Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'mózg' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 419 wyników

  1. Badacze z Uniwersyteckiego College'u Londyńskiego zidentyfikowali w mózgu obwód nienawiści. Gdy pokazywali ochotnikom zdjęcia znienawidzonych osób, pojawiały się unikatowe wzorce aktywności (PLoS One). W eksperymencie wzięło udział 17 kobiet i mężczyzn. Twarz kogoś nielubianego demonstrowano im w otoczeniu trzech znajomych, ale neutralnych emocjonalnie fizjonomii. Znienawidzeni ludzie byli eks-kochankami czy rywalami z pracy, czyli osobami z najbliższego otoczenia, a tylko w jednym przypadku podano imię i nazwisko znanego polityka. Obwód nienawiści obejmował ośrodki rozsiane po różnych obszarach mózgu. Włączał się on podczas oglądania przebrzydłej fizjonomii. Na ile możemy stwierdzić, jest on charakterystyczny dla uczucia nienawiści, mimo że poszczególne rejony uaktywniają się też w innych okolicznościach, niezwiązanych zupełnie z nienawiścią. W skład obwodu wchodzą ośrodki korowe i podkorowe - tłumaczy profesor Semir Zeki. Jeden z nich odpowiada za przewidywanie zachowań innych ludzi, a to przecież umiejętność, która przydaje się na wypadek kontaktu z wrogiem. Aktywność odnotowywano też w obrębie skorupy (części prążkowia) i wyspy. Obszary te rozświetlają się podczas oglądania twarzy ukochanej osoby, ale także wiążą się z agresją i uczuciem dyskomfortu. Brytyjczycy uważają, że odkrycie to tłumaczy, dlaczego miłość i nienawiść dzieli tak niewiele. To na tyle, jeśli chodzi o podobieństwa, ponieważ w porównaniu do nienawiści, spora część kory ulega u zakochanych "wyłączeniu". Naukowcy sądzą, że choć obie emocje wiążą się z dużą namiętnością, zakochani są mniej krytyczni w stosunku do partnera. Osoby znienawidzonej nie można zaś zlekceważyć, bo skutki takiej lekkomyślności mogą być opłakane.
  2. Zaburzenia pamięci u osób z demencją, np. chorobą Alzheimera, można zmniejszyć, wpływając na mózgowe stężenie kwasu arachidonowego (AA), wielonienasyconego kwasu tłuszczowego typu omega-6. Badacze z Uniwersytetu Kalifornijskiego w San Francisco przeprowadzili eksperymenty na myszach. Poziom kwasów tłuszczowych zdrowych gryzoni porównywano z ich odpowiednikiem u zwierząt, które po manipulacji genetycznej były skazane na alzheimeryzm. W mózgach osobników z drugiej grupy, a konkretnie w ich hipokampach, stwierdzono podwyższone stężenie kwasu arachidonowego i jego metabolitów. Ponieważ jego wydzielanie jest kontrolowane przez enzym PLA2, Amerykanie po raz drugi skorzystali ze zdobyczy inżynierii genetycznej. Okazało się, że nawet częściowe zmniejszenie stężenia AA zahamowywało proces pogarszania pamięci i dawało zauważalną poprawę zachowania. Dr Lennart Mucke, szef zespołu badawczego, podkreśla, że na poziom kwasów tłuszczowych w organizmie można wpływać za pomocą diety lub leków. Wszystko wskazuje też na to, że inhibicja działania PLA2 prowadzi do poprawy funkcjonowania pacjentów z chorobą Alzheimera.
  3. Naukowcy udowodnili, że możliwe jest przesyłanie impulsów z mózgu bezpośrednio do kończyn, z pominięciem kręgosłupa. To nadzieja dla osób, które po urazach kręgosłupa nie są w stanie poruszać kończynami. Uczeni z University of Washington użyli swojego "interfejsu mózgowo-maszynowego" na tymczasowo sparaliżowanej małpie. Urządzenie, wielkości telefonu komórkowego, interpretuje sygnały z mózgu i zamienia je na sygnały elektryczne, pobudzające mięśnie rąk. Wykazano, że po założeniu blokady na kręgosłup zwierzęcia i wykonaniu połączenia pomiędzy mózgiem a ramionami, małpa była w stanie kurczyć mięśnie. To pierwszy krok w kierunku bardziej skomplikowanych ruchów, jak chwytanie kubka czy naciskanie guzika. Główny autor badań, doktor Chet Moritz, uważa że uda się tak przystosować jego urządzenie, by w przyszłości sparaliżowani odzyskali władzę w kończynach. Przy okazji odkryto, że małpy są w stanie nauczyć każdą z komórek nerwowych kory motorycznej by zawiadowała ruchem mięśni. Nie muszą być to te komórki, które zwykle za to odpowiadają. Minie prawdopodobnie kilkadziesiąt lat, zanim podobne techniki trafią do powszechnego użytku. Urządzenie zostało przetestowane na zwierzęciu, które w rzeczywistości nie miało uszkodzonego kręgosłupa. Nie wiadomo też, czy sprawdzi się ono u człowieka. Ponadto działa ono tylko w jedną stronę, od mózgu do kończyny. Do prawidłowego ruchu konieczna jest informacja zwrotna do mózgu.
  4. Surfowanie po Internecie jest dla mózgu dorosłych w średnim i podeszłym wieku lepsze od czytania książek. Siłę oddziaływania Sieci można porównać do skuteczności rozwiązywania krzyżówek i układania puzzli. Przeglądanie stron WWW stymuluje większe obszary mózgu niż uznawane za stosunkowo bierną czynność czytanie (American Journal of Geriatric Psychiatry). Pobudzenie wywoływane przez Internet było tak duże i złożone, że Amerykanie uznali, że stały kontakt z nim jest świetnym sposobem na podtrzymywanie bystrości umysłu do późnych lat życia. Jednym słowem zespół doktora Gary'ego Smalla z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) wykazał, że korzystanie ze zdobyczy technologicznych ostatnich czasów pociąga za sobą skutki natury fizjologicznej. Gdy badani w średnim i zaawansowanym wieku surfowali po Internecie, pobudzeniu ulegały centra mózgowe związane z podejmowaniem decyzji i skomplikowanym wnioskowaniem. W eksperymencie Kalifornijczyków wzięły udział 24 osoby ze zdrowym mózgiem w wieku od 55 do 76 lat. Połowa zetknęła się już wcześniej z Siecią, połowa nie miała w tej dziedzinie żadnych doświadczeń. W ten naturalny sposób wyodrębniono dwie grupy, dopasowane pod względem wieku, wykształcenia oraz płci. Członkowie obu zarówno szukali czegoś w Internecie, jak i czytali. W tym czasie wykonywano im funkcjonalny rezonans magnetyczny (fMRI). U wszystkich 24 ochotników podczas czytania odnotowano wzmożoną aktywność mózgu – uaktywniały się rejony odpowiadające za funkcje językowe, pamięć i umiejętności wzrokowe (znajdują się one w płatach skroniowym, ciemieniowym i potylicznym). Surfowanie po Sieci ujawniło jednak bardzo istotną różnicę między grupami. Podczas gdy u wszystkich aktywowały się obszary wzbudzane przez czytanie, u osób obeznanych z Internetem uruchamiały się dodatkowo rejony w płatach czołowym i skroniowym oraz okolicach zakrętu obręczy, które odpowiadają za podejmowanie decyzji i wnioskowanie. Co ciekawe, zjawisko występowało tylko u ludzi przeglądających wcześniej strony WWW. W porównaniu do niezaangażowanych technologicznie rówieśników, podczas kontaktu z Siecią aktywność ich mózgu wzrastała 2-krotnie silniej. Korzystanie z Internetu wymaga stałego decydowania, gdzie kliknąć, aby uzyskać odpowiednie informacje. Podczas czytania odwraca się po prostu kolejne kartki, można plastycznie wyobrażać sobie opisane sceny, ale cały proces decyzyjny ogranicza się do dylematu: zamknąć już książkę czy też "wgryźć się" w kolejny rozdział. Internetowi nowicjusze nie mają jeszcze wypracowanych strategii, które ułatwiają poruszanie się po cyfrowych zasobach. Stąd zaobserwowane różnice.
