
Osoby religijne lepiej postrzegają wzorce w otaczającym nas świecie
By
KopalniaWiedzy.pl, in Psychologia
-
Similar Content
-
By KopalniaWiedzy.pl
Badania prowadzone przez naukowców z Kanady sugerują, że rozwój glejaka wielopostaciowego – niezwykle agresywnego i śmiertelnego nowotworu mózgu – może być powiązany z procesem zdrowienia mózgu. Uraz, udar czy infekcja mogą napędzać nowotwór, gdy nowe komórki, mające zastąpić te zniszczone w czasie urazu, ulegną mutacjom. Odkrycie może doprowadzić do rozwoju nowych technik walki z glejakiem, jednym z najtrudniejszych w leczeniu nowotworów mózgu u dorosłych.
Zdobyte przez nas dane wskazują, że odpowiednie mutacje w konkretnych komórkach mózgu mogą mieć swoją przyczynę w urazie i prowadzić do rozwoju nowotworu, mówi doktor Peter Dirks, ordynator oddziału neurochirurgii w Hospital for Sick Children (SickKids). W badaniach brali też udział naukowcy z University of Toronto oraz Princess Margaret Cancer Centre.
Glejak może być postrzegany jako rana, która nigdy się nie goi. Jesteśmy podekscytowani naszym odkryciem, gdyż mówi nam ono, w jaki sposób nowotwór się zaczyna i jak rośnie. To zaś pozwala nam myśleć o nowych sposobach leczenia skoncentrowanych na ranie i odpowiedzi zapalnej, dodaje Dirks.
Obecnie istnieją bardzo ograniczone możliwości leczenia glejaka, a pacjenci żyją średnio zaledwie 15 miesięcy od postawienia diagnozy. Niepowodzenie w leczeniu ma swoje korzenie w dużej różnorodności zarówno pomiędzy guzami, jak i pacjentami. Glejaki zawierają wiele różnych typów komórek, w tym rzadkie komórki macierzyste glejaka (GSC), które napędzają wzrost guza, wyjaśnia Dirks.
Zespół Dirksa już wcześniej wykazał, że GSC zapoczątkowują glejaka i jego wznowę po leczeniu. Dlatego też postanowili bliżej przyjrzeć się tym komórkom. Wykorzystali w tym celu najnowsze techniki sekwencjonowania RNA oraz maszynowego uczenia się. Stworzyli na tej podstawie molekularną mapę GSC pobranych z guzów 26 pacjentów.
Uzyskane wyniki potwierdziły istnienie olbrzymiego zróżnicowania, co wskazuje, że każdy z guzów zawiera wiele podtypów molekularnie zróżnicowanych GSC. To powoduje, że po leczeniu guz prawdopodobnie powróci, gdyż stosowane terapie nie są w stanie zabić wszystkich tych podtypów komórek. Naszym celem jest znalezienie leku, który zabije wszystkie rodzaje komórek macierzystych glejaka. By jednak tego dokonać musimy najpierw zrozumieć budowę molekularną tych komórek, mówi profesor Gary Bader z University of Toronto.
Co interesujące, znaleziono liczne podtypy GSC, których budowa molekularna wskazywała na związki ze stanem zapalnym. To wskazywało, że przynajmniej niektóre glejaki rozpoczynają się w wyniku naturalnego procesu leczenia po urazie. Dirks mówi, że do takich mutacji rozpoczynających glejaka może dochodzić na wiele lat przed pojawieniem się choroby. Niewykluczone, że gdy w procesie leczenia mózgu po urazie pojawia się zmutowana komórka, nie może przestać się ona dzielić, gdyż nie działają jej mechanizmy kontrolne i w wyniku tego procesu dochodzi do rozwoju guza.
Gdy uczeni jeszcze bliżej przyjrzeli się komórkom, okazało się, że każdy guz znajduje się w jednym z dwóch stanów molekularnych – roboczo nazwanych „rozwojowym” i „odpowiedzią na uraz” – lub gdzieś na gradiencie pomiędzy nimi. Stan „rozwojowy” to znak rozpoznawczy komórek macierzystych i przypomina stan, w którym komórki macierzyste mózgu bardzo szybko się dzielą przed urodzeniem. Drugi ze stanów był zaś dla naukowców niespodzianką. Nazwali go oni „odpowiedzią na uraz”, gdyż ma tam miejsce zwiększenie ekspresji szlaków immunologicznych i markerów zapalnych, takich jak interferon i TNFalfa. To wskaźniki toczącego się procesu zdrowienia. Zjawiska te udało się zauważyć dopiero teraz, dzięki nowoczesnym technikom sekwencjonowania RNA pojedynczych komórek.
