Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'mózg' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 419 wyników

  1. Naukowcy i praktycy od dawna wiedzą, że dobrze przespana noc sprzyja zapamiętywaniu. Okazało się także, że pomocny bywa znajomy zapach rozchodzący się po sypialni. Istnieje jednak kilka ograniczeń: trik działa tylko na pewne rodzaje pamięci i tylko podczas fazy snu NREM (Science). Badacze z University of Lubeck testowali swoje teorie na studentach medycyny. Grali oni w komputerową wersję superpamięci, czyli zabawy polegającej na odnajdowaniu par. Części rozpylano w tym czasie w pomieszczeniu różaną woń. Kiedy spali, powtarzano zabieg. Okazało się, że pamiętali oni położenie pasujących kart lepiej niż osoby, którym nie "pomagano" zapachami. Świadczy o tym procent poprawnych odpowiedzi: 97 i tylko 86. Nie zauważono poprawy pamięci, gdy woń pojawiała się w fazie snu REM (to etap marzeń sennych i całkowitego zahamowania dowolnej aktywności mięśniowej). Nie przydały się także stosowane przez studentów triki, np. uczenie się kolejności naciskania klawiszy. Podczas drugiej gry karcianej zapach reaktywował wspomnienia z poprzedniego dnia (dotyczące położenia obiektów). Wypoczęty mózg dokonywał zaś ich konsolidacji. Ponieważ za różne rodzaje pamięci odpowiadają różne obszary mózgu, woń nie odgrywała żadnej roli przy teście naciskania klawiszy, który ma bardziej liczbowy charakter.
  2. Na dorocznym spotkaniu Amerykańskiego Stowarzyszenia Psychosomatycznego, które odbywa się w Budapeszcie, dr Sarah M. Conklin z Uniwersytetu w Pittsburghu przedstawiła wyniki badań swojego zespołu, wyjaśniając, dlaczego kwasy tłuszczowe omega-3 poprawiają nastrój. Zwiększają one objętość istoty szarej w obszarach mózgu zawiadujących emocjami i zachowaniem. Eksperymenty na zwierzętach wykazały, że zwiększenie dawek kwasów powodowało zmiany strukturalne w mózgu. Na zeszłorocznym mityngu Conklin opowiedziała o rezultatach innego studium. Jej zespół zaobserwował, że ludzie z niższym poziomem omega-3 we krwi byli bardziej impulsywni i negatywnie nastawieni do większości zagadnień. Pacjentów z wyższym stężeniem kwasów w krwioobiegu postrzegano natomiast jako zgodnych i rzadziej wspominających o objawach łagodnej czy średnio nasilonej depresji. A oto jak zaplanowano i przeprowadzono najnowsze badanie. Wzięło w nim udział 55 zdrowych dorosłych. Poproszono ich o określenie ilości przyjmowanych dziennie długołańcuchowych kwasów tłuszczowych typu omega-3 (chodziło o uśrednioną dawkę). Objętość istoty szarej oceniano za pomocą strukturalnego rezonansu magnetycznego w wysokiej rozdzielczości. Okazało się, że osoby dostarczające sobie najwięcej kwasów, miały więcej istoty szarej w obszarach mózgowia związanych z podnieceniem emocjonalnym i regulacją uczuć, a więc obustronnie w przedniej części kory zakrętu obręczy (anterior cingulate cortex, ACC), prawym ciele migdałowatym i prawym hipokampie.
  3. W eksperymentach na myszach wykazano, że dieta wysokotłuszczowa "znieczula" mózg na działanie hormonów hamujących apetyt. W ten sposób mózg staje się nieświadom otyłości ciała. Akademicy uważają, że podając ludziom leki pomagające mózgowi ponownie reagować na leptynę, będzie można w przyszłości leczyć otyłość. U zwierząt, a więc i u ludzi, komórki tłuszczowe wydzielają leptynę. Dostaje się ona do podwzgórza, które zawiaduje różnymi procesami fizjologicznymi, m.in. uczuciem głodu i pragnieniem. Teoretycznie powinno być tak, że gdy ciało staje się bardziej otłuszczone, uwalniania się więcej leptyny, co w efekcie doprowadza do spadku łaknienia. Michael Cowley i zespół z Oregon National Primate Research Center wykazali jednak, że nie wystarczy podanie lub samodzielne wytworzenie przez organizm hormonu, aby zwalczyć nadwagę czy otyłość. Dzieje się tak właśnie z powodu spadku wrażliwości mózgu na leptynę. W ramach eksperymentu identyczne genetycznie myszy podzielono na dwie grupy. Jednej podawano wysoko-, a drugiej niskokaloryczne pokarmy. Wszystkie gryzonie z drugiej grupy pozostały szczupłe, podczas gdy w drugiej część przytyła, a część nie. Nie wiadomo, dlaczego się tak stało. Następnie zwierzętom usuwano podwzgórze i badano, w jaki sposób reaguje ono na leptynę. Podwzgórza otyłych myszy nie wydzielały pod wpływem hormonu substancji hamujących apetyt. Mózgi szczupłych gryzoni (bez względu na rodzaj diety) reagowały natomiast normalnie. Podczas dalszych dociekań okazało się, że w neuronach grubych myszy gromadził się pewien związek chemiczny, a mianowicie SOCS-3. Naukowcy podejrzewają, że nie dopuszcza on do zarejestrowania w komórce sygnału wysyłanego przez leptynę. Cowley podkreśla, że badania jego zespołu powinny zmienić zapatrywania na otyłość. Społeczeństwo często uznaje ją za skutek braku silnej woli, podczas gdy ma ona podłoże biologiczne. W kolejnych eksperymentach otyłe myszy odchudzono, przestawiając je z diety wysokokalorycznej obfitującej w tłuszcze na dietę niskotłuszczową z taką samą liczbą kalorii. Neurony z ich podwzgórz zaczęły ponownie reagować na leptynę, co oznacza, że mamy do czynienia z procesem odwracalnym (Cell Metabolism).