  5. Mózg przetwarza znaczenie prezentów i innych symbolicznych gestów w obszarach związanych z mową (Brain and Language). Kristian Tylén i zespół z Uniwersytetu Południowej Danii doszli do tego po zbadaniu wolontariuszy funkcjonalnym rezonansem magnetycznym (fMRI). Zapoznawali się oni ze zdjęciami przedmiotów codziennego użytku, z których część ułożono w symboliczny sposób. Jedna z fotografii przedstawiała np. kwiaty zostawione pod czyimiś drzwiami. Inne nie miały już takiego znaczenia, bo widniały na nich m.in. dziko rosnące kwiaty. Symboliczne ułożenie wyzwalało aktywność w lewym zakręcie wrzecionowatym, który wykorzystujemy podczas czytania, oraz dolnej korze czołowej, powiązanej ze znaczeniem semantycznym. Niekonwencjonalne ustawienia, np. instalacje artystyczne, też są analizowane nie tylko wzrokowo. By je wychwycić, uciekamy się do pomocy obszarów językowych, w tym przypadku rejonu zaangażowanego w zrozumienie niezwykłych metafor słownych. Tylén podkreśla, że zgodnie z wynikami najnowszych badań, język to nie tylko proces przetwarzania i zestawiania słów. Przenika on wiele naszych czynności, np. umożliwia zrozumienie czyjejś mowy ciała i min.
  6. Pięćdziesięciosześcioletni David F. Savage kilkadziesiąt lat temu stracił dominującą prawą rękę podczas obsługi prasy mechanicznej. Od 35 posługiwał się protezą, mimo to po przeszczepie odzyskał częściowo czucie (Current Biology). Gdy wykonano mu funkcjonalny rezonans magnetyczny (fMRI), okazało się, że podczas stukania w dłoń aktywują się te same rejony kory czuciowej, co u zdrowych osób. Różnym fragmentom kory czuciowej można przypisać poszczególne części ciała, np. twarz, brzuch czy kolejne palce dłoni. Jeśli któryś z elementów, np. ręka, znika, kora związana z jego reprezentacją jest anektowana przez inne rejony. Po utracie dłoni powiększa się np. obszar przeznaczony na reprezentację twarzy – tłumaczy Scott Frey, neurolog z Uniwersytetu Oregonu. Po operacji Savage'a nowa ręka szybko odebrała jednak zawłaszczony kiedyś przez twarz fragment kory. Wygląda więc na to, że nie docenialiśmy możliwości mózgu w zakresie przywracania starego porządku czy mapy ciała, nawet jeśli pewien układ bodźców nie pojawiał się przez bardzo długi czas. Po 4 miesiącach od przeszczepu lekarze przeprowadzili mały eksperyment. Oprócz Savage'a wzięło w nim udział 4 innych mężczyzn. Prawą dłoń muskano szorstką gąbką. Kora czuciowa 56-latka rozświetlała się w tym samym miejscu, co u pozostałych ochotników. Przed przeszczepem rejon ten uaktywniał się po potarciu policzka, po operacji już się tak jednak nie działo. Amerykanie sądzą, że mózg tak naprawdę nigdy nie utracił łączności z prawą dłonią. Angela Sirigu z Institute of Cognitive Neuroscience w Lyonie, dodaje, że proces reprogramowania mapy ciała zachodzi stopniowo. Jej zespół badał reakcje mózgu tuż po operacji i po upływie 3 miesięcy. Na początku reprezentacje twarzy i nowej ręki ze sobą konkurowały, potem wszystko się unormowało.
  7. Radioaktywny jad skorpiona przechodzi właśnie testy kliniczne w roli lekarstwa na nowotwory, w tym złośliwe guzy mózgu. Naukowcy z firmy TransMolecular zauważyli, że po wstrzyknięciu do organizmu nietoksyczny ekstrakt z jadu wyszukuje wadliwe komórki i się z nimi wiąże. Wcześniejsze napromieniowanie cząsteczek powoduje, że radioterapia prowadzona jest od środka, a nie z zewnątrz przez naświetlanie, w dodatku obejmuje wyłącznie chore komórki. Związkiem ekstrahowanym z jadu skorpiona Leiurus quinquestriatus jest białko. Odrzuca się zaś neurotoksyny, przez które zwierzę zostało owiane atmosferą złej sławy. Sprawiają one bowiem, że mieszkaniec Bliskiego Wschodu dysponuje drugim pod względem siły działania jadem wśród skorpionów. Podczas eksperymentów laboratoryjnych peptyd skutecznie niszczył komórki nowotworów piersi, skóry, mózgu i płuc, nie uszkadzając przy tym zdrowej tkanki. Wygląda to tak, jakby guzy zbierały szkodliwą dla nich substancję – wyjaśnia Michael Egan. Na początku nie było wiadomo, czy białko będzie w stanie dostarczyć do guza odpowiednią dawkę promieniotwórczego pierwiastka. By się o tym przekonać, zespół badaczy związał je z izotopami jodu. W zeszłym roku onkolodzy wstrzyknęli taki "koktajl" 59 osobom z nieoperowalnymi guzami mózgu. Do teraz wszyscy zmarli, ale pacjenci z najwyższą dawką żyli średnio o 3 miesiące dłużej. Niedawno eksperci z Uniwersytetu w Chicago zaczęli wprowadzać białko do krwioobiegu chorych z różnymi typami złośliwych nowotworów mózgu. W ten sposób Amerykanie będą mogli sprawdzić, czy testowana substancja zabije zarówno pierwotne ogniska, jak i przerzuty.
  8. Dojrzewanie mózgu płodu jest zależne od stymulacji przez matkę - informują niemieccy naukowcy. Do rozwoju centralnego układu nerwowego potrzebna jest proteina przekazywana za pośrednictwem łożyska przez krew. Odkrycie było możliwe dzięki wcześniejszemu zidentyfikowaniu peptydu (tzn. struktury podobnej do białek, lecz złożonej z mniejszej liczby cząsteczek budulcowych - aminokwasów) w mózgu dojrzewającego płodu. Molekuła ta, nazwana Y-P30, ma charakter cząsteczki sygnałowej i promuje przetrwanie neuronów w części mózgu zwanej wzgórzem u dojrzewającego w macicy organizmu. Dalsze badania odkrytego związku, wykonane właśnie przez Niemców, wykazały, że jest on syntetyzowany przez jedną z populacji komórek odpornościowych matki, nie zaś przez sam płód, jak wcześniej sądzono. Po wydzieleniu do matczynej krwi jest on przekazywany do łożyska, czyli miejsca wymiany składników krwi pomiędzy matką i płodem, a następnie trafia do dojrzewającego mózgu. Jak każda substancja sygnałowa, Y-P30 oddziałuje na organizm za pośrednictwem receptora, czyli białka zdolnego do jego wykrycia. W przypadku odkrytego peptydu receptorami okazały się być dwie molekuły: należące do przestrzeni międzykomórkowej białko plejotropina oraz proteoglikany należące do grupy syndekanów, wbudowane w błonę komórkową neuronów. Dalsze badania wykazały, że Y-P30 ułatwia wzajemne wiązanie obu swoich receptorów i dopiero powstały trójelementowy kompleks promuje przetrwanie komórek wzgórza. Dotychczas wiadomo było jedynie, że syndekan i plejotropina oddziałują na siebie, lecz szczegółowy mechanizm tej interakcji nie był znany. Teraz wiemy, że połączenie trzech związków utrzymuje przy życiu komórki nerwowe, a także stymuluje powstawanie aksonów, czyli wypustek służących do komunikacji z innymi neuronami. Odkrycie Niemców może mieć niebagatelne znaczenie dla badań nad fizjologią człowieka. Być może pozwoli ono także na korygowanie niektórych wad wrodzonych związanych z nieprawidłową budową lub funkcjonowaniem układu nerwowego.