Dalsze eksperymenty pokazały, że oba te stany są wrażliwe na różne typy usunięcia genów. Ujawniono w ten sposób potencjalne metody leczenia, które dotychczas nie były brane pod uwagę przy glejaku. Badania pokazały też, że względny stosunek obu stanów jest cechą indywidualną każdego guza. Komórki każdego z nich mogą znajdować się w różnym miejscu na osi pomiędzy stanem „rozwojowym” a „odpowiedzią na uraz”. Podczas gdy GSC każdego pacjenta składają się z różnych populacji, wszystkie one znajdują się na jedne biologicznej osi pomiędzy dwoma stanami definiowanymi przez procesy neurorozwoju i zapalne, stwierdzają autorzy badań.
Teraz Kanadyjczycy zastanawiają się nad metodami leczenia. Odkryta przez nas heterogeniczność komórek macierzystych wskazuje, że trzeba opracować terapie biorące na cel jednocześnie procesy rozwojowe i zapalne. Szukamy leków, które działają w różnych miejscach osi między oboma stanami. Istnieje tutaj potrzeba rozwoju zindywidualizowanego podejścia do pacjenta. Trzeba będzie wykonać badania guza na poziomie pojedynczej komórki i na tej podstawie przygotować koktajl leków, który w tym samym momencie będzie działał na różne podtypy komórek macierzystych, stwierdza doktor Trevor Pugh z Princess Margaret Cancer Centre.
« powrót do artykułu -
By KopalniaWiedzy.pl
Badacze z amerykańskich Narodowych Instytutów Zdrowia (NIH) donoszą, że skutkiem ubocznym COVID-19 może być uszkodzenie mózgu. Do takich wniosków doszli naukowcy, którzy zbadali mózgi zmarłych na COVID-19. W tkance 19 osób, które zmarły wkrótce po zarażeniu znaleźli ślady uszkodzeń spowodowanych zmniejszeniem grubości i przeciekaniem naczyń krwionośnych mózgu.
Z wcześniejszych badań wynika, że wirus SARS-CoV-2 może zarówno uszkadzać barierę krew-mózg jak i przedostawać się do mózgu. Dlatego też naukowcy chcieli sprawdzić, jak COVID-19 wpływa na mózg. Okazało się jednak, że w uszkodzonej tkance nie znaleziono śladów samego wirusa, co wskazuje, że przyczyną uszkodzeń nie był jego bezpośredni atak na mózg.
Stwierdziliśmy, że mózgi pacjentów zarażonych SARS-CoV-2 mogą być podatne na mikrouszkodzenia naczyń krwionośnych. Wyniki naszych badań sugerują, że mogą być one powodowane przez sam organizm, który na obecność wirusa reaguje stanem zapalnym, mówi jeden z autorów badań doktor Avindra Nath, dyrektor ds. klinicznych w Narodowym Instytucie Zaburzeń Neurologicznych i Udaru (NINDS). Mamy nadzieję, że badania te pomogą lepiej zrozumieć pełne spektrum problemów, z którymi borykają się pacjenci i pozwolą opracować lepsze metody leczenia.
COVID-19 to przede wszystkim choroba układu oddechowego. Jednak pacjenci często doświadczają objawów neurologicznych, takich jak bóle głowy, utrata węchu, smaku, zmęczenie czy problemy poznawcze. Mogą też pojawiać się udary i inne stany patologiczne.
Już wcześniejsze badania wykazały, że choroba może powodować stany zapalne i uszkodzenia naczyń krwionośnych. Specjaliści wciąż jednak próbują zrozumieć, jak wpływa ona na mózg.
Nath i jego koledzy zbadali tkankę mózgową 19 osób, które zmarły pomiędzy marcem a lipcem 2020 roku w ciągu od kilku godzin po dwa miesiące od pojawienia się u nich pierwszych objawów COVID-19.Wiek pacjentów wahał się od 5 do 73 lat. U wielu z nich występował jeden lub więcej czynnik ryzyka, taki jak otyłość, cukrzyca czy choroba układu krążenia. Osiem osób zmarło w domach lub w miejscach publicznych, kolejnych trzech nagle przewróciło się i zmarło.