  4. Naukowcy zaobserwowali, że można znieść skutki picia przez matkę alkoholu w czasie ciąży, podając dziecku z płodowym zespołem alkoholowym (fetal alcohol syndrome, FAS) cholinę. Cholina to substancja witaminopodobna. Kiedyś zaliczano ją do grupy witamin B. Do dziś nazywa się ją witaminą Bt. W ograniczonym zakresie organizm może ją wytwarzać samodzielnie z kwasu foliowego, witaminy B12 oraz aminokwasów. Spore jej ilości znajdują się w wątróbce i innych podrobach, drożdżach, zielonym groszku, żółtku, maśle orzechowym, sałacie lodowej, kiełkach pszenicy, soi, a także chudym mięsie. Cholina wchodzi w skład lecytyny i sfingomieliny. Z niej syntetyzowany jest jeden z neuroprzekaźników zaangażowanych m.in. w naukę — acetylocholina. Badacze z Uniwersytetu Stanowego w San Diego tłumaczą, że cholina wpływa na rozwój mózgu i może pomóc w naprawie szkód poczynionych przez alkohol (Behavioral Neuroscience). Zespół Jennifer Thomas podawał 170 ciężarnym szczurzycom alkohol. Gdy urodziły się młode, części z nich aplikowano cholinę. Zgodnie z przypuszczeniami, zwierzęta były nadpobudliwe i miały problemy z nauką, ale ich stan poprawiał się pod wpływem witaminy Bt. Cholina nie jest panaceum na wszystkie objawy spektrum płodowych zaburzeń alkoholowych [FASD — fetal alcohol spectrum disorders]. Kobiety nadal muszą pamiętać o jego uszkadzającym wpływie na rozwijający się płód. Zaleca się, by kobiety w ciąży spożywały dziennie 450, a podczas karmienia piersią 550 mg choliny.
  5. Agencja informacyjna Xinhua poinformowała, że chińscy naukowcy wszczepili do mózgów gołębi elektrody, które pozwalały na zdalne sterowanie ich lotem. Dzięki mikroelektrodom pracownicy centrum robotyki na Shandong University of Science and Technology "nakazywali" ptakom lecieć w prawo, w lewo, w dół lub w górę. Implanty stymulują różne obszary mózgu. Sygnały elektryczne wysyłane za pośrednictwem komputera naśladują impulsy generowane w naturze przez sam mózg — tłumaczy nadzorujący badania Su Xuecheng. Podobne eksperymenty jak z gołębiami przeprowadzono dwa lata temu z myszami. Ich autorem był również Xuecheng. Chińczyk uważa, że "zwierzęce roboty" doprowadzą do połączenia dwóch gałęzi nauki, biologii oraz komunikacji elektronicznej, i stworzenia całkiem nowej. Według niego, to niepowtarzalna szansa na opracowanie metod leczenia chorób, w których dochodzi do uszkodzenia nerwów.
  6. Mark Ashcraft, psycholog z University of Nevada twierdzi, że osoby, które martwią się, że nie rozwiążą postawionych przed nimi skomplikowanych zadań matematycznych, rzeczywiście mogą być niezdolne do ich rozwiązania. Strach przed matematyką może tak bardzo zaangażować mózg, że brakuje mu już zasobów, które pozwoliłyby uporać się z zadaniami. Sytuacja taka nie zachodzi w przypadku prostych zadań, gdyż te nie wymagają od mózgu wiele wysiłku. Jednak do rozwiązania trudnych zadań potrzebujemy dużo wolnej pamięci. A ta może być zajęta zamartwianiem się czekającymi nas trudnymi zadaniami. Z takim problemem może spotkać się nawet ktoś, kto jest dobrym matematykiem. Badaczka z University of Chicago, Sian Beilock twierdzi, że w przezwyciężeniu strachu pomaga zapisanie się na kursy przygotowawcze. Uważa również, że testy nie są, wobec tego, dobrym sposobem na decydowanie, kto zda egzamin, a kto nie. Naukowcy nie wiedzą, dlaczego opisane powyżej zjawisko występuje właśnie w przypadku matematyki.
  7. Kakao o specjalnym składzie może wspomagać sprawne działanie mózgu i opóźniać procesy starzenia się. Naukowcy przemawiający na dorocznym spotkaniu Stowarzyszenia na rzecz Postępów w Nauce w San Francisco zaprezentowali wstępne wyniki badań nad wpływem flawanoli na mózg. Wymienione związki wchodzą m.in. w skład kakao. Projekt sfinansowała firma Mars (producent cukierków). To ona dostarczyła także napój kakaowy do badań. Okazało się, że flawanole zwiększają dopływ krwi do mózgu i mogą w przyszłości zostać wykorzystane w leczeniu chorób naczyniowych. Mars wytwarza także czekoladki CocoaVia. Proces produkcyjny nie uszkadza przeciwutleniających flawanoli, które korzystnie wpływają na serce. Ian Macdonald ze Szkoły Medycznej Uniwersytetu w Nottingham chciał sprawdzić, czy bogate we flawanole kakao może polepszyć funkcjonowanie poznawcze w czasie wykonywania trudnych zadań. W zakrojonych na niewielką skalę badaniach wzięły udział młode zdrowe kobiety. Obrazowanie mózgu wykazało, że chociaż napój nie polepszył osiąganych wyników, to zwiększył dopływ krwi aż na 2-3 godziny. Macdonald uważa, że zjawisko to doceniliby ludzie starsi oraz np. osoby po miniwylewach. Dr Norman Hollenberg z Harvard Medical School testował efekty picia kakao z flawanolami na populacji panamskich Indian Kuna. On również zaobserwował zwiększenie przepływu krwi. Naukowiec uważa, że aby stwierdzić, jakie korzyści czerpie z tego mózg, trzeba by przeprowadzić próby kliniczne.