  9. Zanim usłyszymy ostateczne brzmienie wyrazu, nasz mózg rozważa wszystkie możliwe słowa i ich znaczenie. Twórcy wcześniejszych teorii utrzymywali, że odbiorca jest w stanie nadążyć za tempem mówiącego (do 5 sylab na sekundę), tworząc na bieżąco małe zestawy spośród ogółu znanych sobie słów. Takie podzbiory składać się mają ze wszystkich wyrazów zaczynających się od tej samej frazy, np. katolik, katar, katorżnik. Wg naukowców, to skuteczniejsza strategia niż oczekiwanie na wypowiedzenie wszystkich głosek. Przeszukiwanie małego podzbioru jest łatwiejsze od dopasowywania gotowego wyrazu do wielotysięcznego słownika. Do tej pory nie wiedziano jednak, czy mózg uwzględnia tylko brzmienie, czy także znaczenie branych pod uwagę słów. By to rozstrzygnąć, akademicy z University of Rochester posłużyli się funkcjonalnym rezonansem magnetycznym (fMRI). Początkowo badacze myśleli, że wybrana technika będzie za wolna, gdyż poszczególne "ujęcia" to kwestia kilku sekund, a ludzie generują zestawy słów pomiędzy poszczególnymi sylabami, czyli dosłownie w okamgnieniu. Na szczęście wszystko poszło jak z płatka. Naukowcy skupili się na polu V5 kory wzrokowej. Obszar ten odpowiada za ogólne postrzeganie ruchu w polu widzenia oraz jego kierunku. Zaangażowali się w radosne słowotwórstwo i wymyślili zestaw wyrazów, z których część wiązała się w jakiś sposób z ruchem. Amerykanie zrezygnowali z prawdziwych angielskich słów, ponieważ mają one za wiele znaczeń. Założyli, że słowo przypominające wyraz "ruchowy" zwiększy przepływ krwi w polu V5. Uwzględnione wyrazy zaczynały się od tej samej sylaby, miały jednak różne zakończenia i znaczenia. Badacze napisali program komputerowy, który wyświetlał nieregularne kształty z podpisami, np. goki. Zespół stworzył nie tylko rzeczowniki, ale także czasowniki. "Biduko" oznacza, że figura będzie się przesuwać po ekranie, a "biduka", że nie zmieni swojego położenia, a jedynie kolor. Gdy studenci opanowali zestaw nowych wyrazów, umieszczono ich w skanerze fMRI. Ochotnicy widzieli na monitorze kształt i słyszeli "biduko" albo "biduka". Mimo że tylko jedno ze słów oznacza ruch, pole V5 aktywowało się w obu przypadkach (przy słowie na określenie zmiany koloru nieco słabiej). Aktywacja wywołana przez wyraz biduka wskazuje, że przez ułamek sekundy mózg rozważał obie możliwości. Ostatecznie odróżnił sylabę –ka od –ko i zarzucił związaną z ruchem interpretację. Amerykanie chcą w przyszłości rozbudować swój eksperyment. Zamierzają uwzględnić inne obszary, nie tylko V5, np. rejony reagujące tylko na specyficzny dźwięk albo na dotyk. Chcą też sprawdzić, jak mózg sortuje znaczenia, kiedy musi uwzględnić składnię lub kontekst rozmowy.
  10. Naukowcy z Massachusetts Institute Technology próbują dowiedzieć się, jak to się dzieje, że potrafimy rozpoznawać obiekty. Ich prace mogą posłużyć do stworzenia maszyn widzących w sposób podobny jak ludzie. Widzenie i rozpoznawanie przedmiotów to dla nas umiejętności tak oczywiste, że w ogóle się nad nimi nie zastanawiamy. Tymczasem są to bardzo skomplikowane mechanizmy. Wystarczy uświadomić sobie, że nigdy nie widzimy dwukrotnie tego samego obrazu. Przedmioty, ludzi i zwierzęta oglądamy w coraz to nowych sytuacjach, pod innym kątem, przy zmieniającym się oświetleniu. A mimo to potrafimy je rozpoznać. Ta stabilność, niezmienność to podstawa umiejętności rozpoznawania obiektów - mówi James Di Carlo z McGovern Institute for Brain Research w MIT. Chcemy dowiedzieć się, w jaki sposób mózgowi udało się osiągnąć tę stabilność i jak możemy ją zaimplementować w systemach komputerowych - dodaje. Jedno z możliwych wyjaśnień jest takie, że w ciągu sekundy następują trzy niewielkie ruchy gałek ocznych. Tymczasem obiekty fizyczne poruszają się dość wolno. Oczy rejestrują więc "klatki" z obrazami danego obiektu, a mózg uznaje, że seria następujących po sobie "zdjęć" przedstawia ten sam obiekt i dlatego potrafimy go rozpoznać. Już wcześniej zespół DiCarlo przeprowadził ciekawy eksperyment, który potwierdziałby teorię "serii zdjęć". Badanym wyświetlano przedmiot peryferiach pola widzenia. Gdy oczy zaczynały się poruszać tak, żeby znalazł się on w centrum pola widzenia, przedmiot zamieniano na inny. Badani świadomie nie byli w stanie zarejestrować zmiany, jednak okazało się, że po pewnym czasie mylili oba przedmioty. Może to świadczyć o tym, że mózg, do którego trafiała "seria zdjęć" dwóch różnych przedmiotów, uznawał je za jeden. Ostatnio profesor DiCarlo przeprowadził kolejny eksperyment, tym razem na małpach. Naukowcy zbierali sygnały dobiegające z dolnej kory skroniowej w której najprawdopodobniej znajduje się ośrodek "stałości wzrokowej". Neurony tej kory mają swoje preferencje i reagują na "ulubiony" przedmiot niezależnie od tego, w którym miejscu pola widzenia się on znajduje. Najpierw zidentyfikowaliśmy obiekt, który neuron preferował - na przykład żaglówkę - oraz taki, który mniej 'lubił' - na przykład filiżankę herbaty - opowiada magistrant Nuo Li. Gdy w różnych miejscach pola widzenia wyświetlaliśmy żaglówkę, oczy małpy w naturalny sposób przemieszczały się tak, by znalazła się ona w centrum. Jedno z miejsc w polu widzenia wybraliśmy jako punkt, w którym będziemy małpę 'oszukiwać'. Najpierw wyświetlaliśmy tam żaglówkę, a gdy oczy zaczynały się poruszać, zmienialiśmy ją na filiżankę herbaty - mówi. Badania wykazały, że po serii takich "oszustw" neurony małp zareagowały tak samo, jak neurony ludzi z poprzednich badań - straciły orientację co do przedmiotu. Neuron, który "lubił" żaglówki nadal je preferował we wszystkich punktach pola widzenia, z wyjątkiem tego jednego, w którym pokazywano mu filiżankę herbaty. Akurat w tym miejscu zaczął preferować filiżankę herbaty. Im dłużej trwały eksperymenty, tym silniejsza była zmieniona preferencja. Co ważne, naukowcy w żaden sposób nie wpływali na preferencje małp. Zwierzęta mogły swobodnie wędrować wzrokiem po całym ekranie, na którym pokazywano obrazki. Byliśmy zdumieni efektywnością uczenia się neuronów, szczególnie po 1- lub 2-godzinnym treningu - mówi DiCarlo. Wydaje się, że nawet u dorosłych system rozpoznawania obiektów bez przerwy się uczy na podstawie doświadczenia. Jeśli weźmiemy pod uwagę fakt, że w ciągu roku oczy człowieka wykonują około 100 milionów ruchów, to ten właśnie mechanizm może być podstawą naszych umiejętności łatwego rozpoznawania obiektów - dodaje profesor.