Naukowcy rozpoczęli badania od obrazowania tkanki mózgowej za pomocą potężnego skanera do rezonansu magnetycznego (MRI), który jest od 4 do 10 razy bardziej czuły niż standardowe skanery MRI. Specjaliści sprawdzali próbki opuszek węchowych oraz pnia mózgu każdego z pacjentów. Wybrano te obszary, gdyż przypuszcza się, że są one szczególnie wrażliwe na COVID-19. Opuszki węchowe kontrolują zmysł węchu, a pień mózgu odpowiada za kontrolę oddychania i akcji serca.
Skany ujawniły, że w obu miejscach występują liczne jasne punkty podwyższenia sygnału, wskazujące na stan zapalny, oraz ciemne punkty obniżenia sygnału, wskazujące na krwawienie. Gdy dzięki MRI zidentyfikowano problematyczne miejsca, zostały one poddane szczegółowym padaniom pod mikroskopem.
Naukowcy stwierdzili, że miejsca podwyższenia sygnału zawierają ściany naczyń, które były cieńsze niż normalnie i czasem wyciekały z nich do mózgu białka krwi, takie jak fibrynogen. Wydaje się, że to powodowało reakcję zapalną. Punkty takie były bowiem otoczone limfocytami T z krwi oraz komórkami mikrogleju, który bierze udział w odpowiedzi immunologicznej mózgu. Z kolei tam, gdzie na MRI występowały ciemne obszary znajdowała się zakrzepła krew, nieszczelne naczynia krwionośne, ale nie było komórek odpornościowych.
Byliśmy całkowicie zaskoczeni. Spodziewaliśmy się uszkodzeń spowodowanych niedotlenieniem. Tymczasem zobaczyliśmy wieloogniskowe uszkodzenia typowe dla udarów i chorób neurozapalnych.
Uczeni wykorzystali też liczne metody wykrywania w tkance obecności materiału genetycznego i białek wirusa SARS-CoV-2, jednak okazało się, że wirusa w tkance nie było.
Jak dotąd wydaje się, że zaobserwowane uszkodzenia nie zostały spowodowane bezpośrednim zainfekowaniem mózgu przez wirusa. W kolejnym etapie badań chcemy sprawdzić, jak COVID-19 uszkadza naczynia krwionośne mózgu i czy powoduje to obserwowane u pacjentów krótko- i długoterminowe objawy neurologiczne, mówi doktor Nath.
« powrót do artykułu -
By KopalniaWiedzy.pl
Ponad 30% osób chorujących na COVID-19 doświadcza objawów neurologicznych, takich jak utrata węchu i smaku, bóle głowy, zmęczenie, mdłości i wymioty. Do tego mogą dołączać ostra choroba naczyniowo-mózgowa czy zaburzenia świadomości. Objawy te sugerują, że wirus SARS-CoV-2 może przedostawać się do mózgu. I rzeczywiście, zarówno w mózgach zmarłych jak i w płynie mózgowo-rdzeniowym znaleziono RNA wirusa, nie wiadomo jednak, w jaki sposób on się tam znalazł.
Niemiecki zespół naukowy z Charite, Wolnego Uniwersytetu Berlińskiego, Instytutu Roberta Kocha i innych instytucji badawczych, odkrył RNA oraz białka wirusa w różnych anatomicznie obszarach nosogardła i mózgu. Autopsje zmarłych sugerują, że wirus może przedostawać się do mózgu poprzez nos.
Na łamach Nature Neuroscience, w artykule Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 opisano badania, które przeprowadzono na 33 osobach zmarłych chorujących na COVID-19.
Naukowcy zauważają, że wśród 7 koronawirusów, które infekują ludzi, co najmniej dwa endemiczne szczepy są w stanie przedostać się do centralnego układu nerwowego. Są to SARS-CoV oraz MERS-CoV, które ewolucyjnie są blisko spokrewnione z SARS-CoV-2. Teraz autorzy najnowszych badań donoszą, że RNA wirusa SARS-CoV-2 wykryli w centralnym układzie nerwowym 48% pacjentów, których poddali autopsji.
Profesor Frank Heppner z Charité–Universitätsmedizin Berlin i jego zespół sprawdzili nosogardło – pierwsze miejsce, w którym może dochodzić do infekcji i replikacji wirusa – oraz mózgi 33 pacjentów (22 mężczyzn i 11 kobiet), które zmarły w czasie, gdy chorowały na COVID-19. Mediana wieku zmarłych wynosiła 71,6, a mediana czasu od wystąpienia objawów COVID-19 do zgonu to 31 dni.
