Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'UCLA' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 5 wyników

  1. Eksperci pracujący pod kierunkiem uczonych z UCLA Henry Samueli School of Engineering and Applied Science udowodnili, że za pomocą metod mechaniki kwantowej można stworzyć mechanizm kryptograficzny bazujący tylko i wyłącznie na fizycznej lokalizacji odbiorcy i nadawcy wiadomości. To ogromny postęp, gdyż eliminuje jedno z najpoważniejszych wyzwań kryptografii - bezpieczną dystrybucję kluczy kryptograficznych koniecznych do zapisania i odczytania informacji. Kryptografia opierająca się na lokalizacji zakłada wykorzystanie precyzyjnych danych o położeniu odbiorcy i nadawcy do stworzenia klucza kryptograficznego. Rozwiązanie takie ma tę olbrzymią zaletę, że daje pewność, iż wiadomość zostanie odebrana i odczytana tylko przez osobę, która znajduje się w określonym miejscu. Szef grupy badaczy Rafail Ostrovsky, profesor z UCLA mówi, że najważniejszym elementem nowej metody jest bezpieczna weryfikacja położenia geograficznego urządzeń nadawczo-odbiorczych. Dzięki niej mamy pewność, że np. informacja wysyłana do odległej bazy wojskowej zostanie odebrana tylko przez kogoś, kto się w tej bazie znajduje. Niezwykle ważne jest tutaj bezpieczne określenia położenia i to w taki sposób, żeby nie można było się pod to położenie podszyć oraz bezpieczna komunikacja z urządzeniem znajdującym się w tej konkretnej lokalizacji. Urządzenie jest uwiarygadniane przez swoje położenie. Stworzyliśmy metodę bezpiecznej komunikacji z urządzeniem w danej lokalizacji. Połączenie można nawiązać bez potrzeby wcześniejszego komunikowania się z tym urządzeniem - mówi Ostrovsky. Dotychczas sądzono, że wykorzystywana w łączności bezprzewodowej triangulacja oferuje odpowiedni poziom bezpieczeństwa. Jednak w ubiegłym roku badania prowadzone pod kierunkiem Ostrovsky'ego pokazały, że grupa osób jest w stanie oszukać wszelkie dotychczasowe systemy określania położenia. Najnowsze badania pokazały jednak, że wykorzystanie mechaniki kwantowej gwarantuje bezpieczne jednoznaczne określenie położenia, nawet wówczas, gdy mamy do czynienia z grupą próbującą oszukać systemy lokalizacji. Ostrovsky i jego zespół pokazali, że używając kwantowych bitów w miejsce bitów tradycyjnych, jesteśmy w stanie precyzyjnie określić lokalizację i zrobimy to w sposób bezpieczny. Jeśli nawet przeciwnik będzie próbował podszyć się pod naszą lokalizację, to mu się to nie uda. Jego urządzenia będą bowiem w stanie albo przechowywać przechwycony stan kwantowy, albo go wysłać. Nie mogą robić obu tych rzeczy jednocześnie. Wysyłając zatem kwantową wiadomość szyfrujemy ją na podstawie naszej lokalizacji, a odszyfrować może ją jedynie urządzenie znajdujące się w lokalizacji docelowej. W pracach Ostrovsky'ego brali udział jego studenci Nishanth Chandran i Ran Gelles oraz Serge Fehr z holenderskiego Centrum Wiskunde & Informatica (CWI) i Vipul Goyal z Microsoft Research.