  11. Javier DeFelipe i zespół z Universidad Complutense w Madrycie postanowili przeliczyć liczbę synaps w określonym regionie mózgu kobiet i mężczyzn. Jak łatwo się domyślić, dość znacznie się ona różniła, a neurolodzy sądzą, że to jedna z wielu przyczyn, dla których płcie tak odmiennie podchodzą do rozmaitych wyzwań intelektualnych (Proceedings of the National Academy of Sciences). Średni iloraz inteligencji kobiet i mężczyzn jest taki sam, choć różnią się zarówno rozmiary mózgu, jak i gęstość upakowania neuronów. Mózg mężczyzny jest o ok. 9% większy, a neurony kobiet muszą być bardziej ściśnięte, bo ogranicza je drobniejsza niż u samców czaszka. Hiszpanie skupili się na wycinkach pobranych z lewego płata skroniowego 4 kobiet i 4 mężczyzn z padaczką. Była to zdrowa tkanka, którą jednak trzeba było usunąć, żeby dostać się do umiejscowionych głębiej uszkodzonych rejonów. Neurony z wybranego do analiz miejsca wyspecjalizowały się w przetwarzaniu bodźców społeczno-emocjonalnych. Okazało się, że u mężczyzn występuje o 52% więcej synaps na warstwę. Na razie nie wiadomo, jakie efekty wiążą się ze zwiększoną gęstością synaptyczną. Ekipa DeFelipe podejrzewa, że istnieją rejony, gdzie z kolei kobiety przewyższają panów pod względem liczby połączeń między neuronami. Inna gęstość synaps to zapewne inny układ połączeń, co wpływa na przebieg analizy danych w danym obwodzie neuronalnym.
  12. Kanadyjczycy nie polecają korzystania z plastikowych pojemników na żywność. Zawierają one bisfenol A (BPA), który, wg nich, może odpowiadać za gorsze działanie mózgu w zakresie pamięci i uczenia się. Nie wykluczają też, że ma on swój udział w chorobie Alzheimera, schizofrenii czy depresji. BPA wykorzystuje się przy produkcji plastikowych butelek na napoje, butelek do karmienia dzieci, pojemników na żywność, a nawet protez. Naukowcy z Uniwersytetu Guelph odkryli, że bisfenol A przenika do stałych lub płynnych pokarmów przechowywanych w plastiku. Gdy zostają one zjedzone, BPA zaburza komunikację między neuronami, bez czego niemożliwe staje się prawidłowe zapamiętywanie czy rozumienie. Jak wyjaśnia szef zespołu Neil MacLusky, niewielkie dawki bisfenolu, który stale dostaje się do organizmu, zaburzają tworzenie się synaps w rejonach kluczowych dla uczenia. W ramach eksperymentu naukowcy przez miesiąc karmili werwety z wyspy Saint Kitts na Morzu Karaibskim żywnością przechowywaną w pojemnikach z bisfenolem. Zaobserwowano spowolnienie działania synaps. Wg Kanadyjczyków, bisfenol A oddziałuje na estrogen, a ten z kolei [...] wpływa na tempo, w jakim tworzą się synapsy określonego rodzaju, poza tym odpowiada za utrzymywanie normalnego kształtu neuronów w obszarach mózgu kontrolujących uczenie, pamięć oraz nastrój.
  13. Czemu tak trudno upolować muchę? Badacze z California Institute of Technology (Caltech) uważają, że dzieje się tak za sprawą szybko reagującego mózgu owada oraz jego zdolności do planowania zawczasu (Current Biology). Jednym słowem: mózg latającego przeciwnika jest zaprogramowany od urodzenia w taki sposób, by unikać pacnięć, klaśnięć i innych zamaszystych ruchów myśliwego... Nagrania w wysokiej rozdzielczości ujawniły, że owady błyskawicznie orientują się, skąd nadchodzi cios i opracowują plan ucieczki. Inżynierowie podpowiadają, że najlepszym sposobem na przechytrzenie muchy jest powolne podkradanie się, a nawet zastyganie w bezruchu i przewidywanie zmian trajektorii jej lotu. Człowiek przeprowadza atak w ciągu zaledwie 200 milisekund, ale to wystarczy, by mucha go zlokalizowała i aktywowała odpowiedni zestaw ruchów, by wypozycjonować nogi i skrzydła. To pokazuje, jak szybko mózg muchy przetwarza informacje zmysłowe i przygotowuje odpowiednią do okoliczności reakcję ruchową – twierdzi Michael Dickinson. Amerykanie prowadzili eksperymenty na muszkach owocowych. Próbowali w nie trafić łapką, wszystko utrwalając na filmie. Gdy zagrożenie pojawiało się z przodu, owad wysuwał środkową parę odnóży ku przodowi, nachylał się do tyłu i unosił tylne nogi, by wystartować ruchem wstecznym. Jeśli myśliwy z packą pojawiał się z boku, owad równie sprytnie wyginał się przed startem, przenosząc środek ciężkości i ostatecznie bez wysiłku unikał zagrożenia. Bioinżynierowie oceniają, że ustawienia przedstartowe zajmują musze zaledwie ok. 100 milisekund. Dlatego lepiej nie zaczajać się na nią, gdy siedzi. Odkryliśmy, że gdy mucha planuje ruchy przed wzniesieniem, uwzględnia swoją pozycję w momencie pierwszego dostrzeżenia zagrożenia. Nasze eksperymenty wykazały, że owad skądś wie, czy potrzeba większych, czy subtelniejszych zmian postawy. Musi więc integrować dane z oczu [...] z informacjami mechaniczno-czuciowymi z nóg. Muchy "zbierają się" do lotu błyskawicznie, bez względu na to, co w danym momencie robią: jedzą, dbają o higienę czy chodzą. Dickinson zaznacza, że wskazuje to na niespodziewaną złożoność mózgu owada.
  14. Powszechnie wiadomo (i potwierdzają to badania), że u osób niewidomych pozostałe zmysły znacznie się wyostrzają. Dotychczas nie było jednak wiadomo, jak do tego dochodzi. Badacze z Beth Israel Deaconess Medical Center (BIDMC) uchylili rąbka tajemnicy dzięki interesującemu eksperymentowi. Przeprowadzone doświadczenie wyjaśnia częściowo mechanizm kompensacji utraconej zdolności widzenia, lecz także dowodzi, że proces ten zachodzi bardzo szybko i jest odwracalny. Jak tłumaczy dr Alvaro Pascual-Leone, jeden z autorów badania, zdolność mózgu do reorganizacji jest znacznie większa, niż dotychczas sądzono. W naszym badaniu wykazaliśmy, że nawet u osoby dorosłej część mózgu odpowiedzialna za widzenie szybko dostosowuje się do przetwarzania [informacji o] dotyku w reakcji na całkowitą utratę zdolności widzenia. Szybkość i dynamiczna natura zaobserwowanych zmian sugeruje, że dzieje się to nie dzięki tworzeniu nowych połączeń nerwowych, które zajmowałoby znaczną ilość czasu, lecz dzięki prezentowaniu przez korę wzrokową nowych zdolności, które są ukryte, gdy wzrok jest sprawny. W jednym z poprzednich badań naukowcy z BIDMC udowodnili, że osoby, którym zasłoni się oczy, już po pięciu dniach znacznie skuteczniej odczytują tekst zapisany alfabetem Braille'a. Wykonane później testy wykazały, że ich kora mózgowa przeszła znaczne zmiany. Badacze podążyli tym tropem i postanowili okreslić naturę tych zmian. Do badania zaproszono 47 ochotników. Połowie z nich zasłonięto całkowicie oczy na pięć dni, pozostałym zaś - tylko na czas wykonywanych testów. Badani z obu grup uczyli się intensywnie (przez cztery do sześciu godzin dziennie) alfabetu Braille'a pod okiem instruktorów z Carroll Center for the Blind. Wykonano u nich także obrazowanie metodą funkcjonalnego rezonansu magnetycznego, pozwalające na określenie aktywności poszczególnych części mózgu. Eksperyment wykazał, że osoby, którym zasłonięto oczy na pięć pełnych dni, nie tylko radzą sobie znacznie lepiej z odczytywaniem informacji zapisanych alfabetem Braille'a, lecz także ich mózgi przeszły znaczną reorganizację. Ich kora wzrokowa wykazywała ogromną aktywność w reakcji na dotyk. Także jej pobudzanie metodą przezczaszkowej stymulacji magnetycznej (ang. transcranial magnetic stimulation - TMS) znacznie zakłócało możliwość odbioru informacji związanych z dotykiem, co dodatkowo potwierdza zmiany zachodzące w układzie nerwowym. Co ciekawe, już w 24 godziny po zakończeniu eksperymentu mózg uczestników eksperymentu wracał do normalnego trybu funkcjonowania. Jak ocenia dr Lotfi Merabet, główna autorka badania, ta wyjątkowo szybka adaptacja oznacza, że funkcje normalnie hamowane w obrębie kory wzrokowej zostają "wyciągnięte na powierzchnię", gdy zachodzi taka potrzeba. Dodaje: jesteśmy przekonani, że z czasem te funkcje zostają utrzymane i wzmocnione, prowadząc ostatecznie do trwałych zmian strukturalnych. Wykonany eksperyment podważa więc przekonanie niektórych badaczy o trwałym podziale funkcjonalnym mózgu na części o wyraźnej specjalizacji. Wyniki badań opublikowano w najnowszym numerze czasopisma PLoS One.