Autorzy badań odkryli RNA wirusa SARS-CoV-2 w nosogardle i mózgu wielu badanych. Najwięcej wirusowego RNA znajdowało się w błonie śluzowej nosa. Zauważyli też, że czas trwania choroby był ujemnie skorelowany z ilością wykrytego materiału wirusowego, co oznacza, że więcej śladów SARS-CoV-2 odkryto u osób, które chorowały krócej.
Naukowcy donoszą też, że białko S wirusa, za pomocą którego infekuje on komórki, znajdowało się w pewnych typach komórek błony śluzowej. Nie można wykluczyć, że wirus wykorzystuje fakt, że komórki te sąsiadują z komórkami nabłonka i nerwowymi, dzięki czemu może dostać się do mózgu. U niektórych pacjentów białko S znaleziono w komórkach, w których dochodzi do ekspresji markerów neuronowych. Nie można więc wykluczyć, że wirus infekuje neurony węchowe oraz te obszary mózgu, do których docierają informacje o smaku i zapachu. Co więcej, ślady wirusa znaleziono też w innych obszarach mózgu, w tym w rdzeniu przedłużonym, w którym znajdują się m.in. ośrodek oddechowy, ośrodek sercowy czy ośrodki odpowiedzialne za wymioty.
Spostrzeżenia niemieckich naukowców mogą wyjaśniać wiele objawów neurologicznych, które występują u chorujących na COVID-19.
« powrót do artykułu -
By KopalniaWiedzy.pl
Jedną z przyczyn, dla której nie udało się dotychczas stworzyć maszyny o możliwościach obliczeniowych mózgu jest brak urządzenia, które działałoby jak neuron. Jednak dzień powstania sztucznego mózgu właśnie znacznie się przybliżył. Troje naukowców poinformowało na łamach Nature o stworzeniu pojedynczego urządzenia zachowującego się jak neuron.
W reakcji na przyłożenie prądu stałego urządzenie reaguje podobnie jak neuron: pojawiają się w nim serie wyładowań, samopodtrzymujące się oscylacje i inne procesy, które możemy obserwować w mózgu. Urządzenie łączy w sobie funkcje opornika, kondensatora i memrystora Motta. Memrystory to urządzenia, które przechowują dane w postaci pamięci o oporze.
Memrystory Motta mają dodatkową możliwość zapamiętania zmian w oporności powodowanych temperaturą. Dzieje się tak, gdyż materiały, z których zbudowany jest memrystor Motta są izolatorami lub przewodnikami w zależności od temperatury.
Do zmian takich dochodzi z nanoskalowej warstwie ditlenku niobu. Po przyłożeniu napięcia NbO2 rozgrzewa się, zmieniając właściwości z izolujący w przewodzące. Po takiej zmianie prąd może przepłynąć przez urządzenia. Następnie urządzenie się chłodzi, a ditlenek niobu staje się ponownie izolatorem. W efekcie takich działań pojawia się wyładowanie podobne do tego, obserwowanego w neuronach. Przez pięć lat nad tym pracowaliśmy. W małym nanoskalowym kawałku materiału dzieje się bardzo wiele, mówi jeden z autorów badań, R. Stanley Williams z Texas A&M University.
Drugi z autorów badań, Suhas Kumar z Hewlett Packard Laboratories, przypomina, że wynalazca memrystora, Leon Chua, przewidywał, iż w urządzeniu tym pomiędzy dwoma stabilnymi regionami znajduje się region chaotycznych zjawisk. Na krawędzi takiego regionu urządzenie może zaś wykazywać zachowania podobne do zachowań neuronów.
Uzyskanie odpowiednich zjawisk nie jest jednak łatwe. Williams chwali Kumara za wysiłek, jaki włożył w to, by precyzyjnie dobrać parametry pracy urządzenia. Tego się nie odkrywa przypadkiem. Wszystkie parametry muszą być perfekcyjnie dobrane zanim zauważysz zjawiska, których poszukujesz. Gdy już jednak uda się tego dokonać okazuje się, że całość pracuje bardzo stabilnie i łatwo jest to powielać, stwierdza uczony.