  8. Psychologowie odkryli, że uczniowie, którym powiedziano, że trenując swój mózg jak mięsień, staną się mądrzejsi, rzeczywiście zaczynają się lepiej uczyć. Istnieje wiele koncepcji inteligencji. Jedne uznają ją za niezmienną cechę, inne utrzymują, że swój iloraz inteligencji można zwiększyć. Carol Dweck z Uniwersytetu Stanforda uważa, że te ostatnie korzystnie wpływają na motywację do pogłębiania wiedzy. Ci, którzy wierzą w teorię stałych cech, obawiają się, jak wypadną. Czy okażą się mądrzy, czy nierozgarnięci. Nie cieszą ich trudne zadania, ponieważ obawiają się porażki oraz jej skutków dla postrzegania siebie. Zwolennicy teorii drugiego typu lubią mierzyć się z wyzwaniami. Interesuje ich to bardziej niż wyglądanie na osoby inteligentne. Są bardziej wytrwali, elastyczni, mniej się obawiają pomyłek. Pani Dweck zainteresowała się ludzkimi koncepcjami inteligencji ze względu na własne doświadczenia szkolne. Mój nauczyciel usadzał nas w klasie według ilorazu inteligencji. Cała odpowiedzialność spoczywała na uczniach z najwyższym IQ. Sięgając pamięcią wstecz, mogę stwierdzić, że przed tym wydarzeniem uczenie się zawsze sprawiało mi przyjemność. Doświadczenia ze szkoły nie dotyczyły jednak nauki. Chodziło o to, że trzeba było zawsze wyglądać na osobę mądrą, inaczej degradowano cię i przenoszono do tylnych rzędów. Praca w tak ustalonych sztywnych ramach miała na mnie głęboki wpływ. Inteligencja znaczyła tyle samo co wartość. Aby zbadać wpływ różnych teorii inteligencji na osiągnięcia szkolne, Dweck i zespół przez 2 lata śledzili losy 373 dzieci z Nowego Jorku. W tym czasie uczęszczały one do gimnazjum. Na początku nauki wszystkie uzyskały podobny wynik w teście matematycznym. Potem jednak uczniowie pojmujący inteligencję jako stałą cechę zaczęli wypadać gorzej w sprawdzianach z matematyki. W dodatku różnica między nimi a rówieśnikami lubiącymi wyzwania pogłębiała się z upływem czasu. Kiedy myśli się o swoich umiejętnościach jak o czymś niezmiennym, odsuwa się na bok wszelkie informacje o niepowodzeniach. Nie można się uczyć na swoich błędach, bo to fatalnie wpływa na samoocenę. Naukowcy podzielili dzieci, które miały największe problemy z matematyką, na dwie grupy. Obie przeszły kurs "nauki uczenia się", natomiast tylko jednej zaproponowano dodatkowy 8-tygodniowy program. Mózg przedstawiono uczniom jako mięsień. Mieli oni zacząć wierzyć, że im więcej go wykorzystują, tym silniejszy, bardziej wysportowany się staje. Nauczyliśmy ich, że gdy zaczynają intelektualną gimnastykę, mózg tworzy nowe połączenia. To dało im nieznany dotąd model własnego umysłu, poczucie, że mają kontrolę nad mózgiem i możliwość usprawniania jego funkcjonowania. Koncepcja ta uwolniła ich od tyranii strachu, że okażą się mało inteligentni. Osiągnięcia matematyczne tej grupy znacznie się poprawiły (Child Development). Obecnie zespół Dweck pracuje nad komputerową wersją swojego autorskiego programu. Jeśli zda egzamin w 20 szkołach, gdzie został zaimplementowany, w przyszłości na pewno pomoże wielu dzieciom.
  9. Badacze z Uniwersytetu w Buffalo (UB) opisali zestaw związków chemicznych odpowiedzialnych za stan zakochania. Jeśli pojawiają się w określonym miejscu we właściwym czasie i w prawidłowej kolejności, mogą zadziałać jak strzała Kupidyna... Istnieje kilka rodzajów substancji koniecznych dla wytworzenia się romantycznego związku — tłumaczy Mark Kristal, profesor psychologii na UB. Aby ktoś się zakochał, musi zadziałać cały kompleks bodźców zewnętrznych i różnych procesów biochemicznych, w dodatku we właściwej kolejności. Jako pierwszy powinien zadziałać zapach. Woń tworzy coś w rodzaju ram dostosowanych do kulturowych kryteriów atrakcyjności. Na przykład: lepiej pachnieć jak truskawki czy róże niż kojarzyć się ze stęchlizną. Potem przychodzi czas na feromony, które nie należą do dziedziny kultury, lecz natury. Związki te [...] prawdopodobnie nie pachną, ale oddziałują na mózg za pośrednictwem zmysłu węchu i narządu nosowo-lemieszowego. Regulują zachowania związane z seksem, czujnością, terytorialnością, agresją oraz strachem. W przypadku erotyki pozwalają wyjaśnić zmiany w libido, lecz już nie wybór konkretnego partnera. U ludzi kochanka wybiera się prawdopodobnie na postawie wskazówek zmysłowych: wzrokowych, zapachowych, słuchowych i dotykowych". Ich rola, zwłaszcza zapachu, zwiększa się z upływem czasu. "Po jakimś czasie trwania w związku, rozpoznając się nawzajem, polegamy raczej na woni, a nie na feromonach. Badania wykazały, że ludzie umieją zidentyfikować noszoną koszulkę swojego mężczyzny czy kobiety właśnie na podstawie zapachu. W łańcuchu wydarzeń teraz musi zadziałać mózg, który wytwarza substancje odpowiedzialne za powstanie i utrzymanie przywiązania. Kristal wymienia m.in. wazopresynę i oksytocynę, a także dopaminę (działającą w obszarze brzusznym nakrywki). Ta ostatnia odpowiada za nagradzające właściwości seksu i miłości. Psycholog demitologizuję rolę afrodyzjaków w zdobywaniu partnera. Według niego, zamiast zażywać hiszpańską muchę, sproszkowany róg nosorożca czy zajadać się czekoladą, lepiej ładnie pachnieć i wyglądać jak ktoś, komu się dobrze powodzi.
  10. Badania przeprowadzone przez naukowców z University of Rochester dowodzą, że gry FPS, czyli popularne "strzelaniny” w rodzaju Unreal Tournament, pozytywnie wpływają na przetwarzanie przez mózg sygnałów wizualnych. Okazuje się, że osoby, które spędzają przy takich grach kilka godzin dziennie, są o około 20% lepsze w identyfikowaniu bodźców wzrokowych. Wystarczy 30 godzin spędzonych przy grze by zauważyć znaczącą poprawę w przetwarzaniu form przestrzennych. Oznacza to ni mniej, ni więcej, że gracz znacznie szybciej od osoby niegrającej wyłapie spośród wielu figur konkretny, zadany kształt. Profesor Daphne Bavelier i doktorant Shawn Green wybrali do swojego eksperymentu studentów, którzy w przeszłości grali bardzo niewiele lub w ogóle. Podzielili ich na dwie grupy. Jedna przez godzinę dziennie grała w Unreal Tournament, a druga w Tetris – grę wymagającą równie dużo kontroli ruchowo-wzrokowej, ale mniej skomplikowaną wizualnie. Gdy ludzie grają w gry akcji, zmienia się sposób pracy tych obszarów mózgu, które są odpowiedzialne za przetwarzanie bodźców wzrokowych. Takie gry początkowo bardzo obciążają mózg, który pracuje na granicy swoich możliwości. Bardzo szybko jednak uczy się on nowych rzeczy i dostosowuje do potrzeb użytkownika. Tak wyuczone umiejętności są później wykorzystywane w codziennym życiu – mówi Bavelier.