  15. Badacze z Uniwersytetu w Reading zbudowali robota, którego działaniami kieruje biologiczny mózg. Utworzono go z wyhodowanych uprzednio neuronów. Dzięki swojemu wynalazkowi akademicy chcą się przyjrzeć zarówno rozwojowi i pracy zdrowego mózgu, np. formowaniu się wspomnień, jak i stanom nieprawidłowym, m.in. chorobie Alzheimera, Parkinsona czy udarom. Neurony są umieszczane na macierzy wieloelektrodowej (ang. multi electrode array, MEA). MEA to ok. 60 elektrod w naczyniu laboratoryjnym o wymiarach 8 na 8 cm, które wychwytują impulsy elektryczne generowane przez komórki nerwowe. Są one następnie wykorzystywane do zarządzania ruchami robota. Maszyna o swojsko brzmiącym imieniu Gordon została wyposażona w kółka. Ilekroć zbliża się do jakiegoś obiektu, jej "mózg" skręca je w lewo lub prawo, by uniknąć kolizji. Żaden człowiek ani komputer nie sterują dodatkowo robotem, w całości polega on na reakcjach własnych neuronów. Macierz to rodzaj interfejsu, łączącego tkankę z maszyną. Neurony wysyłają impulsy kierujące ruchem kół, a czujniki dostarczają im informacji na temat topografii terenu. Mózg Gordona jest żywy, dlatego umieszczono go w specjalnej podjednostce z regulowaną temperaturą. Komunikuje się on z ciałem, czyli robotem, za pośrednictwem łącza Bluetooth. Połączenia między neuronami zaczęły powstawać bardzo szybko, bo już w pierwszej dobie. W ciągu tygodnia pojawiły się pierwsze spontaniczne wyładowania. By taki organ nie obumarł w najbliższych miesiącach, potrzebuje stymulacji z zewnątrz. Cybernetyk Kevin Warwick opracowuje sposoby uczenia Gordona. Do pewnego stopnia robot uczy się sam, np. gdy wpada na ścianę i do neuronów dociera informacja zwrotna z czujników. Można jednak podać związki chemiczne, które wzmocnią lub wyhamują ścieżki neuronalne aktywujące się podczas konkretnego działania. Badacze z Reading wykorzystują kilka różnych macierzy MEA. Śmieją się, że Gordon ma wiele osobowości. Jedna jest porywcza i bardzo energetyczna, a inna nie wykonuje poleceń naukowców. Brytyjczycy mają nadzieję, że pewnego dnia ujrzą działanie wspomnień w mózgu na żywo, gdy maszyna ponownie trafi do poznanego wcześniej miejsca. Dr Ben Whalley z Wydziału Farmacji, podkreśla, że omawiany projekt daje szansę na przyjrzenie się z bliska czemuś, co wygląda na złożone zachowania, ale nadal pozostaje ściśle związane z aktywnością pojedynczych neuronów. Mózg Gordona składa się z 50-100 tys. aktywnych neuronów, które z czasem utworzyły sieci. Pozyskano je od szczurzych płodów. Przed rozpoczęciem eksperymentu rozłączono je poprzez umieszczenie w kąpieli enzymatycznej.
  16. Zmiany w metabolizmie mózgu związane z przebiegiem ewolucji najprawdopodobniej zbliżyły ten organ do granic możliwości jego rozwoju - donoszą naukowcy. Ich zdaniem, odkrycie potwierdza hipotezę, zgodnie z którą schizofrenia jest "efektem ubocznym" gwałtownej ewolucji centralnego układu nerwowego u ludzi. Badania przeprowadziła grupa ekspertów z uczelni w Cambridge, Lipsku i Szanghaju. Ich zadaniem było porównanie metabolizmu mózgów ludzi zdrowych oraz chorych na schizofrenię z aktywnością tego organu u makaków, jednego z gatunków małp wąskonosych. Aby to osiągnąć, analizowano aktywność genów związanych z pracą układu nerwowego oraz stężenie wielu metabolitów wytwarzanych i zużywanych w mózgu. Jak tłumaczy kierujący zespołem dr Philipp Khaitovich z Instytutu Maksa Plancka w Lipsku, celem badań było zidentyfikowanie molekularnych mechanizmów związanych z ewolucją ludzkich zdolności poznawczych dzięki wykorzystaniu danych biologicznych z dwóch źródeł: ewolucyjnego oraz medycznego. Wielu naukowców już wcześniej sugerowało, że niektóre choroby neurologiczne są komplikacją powstałą w wyniku gwałtownego wzrostu aktywności oraz rozmiaru ludzkiego mózgu w porównaniu do naszych ewolucyjnych przodków. Dzięki przeprowadzonym eksperymentom teoria ta uzyskała silne poparcie w postaci danych doświadczalnych. Zespół dr Khaitovicha wykazał, że wiele zmian zaobserwowanych w mózgach osób chorych na schizofrenię jest bardzo podobnych do tych, które towarzyszyły ewolucji mózgu małpiego i wytworzeniu jego ludzkiego odpowiednika. W przypadku choroby te same zmiany, związane głównie z procesami energetycznymi w komórkach, najprawdopodobniej "zaszły za daleko", prowadząc do upośledzenia funkcji układu nerwowego. Wiele wskazuje więc na to, że przyczyną schizofrenii jest brak możliwości adaptacji mózgu do gwałtownego wzrostu tempa przemian metabolicznych. Może to także oznaczać, że ludzki mózg musiałby przejść głęboką przebudowę zanim stałby się możliwy ewolucyjny "skok" na miarę tego związanego z wytworzeniem centralnego układu nerwowego człowieka. Autorzy odkrycia twierdzą, że umożliwia ono przeprowadzenie kolejnych badań związanych z ludzkim mózgiem. Jak tłumaczy dr Khaitovich, nasze mózgi wyjątkowe w porownaniu do wszystkich innych gatunków ze względu na ich niesamowite zapotrzebowanie energetyczne. Dodaje: Jeśli będziemy umieli wyjaśnić, w jaki sposób są w stanie wytrzymać to oszałamiające tempo metabolizmu, będziemy mieli znacznie większe szanse na zrozumienie pracy ludzkiego mózgu oraz powodów, dla których czasami ten system zawodzi.