  2. Żyjemy w kraju, który ma pod dostatkiem wody pitnej. Wprawdzie hydrolodzy alarmują, że ilość dostępnej, czystej wody się zmniejsza, ale przeciętny Polak tego nie odczuwa. Wartość wody doceniają naprawdę dopiero ludzie z obszarów dotkniętych suszą, gdzie każdy kubek pitnej wody jest niemal na wagę złota. Wprawdzie większość obszaru naszej planety pokrywa woda, ale słona - nie nadająca się do picia. Również większość wód słodkich jest już zanieczyszczona. Tam gdzie nie ma źródeł słodkiej wody, a jest dostępna woda morska, można ją odsalać. Niestety, istniejące instalacje odsalające to olbrzymie kompleksy, drogie w budowie i utrzymaniu nawet dla zamożnych krajów, a co tu dopiero mówić o biednych regionach, które najczęściej dotknięte są brakiem wody. Są też oczywiście inne technologie. Wiele osób słyszało o woreczkach, w jakie wyposażona jest na przykład armia amerykańska. Wystarczy wlać do nich dowolną wodę: słoną, brudną, a z drugiej strony wylatuje już czysta. Ale cóż tu kilka łyków czystej wody, kiedy głodująca Afryka potrzebuje niezliczonej jej ilości? Najnowocześniejsze dotąd metody odsalania wody to filtrujące membrany, działające na zasadzie tzw odwróconej osmozy. Ten tajemniczy termin oznacza tyle, że pod wysokim ciśnieniem przez niewielkie otwory w półprzepuszczalnej błonie woda przenika bez trudu, natomiast sól i inne zanieczyszczenia zatrzymują się na niej. Jednak poza koniecznością zapewnienia odpowiedniego ciśnienia, a więc dużych kosztów energii, metoda ta ma wiele innych wad. Zanieczyszczenia, a poza solą są to różne związki chemiczne, czy bakterie, osadzają się na membranie i po prostu ją zatykają. Konieczne jest więc trudne i kosztowne jej czyszczenie, albo okresowa wymiana. Wyprodukowanie takiej membrany to skomplikowany, czyli drogi proces technologiczny. A przypomnijmy, że potrzeba nam odsalania na bardzo dużą skalę. Nowa nadzieja zaświtała dzięki naukowcom i inżynierom z UCLA (Kalifornijskiego Uniwersytetu w Los Angeles), z Henry Samueli School of Engineering and Applied Science (Szkoły Inżynierii i Nauki Stosowanej im. Henry'ego Samueli). Rozwiązali oni jeden z największych problemów, czyli zapychanie się filtrujących błon. Bardzo wyrafinowana technologicznie sztuczka polega na uzyskaniu odpowiedniej struktury powierzchni i właściwości chemicznych. Poza wysoką przepuszczalnością dla cząsteczek wody, nowa membrana wykazuje dobrą charakterystykę zatrzymywania [zanieczyszczeń] oraz stabilność w długim okresie czasu - mówi Nancy H. Lin, inżynier z UCLA. - Stworzenie takiej struktury nie wymaga długiego czasu, wysokich temperatur, ani użycia komór próżniowych. To odróżnia nowy wynalazek od dotychczasowych technologii i oznacza długi czas działania membrany i zmniejszenie kosztów produkcji. Nowa błona bije więc dotychczasowe na głowę. Jak to działa? Nowa, „cudowna" membrana powstaje w trzech krokach. Najpierw przy użyciu konwencjonalnych metod tworzy się cieniutką błonę poliamidową. Następnie aktywizuje się jej powierzchnię przy pomocy plazmy pod ciśnieniem atmosferycznym, tworzą się na niej aktywne obszary. Wreszcie przy pomocy reakcji polimeryzacji „zaszczepia" się te aktywne obszary monomerem. Tworzy się na powierzchni polimerowa szczoteczka, której gęstość i inne parametry można łatwo zmieniać, kontrolując czas trwania i temperaturę operacji. Gdzie tu przełom? Poza samym pomysłem „szczotki", dotychczas obróbka powierzchni przy pomocy plazmy musiała być wykonywana w komorze próżniowej. To w praktyce uniemożliwiało masową produkcję, nie tylko ze względu na koszty, ale także uciążliwość takiej operacji. Wykorzystanie plazmy przy normalnym ciśnieniu nie tylko umożliwi maszynową produkcję, ale eliminuje konieczność chemicznego zapoczątkowania reakcji - jak mówi Yoram Cohen, wykładowca UCLA, teraz staje się to proste jak przetarcie plazmową „szczotką". I można tak obrabiać niemal każdą powierzchnię. Jak to działa w praktyce? Przytwierdzone chemicznie do powierzchni membrany polimerowe „włoski" pozostają w ciągłym ruchu. To sprawia, że bakterie i koloidalne zanieczyszczenia nie mogą się osadzić na powierzchni membrany. Kto nurkował, widział jak wodorosty poruszają się wraz z falującą wodą - mówi Cohen. - Wyobraźcie sobie taką miniaturową strukturę, proteiny i bakterie potrzebują zakotwiczenia w wielu miejscach, żeby się osadzić na powierzchni, to zadanie wyjątkowo trudne, kiedy powierzchnia „szczotki" bez przerwy się porusza. Polimerowa warstwa chroni i kryje powierzchnię samej membrany, gdzie zanieczyszczenia nie mogą sięgnąć. Dodatkową ochroną membrany są jej właściwości chemiczne, które zapobiegają adhezji, czyli przyciąganiu cząsteczek. Teraz zespół badawczy, wraz z UCLA Water Technology Research Center i przedstawicielami przemysłu pracuje nad wykorzystaniem tego procesu na skalę przemysłową, optymalizacją działania membrany i dostosowaniem jej do wody o różnym stopniu zasolenia i odmiennych typach zanieczyszczenia. Stwarza to nadzieję, że wynalazek już niedługo ułatwi życie wielu ludziom.