  11. W jaki sposób kobiety kojarzą "ten ton" z określonymi rzeczami i dlaczego będąc w klubie go-go trudno im wmówić, że gra się właśnie z kumplami w brydża? Nie wspominając o tym, że wszyscy (bez względu na płeć) potrafimy rozpoznać swojego partnera po głosie, nie widząc go. Pewne badanie wykazało, że mózg kojarzy nowe sytuacje z towarzyszącymi im dźwiękami, tzn. tworzy połączenia między regionami kodującymi działanie z obszarami odpowiadającymi odgłosom. Odkrycia te mogą wyjaśnić, w jaki sposób uczymy się języka oraz jak wnioskujemy o wydarzeniach, słysząc jedynie dźwięki — uważają autorzy badania, Amir Lahav i Gottfried Schlaug z Beth Israel Deaconess Medical Center oraz Harvard Medical School. Opisywane doniesienia wpływają na rozumienie wielu złożonych procesów, takich jak mowa czy muzykowanie, i mogą wspomóc badania nad metodami rehabilitacyjnymi z wykorzystaniem zadań dźwiękowo-ruchowych — cieszy się dr Robert Zatorre z McGill University. Stanowią także poniekąd dowody na istnienie u ludzi układu neuronów lustrzanych. Po raz pierwszy opisano je na przełomie lat 80. i 90. u małp. Ulegają one aktywacji nie tylko wtedy, gdy zwierzę samo wykonuje jakąś czynność, lecz również wtedy, gdy obserwuje kogoś innego w działaniu albo słyszy towarzyszące mu dźwięki. Lahav i Schlaug przygotowali dla 9 wolontariuszy, którzy nigdy wcześniej nie uczyli się muzyki, specjalny program ćwiczeń gry na keyboardzie. Musieli się oni wytrenować w grze pięcionutowego (trwającego zaledwie 24 s) "utworu". Po zakończeniu nauki badani wysłuchali 3 fragmentów muzyki: 1) wyuczonego, 2) innej piosenki składającej się z tych samych nut i 3) utworu, do którego dodano kilka nut. Funkcjonalny rezonans magnetyczny (fMRI) wykazał, że znajome dźwięki aktywowały obszary zaangażowane w kontrolę ruchu z płatów czołowych i ciemieniowych. Pole Broca, w obrębie którego u małp mieszczą się neurony lustrzane, uaktywniał się najbardziej w momencie, kiedy badani słuchali wyuczonego fragmentu muzyki. Układ neuronów lustrzanych wydaje się kodować i odzwierciedlać wzorce konkretnych czynności. Umiejętność wnioskowania o tym, co się dzieje, kiedy nie można tego zobaczyć, rozwinęła się najprawdopodobniej z powodów ewolucyjnych. Słysząc w ciemności zbliżające się kroki, warto bowiem wiedzieć, czy lepiej wziąć nogi za pas...
  12. W jaskiniach gier hazardowych ludzie bardziej koncentrują się na traconych większych sumach niż na dużych wygranych. Posługując się funkcjonalnym rezonansem magnetycznym (fMRI), badacze z UCLA przyglądali się aktywności mózgu podczas obstawiania zakładów. Uczestnicy eksperymentu otrzymywali 30 dolarów. Następnie pytano ich, czy zgadzają się zagrać w każdą z 250 różnych gier, w których szanse na wygraną wynoszą 50% (np. czy przystają na rzut monetą, w wyniku którego mogą wygrać 30, a przegrać 20 dolarów). Każdą grę badani mogli całkowicie zaaprobować, zaaprobować w niewielkim stopniu, słabo odrzucić bądź też odrzucić całkowicie. Okazało się, że zazwyczaj ludziom trzeba było najpierw zagwarantować 50-proc. szanse na podwojenie danej sumy, by wyrazili chęć obstawiania. Przyglądając się jedynie aktywności mózgu podczas podejmowania decyzji, czy obstawiać, czy nie, naukowcy wiedzieli, jak ostatecznie zachowa się uczestnik eksperymentu. Osoby, które wykazują relatywnie większą wrażliwość neuronalną na stratę niż na wygraną, podchodzą do hazardu niechętnie. Dzieje się tak do momentu, aż poczują, że ich szanse na wygraną znacznie wzrosły. Największą skłonność do hazardu wykazują natomiast ludzie podobnie neurologicznie wrażliwi tak na wygraną, jak i na stratę — tłumaczy Craig Fox z zespołu badawczego. Ci ostatni rozgrzewali się, gdy wzrastały stawki, tych pierwszych mobilizowało zwiększenie wygranych i strat (Science). Studium ujawniło ponadto, że badani silniej reagowali na potencjalną stratę niż na wygraną. Podczas obrazowania mózgu okazało się, iż na wieść o możliwej wygranej aktywacji ulegał obszar pobudzany również w czasie zażywania kokainy, jedzenia czekolady czy przyglądania się pięknej twarzy — podsumowuje Russell Poldrack. Ośrodki nagrody włączane przez wizję zdobycia pieniędzy wygaszały się na wieść o stracie. Mózg większości osób zareaguje silniej, słysząc o możliwości przegrania 100 dol., a nie o studolarowej wygranej. Zgodnie z wynikami wcześniejszych badań, ludzie są nastawieni do ryzyka raczej awersyjnie. Oznacza to, że ważąc "za" i "przeciw" odnośnie do jakiegoś działania w przyszłości, będą się bardziej koncentrować na minusach. Tendencja ta wykracza daleko poza hazard. Kobieta tkwiąca w nieszczęśliwym związku nie odchodzi, na przykład, do momentu, kiedy jej perspektywy na życie bez partnera nie stają się dużo lepsze od aktualnej sytuacji — zauważa szefowa ekipy naukowców Sabrina Tom.
  13. Naukowcy twierdzą, że udało im się wykryć część mózgu odpowiedzialną za uzależnienie od nikotyny. Według ekspertów, operacja chirurgiczna na tym obszarze może pomóc niektórym palaczom w uwolnieniu się od nałogu. Odkrycie jest właściwie dziełem przypadku. Okazało się bowiem, że 38-letni mężczyzna, który wypalał wcześniej 40 papierosów bez filtra dziennie, stracił nagle pociąg do nikotyny po uszkodzeniu podczas udaru tzw. wyspy (insula; płat kory mózgu leżący w głębi bruzdy bocznej). Dr Antoine Bechara z Uniwersytetu Południowej Kalifornii tłumaczy, że wyjście z nałogu to trochę jak wyłączenie światła. Uważa on, że wyspa odgrywa kluczową rolę także w innych uzależnieniach, np. w przejadaniu się czy narkomanii. Zespół dr. Bechary badał mózgi (wszystkie po urazach) 69 palaczy. U 19 osób doszło do uszkodzenia wyspy. Trzynaście przestało nagle palić i nigdy nie nachodziła ich chętka na papierosa, sześciu nie udało się zerwać z nałogiem (Science). Przypadek pana N., bo tak nazwali 38-latka naukowcy z USA, jest z pewnością pouczający i daje nadzieję niemałej liczbie palaczy z całego świata.