  17. Centra głodu i sytości mózgu uzyskują energię z tłuszczów, wykorzystując do tego celu wolne rodniki tlenowe. Do tej pory sądzono, że jedynym pokarmem neuronów jest glukoza, a wolne rodniki odsądzano od czci i wiary, obarczając je winą za uszkodzenia DNA i starzenie się. Teraz jednak okazuje się, że mogą one spełniać także pozytywną rolę, czyli odpowiadać za kontrolę wagi (Nature). Autorami przełomowego badania są Sabrina Diano i Tamas Horvath z Yale School of Medicine. W przeciwieństwie do przyjętych poglądów, tłuszcz jest dla mózgu paliwem. Nasze studium wykazało, że kontrola apetytu minuta po minucie zależy od wolnych rodników. Oznacza to, że jeśli wpływamy na ich stężenie, oddziałujemy również na jedzenie i uczucie sytości – przekonują Amerykanie. Horvath podkreśla też, że za każdym razem, kiedy czujemy się najedzeni, skracamy nieco maksymalną długość życia. Dzieje się tak, ponieważ najwięcej wolnych rodników powstaje, gdy uaktywniają się komórki obszarów odpowiedzialnych za odczuwanie sytości. Zespół z Yale prowadził eksperymenty na myszach. Celem naukowców było rozpoznanie mechanizmów, za pomocą których mózg reguluje aktywność neuronów wyzwalaną przez grelinę (wywołujący uczucie głodu hormon wydzielany przez pusty żołądek). Okazało się, że grelina indukuje głód, prowadząc do spalania tłuszczu w mitochondriach podwzgórza. Powstają wtedy wolne rodniki, wyłapywane przez niesprzężone białko 2 (ang. uncoupling protein 2, UCP2). Czas spożycia przeciwutleniaczy może być krytyczny dla kontroli apetytu. Jeśli pojawią się w pustym żołądku, prawdopodobnie jeszcze bardziej nasilą głód, lecz gdy zostaną zjedzone z pokarmem, mogą wpływać na uczucie sytości. Potrzeba dalszych badań, żeby stwierdzić, czy by kontrolować łaknienie u zwierząt i ludzi, należy przestrzegać jakiegoś schematu łykania tabletek z antyutleniaczami.
  18. W Stanach Zjednoczonych prawdopodobnie odkryto nieznaną dotychczas formę choroby Creutzfeldta-Jakoba (CJD). W mózgach dziesięciu osób zmarłych ostatnio na rodzaj błyskawicznie postępującej demencji zwanej PSPr (protease-sensitive prionopathy) zauważono cechy charakterystyczne dla sporadycznej CJD. Sporadyczna CJD to najczęściej występująca postać choroby Creutzfeldta-Jakoba. Choruje na nią nie więcej niż 1 osoba na milion. W przeciwieństwie do wariantu CJD (vCJD), którą można zarazić się od bydła chorującego na encefalopatię gąbczastą (BSE), przyczyny występowania większości wypadków sporadycznej CJD nie są znane. Teraz naukowcy sądzą, że od dawna ludzie chorują na kolejny wariant CJD, który dotychczas umykał uwagi naukowców. Amerykanów zastanowiło to, że u części pacjentów ze zdiagnozowaną szybko postępującą demencją występują dodatkowe objawy, takie jak utrata zdolności mówienia i poruszania się, a standardowe testy nie wykazywały obecności CJD. Dopiero pośmiertne badania mózgu pokazały, że mamy do czynienia z nowym wariantem tej choroby. Naukowcy zauważyli, że mózgi zmarłych znajdowała się gąbczasta tkanka pokryta licznymi dziurami. Doktor Pierluigi Gambetti z Amerykańskiego Narodowego Centrum Badania Patologii Chorób Prionowych mówi, że takie objawy zauważono u pacjentów z historią demencji w rodzinie, co wskazywałoby na genetyczne podłoże schorzenia. Jednak, jak zauważył, u pacjentów tych nie wykryto genów kojarzonych z niektórymi przypadkami sporadycznego CJD. Prawdopodobnie oznacza to, że za występowanie chorób prionowych mogą odpowiadać jeszcze inne geny, których dotąd o to nie podejrzewano. Brytyjscy uczeni rozpoczęli przeglądanie dokumentacji medycznej osób ze sporadycznym CJD. Chcą sprawdzić, czy nowy wariant wystąpił też w Wielkiej Brytanii.
  19. Co jest lepsze: szybka, lecz nieprecyzyjna reakcja na bodziec, czy długie i dokładne przemyślenia? Wszystko wskazuje na to, że o przewadze jednego z dwóch typów odpowiedzi decyduje określona sytuacja, w której się znajdujemy. Czy oznacza to, że w mózgu istnieją dwa osobne systemy podejmowania decyzji? Badania wykonane na Uniwersytecie w Bristolu wskazują na to, że najprawdopodobniej tak właśnie jest. Główny autor badań, Pete Trimmer, tłumaczy: Jeśli porównamy mózg człowieka i gada, zauważymy, że są niezwykle podobne, nie licząc występowania u ssaków rozległej "zewnętrznej kory" [mózgowej], otaczającej wspólny dla wszystkich kręgowców "mózg podkorowy". Fakt, że gady są zdolne do podejmowania decyzji, sugerowałby, że "mózg podkorowy" bierze udział w tym procesie. Badania fMRI [funkcjonalny rezonans magnetyczny, technika badania aktywności mózgu - przyp. red.] pokazują jednak, że niektóre rejony kory (które rozwinęły się w ewolucji później) także są używane przy podejmowaniu decyzji. Czy mózg potrzebuje dwóch jednostek odpowiedzialnych za dokonywanie wyboru? Czy korzyści z posiadania kory mózgowej są na tyle duże, że człowiekowi opłaca się unosić dodatkowy ciężar i dostarczać temu rejonowi energii? Czy ewolucja kory mózgowej sprawiła, że "mózg podkorowy" jest już nam niepotrzebny i zaniknie w toku ewolucji? Między innymi na te pytania próbował odpowiedzieć dr Trimmer. Aby lepiej zrozumieć analizowane problemy, badacz stworzył dwa modele teoretyczne. Zgodnie z ich założeniami, starsza ewolucyjnie część mózgowia reprezentowana była przez układ "myślący" bardzo szybko i niedokładnie, zaś symulacja pracy rejonów rozwiniętych u ssaków zakładała stosunkowo powolne zbieranie informacji przed podjęciem decyzji w oparciu o złożony zestaw danych. Wyniki symulacji pokazują, że w sytuacjach nagłego zagrożenia, takich jak atak drapieżnika, priorytetem jest szybkość, a nie precyzja reakcji. Z tego powodu znacznie lepiej sprawuje się w takich momentach "mózg podkorowy". Okazuje się jednak, że kora mózgowa funkcjonuje doskonale w sytuacjach nietypowych i złożonych, takich jak np. te spotykane w życiu społecznym. W jakim kierunku będzie ewoluował ludzki mózg? Dr Trimmer ocenia: Ponieważ nasze życie stało się bardziej skomplikowane, korzyści wynikające ze zbierania informacji przed podjęciem decyzji wywierają presję ewolucyjną na starsze obszary mózgu. Może to prowadzić do szybkiego rozwoju kory mózgowej u ssaków. Jeśli więc ludzie będą nadal żyli w świecie pełnym zagrożeń, takich jak dzikie zwierzęta czy szybko poruszające się samochody, wciąż będzie istniała ewolucyjna korzyść z utrzymywania "układu podkorowego", przez co szansa na jego zanik jest znikoma u "ludzi przyszłości". Szczegółowych informacji o badaniach dr. Trimmera dostarcza najnowszy numer czasopisma Proceedings of the Royal Society B.
  20. Wysokie spożycie niektórych produktów sojowych, m.in. tofu, nasila ryzyko utraty pamięci (Dementias and Geriatric Cognitive Disorders). Do takich wniosków doszli naukowcy z Uniwersytetów w Loughborough i Oksfordzie, których badania sfinansowała organizacja Alzheimer's Research Trust, oraz współpracujący z nimi lekarze z Indonezji. W ramach studium określano wpływ spożycia dużych ilości soi na 719 starszych mieszkańców wiejskich i miejskich rejonów Jawy. Okazało się, że konsumpcja dużych ilości tofu wiąże się z gorszym funkcjonowaniem pamięci, zwłaszcza u osób powyżej 68. roku życia. Jak zauważa szef zespołu badawczego profesor Eef Hogervorst z Uniwersytetu w Loughborough, soja staje się coraz popularniejsza na Zachodzie. Zachwala się ją jako tzw. superpokarm. Wytwarzane z niej produkty zawierają dużo fitoestrogenów. Na razie nie jest znany dokładny mechanizm ich oddziaływania na starzenie się mózgu. Wydaje się jednak, że związki te zapewniają neuroochronę w przypadku osób w średnim wieku i młodych, ale powyżej 65. roku życia zwiększają ryzyko demencji i pogarszają działanie pamięci. Uzyskane wyniki częściowo zaskoczyły badaczy. Stwierdzili oni bowiem, że w odróżnieniu od tofu, jedzenie tempe, czyli sfermentowanych całych ziaren soi, które wyglądają jak bloki ciasta lub sera i są nazywane jawajskim mięsem, poprawia pamięć. Wg Hogervorsta, może to mieć związek z wysokimi stężeniami folanów (soli kwasu foliowego). Od jakiegoś czasu wiadomo, że zabezpieczają one przed demencją. Być może jednoczesne wysokie stężenie zarówno folanów, jak i fitoestrogenów chroni przed deterioracją. Profesor przestrzega, że efekty spożycia tofu i tempe były najbardziej widoczne w przypadku starszych Jawajczyków, nie wiadomo więc, jak to wygląda w innych grupach etnicznych. W ramach wcześniejszych badań zauważono jednak, że u wiekowych Amerykanów japońskiego pochodzenia wysoka konsumpcja tofu również prowadziła do demencji.
