledwie 1% komórek serca, a odsetek ten spada z wiekiem. Starzenie się i utrata komórek serca grożą chorobami i zawałami, dlatego też działania mające na celu zwiększenie liczby tworzonych nowych komórek mogą pomóc w zapobieganiu licznym problemom zdrowotnym. Chcieliśmy sprawdzić, czy istnieje naturalna metoda zwiększenia zdolności regeneracyjnych serca. Postanowiliśmy więc przetestować znaną zdrową i bezpieczną metodę: ćwiczenia fizyczne, mówi Ana Vujic z Wydziału Komórek Macierzystych i Biologii Regeneracyjnej Uniwersytetu Harvarda. W ramach badań na myszach zwierzęta zostały podzielone na dwie grupy. Jedna z nich miała dostęp do kołowrotków, z których mogła dowolnie korzystać. Druga grupa nie miała dostępu do kołowrotków. Te zwierzęta, w których klatkach były kołowrotki przebiegały za ich pomocą średnio odległość 5 kilometrów dziennie. Pomiary zdolności regeneracyjnej serca myszy prowadzono za pomocą specjalnie oznaczonych środków chemicznych, które były wprowadzane do DNA dzielących się komórek. Śledząc ten środek naukowcy byli w stanie sprawdzić, gdzie i ile komórek uległo podziałowi. Okazało się, że u myszy, które miały dostęp do kołowrotków, powstawało ponad 4,5-krotnie więcej nowych komórek serca, niż u myszy, które nie ćwiczyły. Chcieliśmy też sprawdzić, jak sobie radzi serce po zawale, gdyż głównym celem naszych badań było prześledzenie sposobu regeneracji, mówi Vujic. Po wywołanym ataku serca myszy, które miały dostęp do kołowrotka nadal z niego korzystały i przebywały 5 kilometrów dziennie. W porównaniu z myszami prowadzącymi mniej aktywny tryb życia zauważono u nich zwiększoną aktywność w tych obszarach, gdzie pojawiały się nowe komórki. To dowodziło, że ćwiczenia fizyczne odgrywają olbrzymią rolę w regeneracji mięśnia sercowego. Do utrzymania serca w zdrowiu konieczne jest zrównoważenie utraty komórek spowodowanej starzeniem się lub chorobą poprzez regenerację i pojawienie się nowych komórek. Nasze badania sugerują, że ćwiczenia fizyczne mogą pomóc w takim zbilansowaniu, stwierdził profesor Anthony Rosenzweig z Uniwersytetu Harvarda, który jest ordynatorem kardiologii w Massachusetts General Hospital. Badania pokazały, że dzięki regularnym ćwiczeniom można mieć młodsze serce, dodaje profesor Richard Lee, specjalista w dziedzinie komórek macierzystych i biologii regeneracyjnej. W najbliższej przyszłości naukowcy chcą skupić się na wyjaśnieniu mechanizmu, dzięki któremu aktywność fizyczna wspomaga tworzenie się nowych komórek mięśnia sercowego. « powrót do artykułu
×
×
  • Create New...