  14. Aby umieć odróżnić bukiet zapachowy i smakowy uzyskiwany przez zastosowanie winogron z różnych szczepów, np. pionot noir i cabernet sauvignon, wcale nie trzeba się zapisywać na kursy dla somelierów. Wystarczy sobie nalać parę kieliszków i wąchać oraz próbować. Dość szybko mózg pomoże całkiem zwyczajnej osobie stać się początkującym enologiem, czyli znawcą win. Studium naukowców z Northwestern University pokazało, że mózg uczy się odróżniać podobne zapachy poprzez bierne zdobywanie doświadczenia. Rzuciło to nieco światła na proces, za pośrednictwem którego od momentu narodzin zdobywamy umiejętność rozpoznawania tysięcy woni. Eksperyment Amerykanów po raz pierwszy ujawnił, jak i gdzie mózg modyfikuje oraz uaktualnia informacje na temat zapachów. Połowa badanych przez 3 minuty wdychała zapach miętowy, druga połowa kwiatowy. Po okresie wydłużonej ekspozycji zapachowej wolontariusze stawali się ekspertami albo w zakresie mięty, albo w zakresie kwiatów (w zależności o tego, jaką woń im prezentowano). Gdy potem członkowie pierwszej grupy stykali się z jakimś miętowym zapachem, potrafili lepiej różnicować podobne wonie z całej gamy. Nie inaczej było w przypadku osób z grupy kwiatowej. Innymi słowy: badani wystawieni na działanie jednego zapachu miętowego stawali się ekspertami w dziedzinie innych miętowych woni. Testy wykazały, że umiejętności te utrzymywały się przez co najmniej 24 godziny (Neuron). Kiedy przez dłuższy czas masz kontakt z jednym zapachem, stajesz się ekspertem w zakresie woni należących do tej samej źródłowej kategorii — zauważa Jay Gottfried, profesor nadzwyczajny neurologii. Chcąc zmierzyć aktywność mózgu wolontariuszy w czasie eksperymentu, badacze posłużyli się rezonansem magnetycznym (MRI). Zobaczyli, że przedłużona ekspozycja zapachowa silniej aktywowała korę okołooczodołową (region związany z powonieniem, emocjami oraz motywacją). Pokrywało się to z poprawą umiejętności odróżniania podobnych zapachów. Wcześniej nikt nie wiedział, która część mózgu odpowiada za tego typu uczenie. My odkryliśmy, że nasilenie reakcji w obrębie kory okołooczodołowej pozwala przewidzieć, jak dobrym ekspertem zapachowym może się stać wskutek biernego uczenia dana osoba — tłumaczy Wen Li, szefowa badań. Informacje o zapachu nie są statyczne ani sztywno powiązane z jakimiś obszarami korowymi. Przeciwnie: są wysoce podatne na zmianę i mogą się nagle zmienić pod wpływem doświadczenia zmysłowego. Tę "giętkość" nazywa się plastycznością neuronalną.
  15. Kanadyjscy naukowcy twierdzą, ze osoby w pełni dwujęzyczne, które codziennie przez większość swojego życia posługują się oboma językami, mogą opóźnić początki demencji nawet o 4 lata (w porównaniu do ludzi władających tylko jednym językiem). Badacze tłumaczą, że wysiłek wkładany w posługiwanie się dwoma językami wzmaga dopływ krwi do mózgu i utrzymuje w zdrowiu połączenia nerwowe. A są to dwa ważne czynniki pozwalające skutecznie odpierać ataki demencji. Zespół profesor Ellen Bialystok z York University w Toronto badał 184 starsze osoby z objawami demencji, które w latach 2002-2005 uczęszczały do kliniki leczenia zaburzeń pamięci w stolicy Kanady. W grupie tej 91 osób mówiło jednym językiem, pozostałe (93) były dwujęzyczne. Naukowcy wyliczyli, że średni wiek pojawienia się pierwszych objawów demencji to w grupie jednojęzycznej 71,4 lat, a w dwujęzycznej: 75,5 — napisano w oświadczeniu. Różnica pozostaje widoczna nawet po uwzględnieniu innych potencjalnie istotnych czynników, takich jak różnice kulturowe, imigracja, poziom edukacji formalnej, zatrudnienie oraz płeć. Ellen Bialystok podkreśla, że dwujęzyczność odwleka początek, a nie zapobiega demencji. Wszystkie uzyskane do tej pory wyniki mają wstępny charakter. Zespół planuje głębiej zbadać korzystny wpływ dwujęzyczności na zdrowie.
  16. Największy dzięcioł Ameryki Północnej, dzięcioł smugoszyi (Dryocopus pileatus), uderza dziobem w drzewo 20 razy na sekundę z prędkością ok. 24 km/h. Dlaczego nie cierpi po takich wyczynach na ból głowy? Zawdzięcza to mocnym mięśniom, strukturze kości przypominającej gąbkę oraz trzeciej powiece. To właśnie one ochraniają mózg przed urazami. Wskutek silnego uderzenia w głowę następuje pęknięcie naczyń krwionośnych siatkówki lub uszkodzenie nerwów — tłumaczy oftalmolog z Uniwersytetu Kalifornijskiego w Davis, Ivan Schwab. Widząc pacjentów po wypadkach samochodowych, dziwię się, że podobne objawy nie występują u dzięciołów. W tym miejscu warto wspomnieć, że zeszłej jesieni za badania nad bólami głowy u tychże ptaków Schwab dostał tzw. Ig Nobla (nazywanego inaczej anty-Noblem). Wyniki jego dociekań opublikowano jednak w British Journal of Ophthalmology. Nie tylko głowa dzięcioła jest zbudowana w taki sposób, by chronić mózg. Również ciało przejmuje na siebie siłę uderzeń. Na jedną milisekundę przed stuknięciem mięśnie szyi kurczą się, a ptak zamyka trzecią powiekę. Podatne na kompresję kości czaszki amortyzują uderzenie. Zamykanie powieki utrzymuje gałkę oczną we właściwym miejscu, daje też gwarancję, że odpryskujące kawałki drewna nie wpadną do oka. Powieki działają jak pas bezpieczeństwa i nie dopuszczają do wypadnięcia gałki ocznej — tłumaczył serwisowi LiveScience Schwab. Podczas uderzania głową mózgi ptaków pozostają nieruchome. U człowieka po przyłożeniu do czaszki takiej siły mózg poruszałby się w przód i w tył w płynie mózgowo-rdzeniowym. U dzięciołów na dobrą sprawę płyn ten jednak nie występuje.