  21. Przypadkowa aktywność w obrębie mózgu, która nie ma znaczenia dla funkcjonowania i często bywa uznawana za szum, jest wskaźnikiem dobrej kondycji zdrowotnej tego organu (PLoS - Computational Biology). Naukowcy z Rotman Research Institute w Baycrest podkreślają, że ich odkrycia obalają twierdzenie, że w okresie dojrzewania dziecięcy mózg się wycisza, przez co staje się bardziej wydajny i konsekwentny podczas procesów przetwarzania danych. Zauważyliśmy, że dojrzewanie mózgu prowadzi nie tylko do stabilniejszego i bardziej odpowiedniego zachowania w przypadku zadań pamięciowych, ale koreluje również ze zwiększoną zmiennością sygnałów - przekonuje szef zespołu badawczego, dr Randy McIntosh. Wbrew oczekiwaniom, nie oznacza to, że mózg pracuje mniej wydajnie. Wykazuje po prostu większą zmienność funkcjonalną, co stanowi odbicie złożoności neuronalnej. Kanadyjskie studium objęło 79 osób: dzieci w wieku do 15 lat i młodych dorosłych w wieku 20-33 lat. Wszyscy ochotnicy wzięli udział w teście zapamiętywania i rozpoznawania twarzy. W czasie wykonywania zadań byli podpięci do elektroencefalografu. Okazało się, że młodzi dorośli wypadli lepiej od dzieci. Ponadto w mózgu 20-33-latków wzrosła zmienność sygnału i zwiększył się generowany przez organ "hałas". A zatem to, co do tej pory uznawano za nic nieznaczący szum elektromagnetyczny, może być centralnym składnikiem normalnej pracy mózgu.
  22. Specjaliści z Narodowego Instytutu Chorób Neurologicznych i Udaru w stanie Maryland badają hipotezę, jakoby drażnienie mózgu prądem elektrycznym pomagało w nauce. Niejednokrotnie prowadzono już badania na małą skalę, z których wynikało, że prąd elektryczny poprawia funkcję motoryczną, fluencję słowną i uczenie się języków. Eric Wassermann ze wspomnianego już instytutu używa techniki zwanej przezczaszkową bezpośrednią stymulacją prądem elektrycznym (TCDS - transcranial direct current stimulation). Prąd przykładany jest do do skóry badanych i przechodzi bezpośrednio do mózgu. TDCS znana jest od lat i w przeszłości próbowano nawet korzystać z tej techniki do poprawy zachowania osób chorych psychicznie. Oczywiście metody tej nie należy mylić z elektrowstrząsami. Osoby poddane TCDS odczuwają co najwyżej lekkie mrowienie. Stosowane w tej technice urządzenie jest bardzo proste i składa się z dziewięciowoltowej baterii (jej wykorzystanie do podawania leków przez skórę zostało zaakceptowane przez FDA) połączonej ze zmoczonymi gąbkami. Po przyłożeniu do głowy skóra traktowana jest przez 15 minut prądem o natężeniu 2-2,5 miliamperów, którym drażniona jest powierzchnia od 20 do 50 milimetrów kwadratowych. Z tych 2 miliamperów do mózgu dociera niewielka część. Zespół Wassermanna drażni w ten sposób boczno-grzbietową korę przedczołową, który to obszar jest odpowiedzialny za organizację, planowanie i pamięć krótkotrwałą. Wcześniejsze badania z wykorzystaniem technik obrazowania wykazały, że gdy człowiek próbuje sobie coś przypomnieć, uaktywnia się właśnie ten obszar. Wassermann przypuszcza więc, że podrażnienie go prądem usprawni pamięć. Wstępne wyniki badań pokazują, że drażnienie prądem pomagają w nauczeniu się i przywołaniu z pamięci listy 12 słów. Okazało się, że osoby z umocowanym na głowie TCDS szybciej przyswajały sobie coraz dłuższą liczbę słów, jednak w pewnym momencie krzywa szybkości uczenia się osób bez TCDS doganiała tych z TCDS. Naukowcy chcą teraz sprawdzić, czy TCDS będzie miało też dobry wpływ na przywoływanie słów z pamięci. Jeśli nie, to przynajmniej przyda się w początkowych fazach uczenia się. Początkowo Wassermann interesował się TCDS jako urządzeniem do nieinwazyjnej neurostymulacji, która miała służyć leczeniu osób z chorobami neurodenegeracyjnymi. Testy wykazały jednak, że u chorych z uszkodzonym mózgiem zastosowanie urządzenia nie przynosi żadnych efektów. Postanowił więc zbadać, czy może ono pomóc ludziom zdrowym. Naukowcy wciąż nie wiedzą, jak działa TCDS. Przypuszczają, że pobudza ono neurony tak, że są bardziej podatne na impulsy, które otrzymują od innych neuronów. Nie są jednak w stanie odpowiedzieć na znacznie ważniejsze pytanie - co dzieje się na poziomie synaps. TCDS samo w sobie nie wywołuje żadnej reakcji neuronów, dlatego też jest uważane za bezpieczeniejsze niż przezczaszkowa stymulacja magnetyczna. Tej drugiej metody używa się podczas terapii u osób po udarach, jednak nie jest ona całkowicie bezpieczna, gdyż wywołując reakcję na poziomie neuronów może prowadzić do uszkodzeń.
  23. Ivanka Savić i Per Lindström, neurobiolodzy z Karolinska Institutet, badali anatomię mózgu w kontekście seksualności. Zauważyli, że mózgi gejów przypominają mózgi heteroseksualnych kobiet, a lesbijek mózgi heteroseksualnych mężczyzn (Proceedings of the National Academy of Sciences). Wcześniejsze badania wykazały, że mózgi kobiet i mężczyzn różnią się pod względem budowy określonych rejonów i organizacji funkcjonalnej. Mózgi męskie są np. bardziej asymetryczne, z półkulą prawą większą od lewej. Z tego powodu Savić i Lindström zaczęli się zastanawiać, czy istnieją różnice między mózgami osób tej samej płci, ale odmiennej orientacji seksualnej. Zebrano grupę 90 ochotników dopasowanych pod względem wieku: 50 osób heteroseksualnych (25 mężczyzn i 25 kobiet) i 40 homoseksualnych (20 kobiet, 20 mężczyzn). Podczas rezonansu magnetycznego okazało się, że mózgi homoseksualnych kobiet były w podobny sposób asymetryczne jak mózgi heteroseksualnych mężczyzn, z prawą półkulą większą od lewej, natomiast mózgi heteroseksualnych kobiet i homoseksualnych mężczyzn były w dużym stopniu symetryczne. Kiedy podczas tomografii pozytronowej (PET) naukowcy zaczęli się przyglądać przepływowi krwi, by wykryć sieć połączeń wewnątrz mózgu, znowu okazało się, że mózg osoby homoseksualnej przypomina mózg osoby heteroseksualnej płci przeciwnej. U gejów i kobiet heteroseksualnych występowało np. więcej połączeń pomiędzy prawym i lewym jądrem migdałowatym (amygdala), a więc strukturą odgrywającą ważną rolę w emocjonalnym uczeniu się i reakcjach na bodźce zewnętrzne, m.in. na stres. Zaobserwowano też istnienie większej liczby połączeń w przedniej części zakrętu obręczy w okolicy ciała modzelowatego (spoidła wielkiego mózgu). Są to obszary, które biorą udział w modulowaniu procesów związanych z nastrojem i lękiem. Badanie PET przeprowadzano w dwóch sytuacjach: 1) w czasie odpoczynku i 2) podczas wdychania bezwonnego powietrza. Tak ścisłe połączenia funkcjonalne powodują, że kobiety są bardziej podatne na zaburzenia nastroju, m.in. depresję. Najnowsze odkrycia Szwedów pozwalają też wyjaśnić, czemu osoby homoseksualne, a zwłaszcza geje, także wydają się bardziej podatne na wystąpienie chorób afektywnych. Savić i Lindström nie dociekali, czemu i jak dochodzi do powstania opisanych podobieństw anatomicznych. Wcześniej udało im się wykazać, że heteroseksualne kobiety i homoseksualni mężczyźni podobnie reagują na zapach pochodnych męskich hormonów płciowych (androgenów). Inni eksperci komentują, że nie wiadomo, jak dochodzi do zmiany rozwoju mózgowych centrów emocjonalnych. Czy wpływają na to geny, czy też chodzi o oddziaływania hormonalne w łonie matki. Zgodnie z obecnym stanem wiedzy, geny mogą odgrywać pewną rolę w homoseksualności męskiej, ale już nie w żeńskiej. Wiadomo też, że u samców szczurów asymetria mózgu ustala się w wyniku wczesnej ekspozycji na oddziaływanie androgenów. Rozwój symetrii półkul u samic można odwrócić, usuwając tuż po urodzeniu jajniki.