  3. Naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) donoszą, że efektywność kolonoskopii zależy od pory dnia, podczas której wykonuje się badanie. Okazało się, że im wcześniejsza godzina, tym więcej nieprawidłowości można wykryć. Liczba wykrytych polipów zmniejsza się wraz z upływem dnia. Wyniki badań zostały opublikowane w piśmie Clinical Gastroeterology. "Nasze badania zostały przeprowadzone w instytucji akademickiej, której wyposażenie i jakość badań znacząco przewyższają wymagania stawiane przed standardową pracownią wykonującą kolonoskopię. Skoro więc różnice zauważono w tak wyspecjalizowanym centrym akademickim, to prawdopodobnie będą one widoczne też w innych miejscach w całym kraju" - powiedział doktor Brennan M.R. Spiegel, autor badań i dyrektor UCLA/Veterans Affairs Center for Outcomes Research and Education. Kolonoskopia to jedyny sposób by wykryć i usunąć polipy w całej okrężnicy. To niezwykle ważne badanie, gdyż wykazano, że usunięcie polipów zmniejsza ryzyko raka jelita grubego o 60-90 procent, a z kolei choroba ta jest drugim najbardziej śmiertelnym nowotworem w USA. Naukowcy z UCLA przyjrzeli się historiom chorób 477 pacjentów poddanych kolonoskopii w ciągu roku w jednym ze szpitali. Odkryli, że badania przeprowadzone rano, nie później niż o godzinie 8.30, wykrywały średnio więcej o 0,19 polipa i 0,17 polipa zmieniającego się w złośliwego guza niż badania wykonywane później. Wraz z upływem dnia liczba znalezionych polipów spadała. Co prawda związane z tym ryzyko jest, jak widać niewielkie w przypadku pojedynczego pacjenta, jednak, jak zauważa doktor Spiegel, w przypadku całej populacji jest to już znaczący problem. Pominięcie polipów u tysięcy czy dziesiątków tysięcy pacjentów oznacza, że u części z nich rozwinie się nowotwór. Naukowcy nie wiedzą, dlaczego późniejsza kolonoskopia daje gorsze rezultaty. Częściowo może chodzić tutaj o lepsze przygotowanie jelita do badań po nocy. Niewykluczone, że, podobnie jak ma to miejsce w innych specjalnościach, w miarę upływu dnia lekarz jest coraz bardziej zmęczony, a więc i mniej dokładny. Spiegel mówi, że rozwiązaniem problemu może być nałożenie na lekarzy ograniczeń jeśli chodzi o liczbę dokonywanych kolonoskopii. Po jakimś czasie powinni się oni zajmować innymi procedurami medycznymi.