  17. Nowe studium naukowców z Yale School of Medicine wykazało, że estrogen reguluje metabolizm mózgu podobnie jak hormon leptyna. Leptyna jest wytwarzana przez komórki tłuszczowe, które w ten sposób przekazują podwzgórzu wiadomość dotyczącą stopnia odczuwanego głodu. Natrafienie na ślad estrogenowy jest bardzo ważnym odkryciem, taką metodą można by pomagać w zwalczaniu otyłości osobom odpornym na działanie leptyny. Tamas L Horvath i zespół badali myszy z mutacjami albo w leptynowym, albo estrogenowym systemie sygnalizacji. W ramach eksperymentu akademicy analizowali wpływ estrogenu na zdolność neuronów do tworzenia w podwzgórzu nowych połączeń, związane z tym zachowania dot. odżywiania się oraz wydatkowanie energii. Badacze odkryli, że estrogen jest niezwykle istotnym regulatorem metabolizmu mózgu. Jeśli chodzi o wpływ na tworzenie nowych połączeń, żeński hormon płciowy i leptyna wykorzystywały te same mechanizmy, natomiast oddziaływanie estrogenu na jedzenie i otyłość było niezależne od leptyny i receptorów leptynowych. Odkryliśmy, że estrogen hamuje apetyt, wykorzystując w mózgu te same ścieżki, co leptyna — tłumaczy Horvath. Upośledzona sygnalizacja estrogenowa w mózgu może być przyczyną zmian metabolicznych podczas menopauzy. Obecnie naukowcy chcą popracować nad związkami naśladującymi działanie m.in. estradiolu w zakresie redukcji wagi. Można by je stosować u osób odpornych na leptynę, bez skutków ubocznych charakterystycznych dla estrogenów. W ten sposób chroniono by tkanki piersi i jajników.
  18. Nasza umiejętność marzenia o przyszłości może być związana, a nawetzależna od zdolności do przypominania sobie przeszłości. Dzięki temuodkryciu uda się prawdopodobnie rzucić nieco światła na fenomen amnezji. Interesujące wyniki uzyskano z niewielkiego studium, w ramach któregoporównywano aktywność mózgu wolontariuszy podczas udzielania odpowiedzina pytania dotyczące osobistych wydarzeń z przeszłości, takich jakurodziny czy zgubienie się, a następnie podobnych sytuacji wprzyszłości. Skany mózgu 21 studentów ujawniły zaskakujący stopień pokrywania się obszarów zaangażowanych w oba zadania. Nasze odkrycia dostarczają argumentówna potwierdzenie tezy, że pamięć i myślenie na temat przyszłości są zesobą ściśle powiązane i pomagają wyjaśnić, dlaczego snucie planów naprzyszłość może być niemożliwe bez wspomnień — uważa Karl Szpunar z Washington University w St. Louis. Zaobserwowane wzorce aktywności mózgu da się częściowo wyjaśnić tym, że wzrokowy i przestrzenny kontekst przyszłych wydarzeń, zwłaszcza ruchów ciała, zostaje zapożyczony z przeszłości. W kwestionariuszu wypełnianym po teście studenci przyznali, że chcieliumieścić obrazy dotyczące przyszłości w znanych sobie miejscach (szkolei domu). Zapełniali je także znajomymi osobami: rodziną orazprzyjaciółmi. Wymagało to reaktywacji autobiograficznych wspomnieńwzrokowych z sieci neuronalnych odpowiedzialnych za ich przechowywaniei przywoływanie. To wyjaśniałoby, czemu osoby z amnezją mają problemy zpostrzeganiem siebie w przyszłości, mimo że nie sprawiają im trudnościrozważania na temat abstrakcyjnie rozumianej przyszłości (Proceedings of the National Academy of Sciences).
  19. Można się zastanawiać, dlaczego (mimo lat praktyki i litrów przelanego potu) ludziom nie udaje się osiągnąć doskonałości w dziedzinie, w której się specjalizują. Czemu muzyk nadal myli się przy tysięcznym wykonaniu tego samego utworu, a gracz ligi NBA chybia podczas rzutu za trzy punkty? Badacze z Uniwersytetu w Stanford postanowili zająć się tym zagadnieniem. Okazało się, że niecałkowita perfekcja jest wpisana w nasz mózg. Mózg wyewoluował w taki sposób, że za każdym razem rozważa dany ruch, nawet jeśli był on w przeszłości wykonywany wielokrotnie. Zajmuje to ułamek sekundy, przebiega bez udziału świadomości, ale może wpływać na osiągane rezultaty — tłumaczy Krishna Shenoy (Neuron). Wcześniej przez wiele lat sądzono, że za obserwowane uchybienia odpowiadają mięśnie. Chodzi o to, że nie można za każdym razem tak samo aktywować mięśni. W dodatku mózg za każdym razem planuje ten sam ruch. Studium naukowców ze Stanford obarcza co najmniej połową winy mózg, który obsesyjnie wszystko analizuje, a prowadzi to wielu błędów. Jesteśmy skazani na zmienność w przebiegu ruchu. I to nie tylko dlatego, że mięśnie nie pracują idealnie, ponieważ to nasz mózg, jak się wydaje, nie jest w stanie zaplanować ruchu w dokładnie ten sam sposób. [...] Nikomu się to nie udaje. Naukowcy uważają, że "styl improwizatora" pojawił się w toku ewolucji dlatego, że w większości przypadków stykamy się z nowymi sytuacjami. Drapieżnik nie może na przykład za każdym razem tak samo polować na swoją ofiarę, bo zmieniają się okoliczności. Nie ma zbyt wielu naturalnych sytuacji, kiedy mózg mógłby robić tę samą rzecz ciągle od nowa. Do przetestowania swojej hipotezy badacze wybrali rezusy. W polu przedruchowym ich kory mózgowej umieszczono czujniki. Ten obszar odpowiada za planowanie ruchów. Biolodzy obserwowali działanie tworzących go neuronów, gdy małpa planowała i trenowała wykonanie określonego zadania. Polegało ono na naciskaniu punktów świetlnych, pojawiających się na umieszczonym przed nią ekranie. Mimo że cele i nagrody były ciągle takie same, a ruchy powtarzano setki razy, proces planowania przebiegał w różny sposób (podobnie jak rozłożenie w czasie poszczególnych ruchów). Co ważne, niewielkie różnice w osiąganej prędkości ruchu można było przewidzieć na podstawie obserwacji aktywności neuronów, zanim jeszcze zaczął się jakikolwiek ruch.