  24. Nikt nie wie dokładnie, dlaczego ludzki mózg działa tak wydajnie w porównaniu do innych gatunków. Choć istnieją różne hipotezy, prawdziwość żadnej z nich nie została dotychczas ostatecznie potwierdzona. Kolejną próbę wyjaśnienia tej zagadki podjęli naukowcy z Wielkiej Brytanii. Ich zdaniem, sekretem sprawności naszego układu nerwowego nie jest rozmiar jego centralnego narządu, lecz stopień złożoności połączeń pomiędzy jego podstawowymi elementami - neuronami. Do niedawna sądzono, że połączenia między komórkami nerwowymi, zwane synapsami, są zbudowane niemal identycznie u wszystkich organizmów zamieszkujących Ziemię. Jednak, jak tłumaczy prof. Seth Grant z Wellcome Trust Sanger Institute, główny autor studium, wiele badań skupiało się na na ilości neuronów, lecz nikt dotąd nie spojrzał na molekularną charakterystykę połączeń między nimi. Odnaleźliśmy ogromne różnice w ilości białek wchodzących w skład połączeń pomiędzy neuronami u różnych gatunków. Badacze analizowali około sześciuset białek, które wchodzą w skład synaps w mózgach ssaków. Okazało się, że zaledwie połowa z nich jest obecna w analogicznych połączeniach u bezkręgowców, natomiast w organizmach jednokomórkowych nie stwierdzono obecności aż 75% z nich (oczywiście, w ostatnim przypadku mowa o obecności białka w całej komórce, gdyż organizmy takie nie posiadają układu nerwowego). Typowa synapsa jest złożonym połączeniem, którego zadanie wybiega daleko poza proste przekazanie sygnału z komórki do komórki. W rzeczywistości, jej praca polega także na uczeniu się i zapamiętywaniu cech przekazywanego przez nią sygnału. Co ciekawe, badacze odkryli, że jedna z protein, pełniąca u człowieka funkcje sygnalizacyjne w obrębie synapsy i biorąca jednocześnie udział w procesie uczenia, bierze u jednokomórkowych drożdży udział w wewnątrzkomórkowej transmisji sygnałów o warunkach środowiska, a także w reakcji mikroorganizmu na czynniki stresowe, jak głód czy zmiana temperatury. Pokazuje to, jak wiele podobieństw wykazuje fizjologia tych dwóch gatunków, pozornie odległych ewolucyjnie. Badacze wykazali, że w historii ewolucji nastąpiły dwie fale nagłego wzrostu złożoności połączeń nerwowych, które umożliwiły budowanie struktur odpowiedzialnych za rozwój coraz doskonalszego układu nerwowego. Pierwsza z nich związana jest z "przejściem" organizmów z formy jedno- do wielokomórkowej, druga zaś nastąpiła wraz z rozwojem pierwszych kręgowców. Oczywiście nie oznacza to, że pojawienie się nowych protein automatycznie spowodowało wzrost rozmiaru mózgu, lecz wyniki badań pokazują wyraźnie, że powiększenie puli białek wchodzących w skład synaps było niezbędne do tworzenia coraz bardziej złożonych systemów w obrębie układu nerwowego. Aby udowodnić swoją hipotezę, brytyjscy naukowcy przeprowadzili serię eksperymenów na zwierzętach, popartą obserwacjami klinicznymi na ludziach. Potwierdzili na przykład, że ssaki (w tym ludzie) pozbawione funkcjonalnej kopii genu SAP102, kodującego białko występujące w synapsach wyłącznie u kręgowców, tracą znaczną część zdolności rozwiązywania zagadek logicznych i uczenia się. U myszy objawia się to znacznie wydłużonym czasem potrzebnym na wydostanie się z labiryntu, zaś u ludzi defekt SAP102 powoduje upośledzenie umysłowe. Jednocześnie bezkręgowce, u których brak tego genu jest naturalny, w ogóle nie są zdolne do rozwiązywania tak złożonych problemów. Badania Brytyjczyków dostarczyły wiele informacji na temat budowy układu nerwowego na poziomie molekularnym. Wiedza ta może być niezwykle przydatna badaczom zajmującym się poszukiwaniem mechanizmów odpowiedzialnych za rozwój inteligencji oraz upośledzeń umysłowych, a także chorób związanych z nieprawidłowym funkcjonowaniem połączeń pomiędzy neuronami.
  25. Naukowcy z Wydziału Medycyny Uniwersytetu w Pittsburghu oraz Carnegie Mellon University przeprowadzili eksperymenty, podczas których małpy sterowały ramieniem robota za pomocą myśli. Wyłącznie za pomocą fal mózgowych zwierzęta wydały robotowi polecenie by wziął od człowieka piankę marsmallow i podał im ją do ust. To, jak dotąd, najbardziej zaawansowana technika pozwalająca na sterowanie urządzeniem za pomocą fal mózgowych. Wcześniej udawało się jedynie poruszać kursorem na ekranie. Badania dowiodły, że badania nad elektronicznymi protezami sterowanymi myślą, mają sens. Obie małpy najpierw uczono sterowania ramieniem za pomocą dżojstika. Następnie wszczepiono im do kory ruchowej mózgu siatkę składającą się ze 100 miniaturowych czujników. Podczas samego eksperymentu dłonie małp włożono w plastikowe tuby tak, by nie mogły za ich pomocą sięgnąć po smakołyk. Ten eksperyment tak naprawdę zbiera razem osiągnięcia wszystkich poprzednich i pokazuje, co jest już teraz możliwe - mówi doktor William Heetderks, z National Institute of Biomedical Imaging and Bioengineering. Doktor John P. Donoghue, dyrektor Instytutu Badań nad Mózgiem na Brown University dodaje, że wspomniane badania to najbardziej wszechstronna demonstracja sposobu, w jaki zwierzęta oddziałują na obiekty za pomocą samych fal mózgowych. Co więcej, eksperymentatorzy zauważyli, że małpy używały też sztucznego ramienia w sposób, którego się wcześniej nie uczyły. Oblizywały sztuczne palce, potrafiły sobie poradzić, gdy smakołyk przykleił się do sztucznej dłoni. Używały jej w podobny sposób, w jaki używają własnych kończyn. Oznacza to, że ich mózgi szybko adaptowały się do nowych sytuacji.
×
×
  • Dodaj nową pozycję...