  4. W jaskiniach gier hazardowych ludzie bardziej koncentrują się na traconych większych sumach niż na dużych wygranych. Posługując się funkcjonalnym rezonansem magnetycznym (fMRI), badacze z UCLA przyglądali się aktywności mózgu podczas obstawiania zakładów. Uczestnicy eksperymentu otrzymywali 30 dolarów. Następnie pytano ich, czy zgadzają się zagrać w każdą z 250 różnych gier, w których szanse na wygraną wynoszą 50% (np. czy przystają na rzut monetą, w wyniku którego mogą wygrać 30, a przegrać 20 dolarów). Każdą grę badani mogli całkowicie zaaprobować, zaaprobować w niewielkim stopniu, słabo odrzucić bądź też odrzucić całkowicie. Okazało się, że zazwyczaj ludziom trzeba było najpierw zagwarantować 50-proc. szanse na podwojenie danej sumy, by wyrazili chęć obstawiania. Przyglądając się jedynie aktywności mózgu podczas podejmowania decyzji, czy obstawiać, czy nie, naukowcy wiedzieli, jak ostatecznie zachowa się uczestnik eksperymentu. Osoby, które wykazują relatywnie większą wrażliwość neuronalną na stratę niż na wygraną, podchodzą do hazardu niechętnie. Dzieje się tak do momentu, aż poczują, że ich szanse na wygraną znacznie wzrosły. Największą skłonność do hazardu wykazują natomiast ludzie podobnie neurologicznie wrażliwi tak na wygraną, jak i na stratę — tłumaczy Craig Fox z zespołu badawczego. Ci ostatni rozgrzewali się, gdy wzrastały stawki, tych pierwszych mobilizowało zwiększenie wygranych i strat (Science). Studium ujawniło ponadto, że badani silniej reagowali na potencjalną stratę niż na wygraną. Podczas obrazowania mózgu okazało się, iż na wieść o możliwej wygranej aktywacji ulegał obszar pobudzany również w czasie zażywania kokainy, jedzenia czekolady czy przyglądania się pięknej twarzy — podsumowuje Russell Poldrack. Ośrodki nagrody włączane przez wizję zdobycia pieniędzy wygaszały się na wieść o stracie. Mózg większości osób zareaguje silniej, słysząc o możliwości przegrania 100 dol., a nie o studolarowej wygranej. Zgodnie z wynikami wcześniejszych badań, ludzie są nastawieni do ryzyka raczej awersyjnie. Oznacza to, że ważąc "za" i "przeciw" odnośnie do jakiegoś działania w przyszłości, będą się bardziej koncentrować na minusach. Tendencja ta wykracza daleko poza hazard. Kobieta tkwiąca w nieszczęśliwym związku nie odchodzi, na przykład, do momentu, kiedy jej perspektywy na życie bez partnera nie stają się dużo lepsze od aktualnej sytuacji — zauważa szefowa ekipy naukowców Sabrina Tom.
  5. Naukowcy z dwóch sławnych kalifornijskich uczelni – Politechniki Kalifornijskiej (Caltech) oraz Uniwersytetu Kalifornijskiego z Los Angeles (UCLA) – opracowali rekordowo gęsty układ pamięci. W pojedynczej komórce można przechować 160 kilobitów danych. Gęstość kości wynosi 100 gigabitów na centymetr kwadratowy, a uczeni informują, że możliwe jest jej zwiększenie do 1000 gigabitów na cm2. Nowa technologia nieprędko jednak zagości w naszych domach. Jak mówi szef zespołu badawczego, profesor chemii James Heath, w tej chwili chcemy się po prostu nauczyć, jak produkować działające obwody elektroniczne w skali molekularnej. Sukces amerykańskich naukowców oznacza, że ważność prawa Moore'a (sformułowane w 1965 roku przez Gordona Moore'a, współzałożyciela Intela, głosi, że liczba tranzystorów w układzie scalonym podwaja się co 18-24 miesiace) zostanie przedłużona do roku 2020. Dotychczasowe postępy techniki wskazywały, że straci ono ważność około 2013 roku. Wspomniane 160 000 bitów w komórce ułożonych jest na czymś, co przypomina kratę. Składa się ona z 400 silikonowych kabli, które przecinają 400 kabli tytanowych. Pomiędzy krzyżującymi się kablami umieszczono warstwę molekularnych przełączników. Każde skrzyżowanie reprezentuje 1 bit. Szerokość takiego bita wynosi zaledwie 15 nanometrów, czyli 1/10 000 grubości ludzkiego włosa. Dla porównania, analogiczny element w obecnie stosowanych najgęstszych układach ma szerokość 140 nm. Każdy z molekularnych przełączników, zwany rotaksanem, składa się z dwóch elementów: molekularnego pierścienia, który obejmuje molekułę w kształcie sztangi. Pierścień umieszczony jest na "gryfie” sztangi. Przełączanie powoduje zmianę położenia pierścienia, który przesuwa się raz bliżej jednej, raz drugiej, strony molekuły. Zmiana pozycji pierścienia powoduje zmianę przewodnictwa całego przełącznika. W ten sposób właśnie reprezentowane są wartości 0 i 1.
×
×
  • Dodaj nową pozycję...