  20. O zgubnym wpływie alkoholu na mózg wiadomo nie od dzisiaj. Niedawno dowiedzieliśmy się, że mózg potrafi wyleczyć szkody wyrządzone przez alkohol, a obecnie naukowcy donieśli, że wpływ alkoholu na ten organ może czasami być... zbawienny. Uczeni sprawdzili dane 1158 pacjentów jednego ze szpitali w Toronto, którzy trafili tam w latach 1988-2003 z powodu uszkodzeń mózgu wywołanych uderzeniem tępym przedmiotem. Były to przede wszystkim ofiary wypadków komunikacyjnych. Okazało się, że pacjenci, u których we krwi znajdowało się do 2,3 promila alkoholu mieli o 24% większą szansę na przeżycie, niż ci, którzy przed wypadkiem nie pili alkoholu. Po przekroczeniu granicy 2,3 promila prawdopodobieństwo zgonu z powodu urazu mózgu wzrastało o 73% w porównaniu z niepijącymi. Spośród tych pacjentów, których akta zbadano, a którzy mieli uszkodzenia mózgu i nie więcej niż 2,3 promila alkoholu we krwi zmarło 28%. Wśród osób, które nie piły alkoholu zmarło 36%. Uczeni porównali te wyniki z kartami 528 pacjentów, których przywieziono z ciężkimi ranami tułowia, ale których głowa nie ucierpiała. U tych osób nie wykryto żadnej zależności pomiędzy poziomem alkoholu, a szansami na przeżycie. Doktor Homer Tien z Uniwersytetu w Toronto podkreśla, że wyników badań nie należy interpretować w taki sposób, iż picie za kierownicą jest czymś pozytywnym. Jego zdaniem badania te wykazują, że możliwe jest opracowanie takiego lekarstwa, które będzie zwiększało szanse na przeżycie u pacjentów z urazami mózgu. Nie mamy obecnie żadnego tego typu leku. To wskazuje na pewną interesującą możliwość. Być może alkohol ma jakiś pozytywny wpływ na mózg, który uległ uszkodzeniu – mówi Tien. Nie zachęcamy jednak nikogo do picia i siadania za kierownicą. Szansa na to, że poniesie się śmierć jest znacznie wyższa, niż pozytywny wpływ alkoholu – dodał. Naukowcy przypuszczają, że niski i umiarkowany poziom alkoholu we krwi podczas wypadku może chronić przed wtórnymi uszkodzeniami mózgu, do których dochodzi gdy uszkodzonym w wyniku zdarzenia komórkom mózgu zaczyna brakować tlenu. Wówczas uszkodzony obszar zaczyna się powiększać.
  21. Wytwarzana przez organizm matki podczas porodu oksytocyna zabezpiecza mózg dziecka przed uszkodzeniami — wykazały nowe badania na szczurach. W związku z odkryciem naukowcy chcą sprawdzić, czy planowane cesarskie cięcie, kiedy nie następuje skok stężenia hormonu, może zaburzyć normalny rozwój mózgu. Yehezkel Ben-Ari i zespół ze Śródziemnomorskiego Instytutu Neurobiologii w Marsylii porównywali tkankę mózgową szczurów urodzonych siłami natury i w wyniku cesarskiego cięcia. Neurony tych pierwszych nie reagowały na pobudzenie GABA-ergiczne, a u tych drugich przynajmniej 50% komórek nerwowych odpowiadało na takie sygnały. Kiedy akademicy podali zwierzętom atosiban, lek blokujący działanie oksytocyny, neurony były łatwiej pobudzane przez GABA (kwas γ-aminomasłowy). W ten sposób udowodniono, że oksytocyna jest hormonem powodującym u naturalnie urodzonych szczurów zmniejszenie wrażliwości na GABA. W czasie porodu wzrasta stężenie różnych hormonów, m.in. prostaglandyn oraz oksytocyny. Tej ostatniej wskutek nacisku wywieranego przez główkę dziecka na szyjkę macicy. Ben-Ari uznaje, że "uspokajając" neurony, oksytocyna może zapobiegać uszkodzeniu mózgu w warunkach niedotlenienia. Zespół Francuzów wykazał, że komórki nerwowe urodzonych siłami natury szczurząt żyły przez godzinę w roztworze niezawierającym tlenu. Neurony od młodych, których matkom podano atosiban, przeżyły nieco krócej, bo 40 minut. Zmniejszając reaktywność neuronów, oksytocyna redukuje ilość tlenu potrzebną do wytworzenia energii. A to z pewnością przydaje się w czasie długich czy ciężkich porodów. Członek ekipy naukowców, Rustem Khazipov, porównuje stan wywoływany przez hormon do oszczędzającego prąd stanu czuwania w komputerze czy telewizorze. Ben-Ari utrzymuje, że wystawienie neuronów podczas porodu na oddziaływanie dużych stężeń oksytocyny przyspiesza ich dojrzewanie. Część ekspertów uważa jednak, że dzieci przychodzące na świat w wyniku cesarskiego cięcia nie są narażone na niedotlenienie w takim stopniu jak maluchy urodzone siłami natury, nie trzeba im więc tak bardzo ochrony oksytocyny.
  22. Międzynarodowa grupa naukowców odkryła, że mózg potrafi naprawiać szkody wyrządzane mu przez spożywany w nadmiernych ilościach alkohol. Badacze ostrzegają jednak, że zgubny nałóg trzeba rzucać jak najszybciej, ponieważ im dłużej się pije, tym mniejsze szanse na regenerację mózgu. Najważniejszym dla alkoholików wnioskiem wypływającym z tego badania jest, że abstynencja się opłaca i daje mózgowi szansę na przywrócenie właściwego poziomu neuroprzekaźników i efektywniejszą pracę — tłumaczy dr Andreas Bartsch Uniwersytetu w Wuerzburgu. Badania na zwierzętach wykazały, że u dorosłych alkohol może przerwać rozwój nowych neuronów. Picie dużych ilości alkoholu w czasie ciąży wpływa także na rozwój mózgu płodu. Andreas Bartsch i inni naukowcy z Niemiec, Wielkiej Brytanii, Szwajcarii oraz Włoch badali zdolność mózgu do regeneracji, mierząc wielkość, anatomię oraz funkcjonowanie tego narządu u 15 uzależnionych kobiet oraz mężczyzn. Pomiary wykonywano dwukrotnie: przed i w 7 tygodni po zaprzestaniu picia. Dzięki zaawansowanym metodom obrazowania wykazano, że w 38 dni po zakończeniu picia alkoholu objętość mózgu pacjentów wzrosła średnio o blisko 2% (Brain). Wolontariusze wypadali też lepiej w testach oceniających ich koncentrację oraz uwagę, zwiększył się także poziom mózgowych neuroprzekaźników. Warto dodać, że wszyscy uczestnicy badań rzucili picie bez farmakoterapii. Ludzki mózg, a zwłaszcza istota biała, posiada niezwykłą zdolność samoodtwarzania się — konkluduje Bartsch.
  23. Z kandyjskich badań wynika, że u osób przejawiające zachowania histeryczne można zauważyć zmiany w mózgu, które naukowcy połączyli z ich sposobem zachowania. To, co potocznie zwane jest histerią, lekarze nazywają zaburzeniami konwersyjnymi. Objawiają się one na wiele sposobów: od drętwienia kończyn po paraliż czy utratę pamięci. Doktor Anthony Feinstein z Uniwersytetu w Toronto, współautor badań, stwierdził, że dowodzą one prawdziwości freudowskiego poglądu na tą chorobę. Dzięki rezonansowi magnetycznemu uczeni zauważyli niezwykła aktywność mózgu u trzech kobiet dotkniętych zaburzeniami konwersyjnymi. Kobiety traciły czucie w jednej dłoni i jednej stopie, czego nie można było przypisać żadnemu problemowi medycznemu. Badane były zdrowe pod względem fizycznym. Okazało się jednak, że dotykanie ich kończyn nie wywoływało, jak to się normalnie dzieje, żadnej aktywizacji obszarów mózgu odpowiedzialnych za zarządzanie kończynami. Natomiast gdy lekarze jednocześnie dotykali obu stóp lub obu dłoni, aktywowały się obszary odpowiedzialne za obie kończyny. Jednocześnie jednak aktywowały się regiony odpowiedzialne za emocje i kobiety nadal twierdziły, że nie mają czucia w jednej z kończyn. To jasno dowodzi, że za histerię odpowiedzialne są zmiany w mózgu – stwierdził Fainstein. Fakt jednoczesnego aktywowania się obszaru emocji wskazuje, że zaburzenia konwersji mają przyczynę psychologiczną i są skutkiem traumatycznych przeżyć. U jednych objawiają się brakiem czucia w kończynach, u innych utratą pamięci.
  24. Naukowcy z University of Leicester chcą lepiej zrozumieć, jak działa ludzki mózg, studiując budowę mózgu ślimaka. Badacze mają zamiar prześledzić rozwój układu nerwowego i procesy kontrolujące pourazową regenerację neuronów. Szefem projektu jest dr Volko Straub. Gazowy tlenek azotu (NO) to zarazem wróg i sprzymierzeniec. Może być wysoce toksyczny i zabójczy, ale znajduje się go również w mózgu, gdzie neurony wykorzystują go w procesie komunikowania się. Jest trucizną oraz substancją sygnałową (neuroprzekaźnikiem). Podczas rozwoju mózgu tlenek azotu wspiera wzrost komórek nerwowych i tworzenie się nowych połączeń między neuronami. Uczenie się także uruchamia proces formowania synaps i często wymaga obecności tlenku azotu. Naukowcy wiedzą niewiele ponad to, że tlenek jest istotny dla powodzenia procesu tworzenia połączeń neuronalnych. Trzeba między innymi sprecyzować mechanizm zaobserwowanego zjawiska. Badanie tego procesu u zwierząt wyższych jest trudne ze względu na stopień złożności układu nerwowego. Na szczęście ewolucja była bardzo konserwatywna. Zdecydowaliśmy się więc na analizę układu nerwowego pospolitego ślimaka wodnego [błotniarki stawowej — przyp. red.]. U ślimaka pojedynczy neuron jest stosunkowo duży, łatwy do wyodrębnienia i podatny na eksperymentalne manipulacje. Można go wyizolować z układu nerwowego i stworzyć hodowlę komórkową, gdzie dochodzi do wzrostu i utworzenia funkcjonalnych połączeń. Co ważne, podstawowe procesy oraz czynniki kontrolujące wzrost neuronów i formowanie połączeń są wspólne dla wielu zwierząt.
  25. Wielu lekarzy unika podawania noworodkom środków znieczulających podczas przeprowadzania rozmaitych procedur medycznych, ponieważ uważa, że nie odczuwają bólu. Takie przekonanie może być jednak mylne — donoszą naukowcy ze sztokholmskiego Karolinska Institute. Nowe techniki pomiarowe wykazały, że nawet wcześniaki przejawiają wszystkie symptomy świadomego odczuwania bólu — twierdzi Marco Bartocci. Przez wiele lat medycy przyjmowali, że płody, wcześniaki oraz nowo narodzone dzieci nie odczuwają bólu, ponieważ nie rozwinęły się u nich jeszcze niezbędne funkcje korowe. Reakcje maleństw na potencjalnie bolesne bodźce uznawano za nieświadome odruchy. Lekarze czuli się usprawiedliwieni, nie stosując znieczulenia podczas zabiegów, mając poczucie uniknięcia skutków ubocznych. Badania zespołu Bartocciego wykazały jednak, że mózgi przedwcześnie narodzonych dzieci są rozwinięte w o wiele większym stopniu niż do tej pory sądzono. Spektroskopia w podczerwieni unaoczniła, że powstałe w wyniku nakłuwania szpilką sygnały bólowe są przetwarzane w korze mózgowej wcześniaka dokładnie w ten sam sposób, co u dorosłej osoby. Wydaje się więc, że wszystkie znane warunki świadomego odczuwania bólu są spełnione, chociaż nadal nie uzyskano ostatecznych dowodów na rzeczywiste subiektywne doświadczanie bólu. Rezultaty badań ukażą się w najbliższym wydaniu pisma Pain.
×
×
  • Dodaj nową pozycję...