Naukowcy przetestowali swoje urządzenie budując z nich bramki logiczne NAND i NOR oraz niewielki analogowy obwód optymizujący pracę całości. Naukowcy przyznają, że potrzeba jeszcze wiele pracy, by całość zmienić w praktyczne urządzenie i skalować je tak, by mogły z nich powstać systemy zdolne do rzucenia wyzwania współczesnym komputerom. Kumar i Williams mają zamiar poszukać innych materiałów, nadających się do budowy sztucznego neuronu. Przemiany zachodzące w NbO2 mają bowiem miejsce w temperaturze 800 stopni Celsjusza. Można ją osiągnąć w warstwach o grubości liczonej w nanometrach.
Jednak przeskalowanie całości na miliony takich neuronów i uzyskanie podobniej wydajności może być problemem. Stąd m.in. potrzeba znalezienia innego materiału.
« powrót do artykułu -
By KopalniaWiedzy.pl
Szwajcarscy naukowcy opracowali metodę, za pomocą której można z zegarmistrzowską precyzją dostarczać leki (np. psychiatryczne czy przeciwnowotworowe) do wybranych miejsc w mózgu. Pozwala to uniknąć skutków ubocznych i pozwolić, by lek działał dokładnie tam, gdzie jest potrzebny.
Nowa metoda, stworzona przez zespół z Politechniki Federalnej w Zurychu, jest nieinwazyjna. Precyzyjne dostarczanie leku jest kontrolowane z zewnątrz, za pomocą ultradźwięków. Wyniki ekipy prof. Mehmeta Fatiha Yanika opublikowano na łamach pisma Nature Communications.
By dostarczać leki z milimetrową precyzją, Szwajcarzy zastosowali stabilne liposomy z lekiem, które sprzężono z wypełnionymi gazem wrażliwymi na ultradźwięki mikrobąbelkami. W ten sposób uzyskano kontrolowane ultradźwiękami nośniki leków (ang. Ultrasound-Controlled drug carriers; UC-carriers). Do tego opracowano sekwencję agregacji-uwalniania (ang. Aggregation and Uncaging Focused Ultrasound Sequence, AU-FUS).
Zogniskowane ultradźwięki są już wykorzystywane w onkologii, by niszczyć nowotwór w precyzyjnie zdefiniowanych miejscach. W szwajcarskiej metodzie pracuje się jednak z dużo niższym poziomem energii, by nie uszkodzić tkanek.
Zawierające drobnocząsteczkowe związki nośniki-UC są wstrzykiwane. Mogą to być, na przykład, zatwierdzone do użytku leki neurologiczne bądź neuropsychiatryczne, które pozostaną w krwiobiegu, dopóki będą enkapsulowane. Następnie wykorzystuje się 2-etapowy proces. W pierwszym etapie stosuje się falę ultradźwiękową o niskiej energii, by nośniki leków zgromadziły się w pożądanym miejscu w mózgu. Zasadniczo wykorzystujemy pulsy ultradźwięków, by wokół wybranego miejsca stworzyć wirtualną klatkę [...]. Gdy krew krąży, przepłukuje nośniki leku przez cały mózg. Ten, który trafi do klatki, nie może się z niej jednak wydostać - wyjaśnia Yanik.
W drugim etapie stosuje się wyższą energię ultradźwiękową, by wprawić nośniki w drgania. Siła ścinająca niszczy lipidową membranę, uwalniając lek. Koniec końców lek pokonuje nietkniętą barierę krew-mózg w wybranym regionie i dociera do swojego celu molekularnego.
W ramach testów akademicy zademonstrowali skuteczność metody na szczurach. Za jej pomocą zablokowali pewną sieć neuronalną, łączącą 2 regiony mózgu. Walidowaliśmy naszą metodę, nieinwazyjnie modulując rozprzestrzenianie aktywności neuronalnej w dobrze zdefiniowanym mikroobwodzie korowym (w szlaku czuciowo-ruchowym wibryssów). Manipulowaliśmy tym obwodem, ogniskowo hamując korę czuciową wibryssów za pomocą [...] muscymolu, który jest selektywnym agonistą receptora GABA-A.
Ponieważ nasza metoda agreguje leki w miejscu, gdzie powinny zadziałać, można obniżyć dawkę. W eksperymentach na szczurach ilość leku była, na przykład, 1300-krotnie niższa od typowej dawki.
Inne grupy badawcze wykorzystywały już zogniskowane ultradźwięki do dostarczania leków do konkretnych obszarów mózgu. Ich metody nie obejmowały jednak pułapek i miejscowego koncentrowania leków. Zamiast tego bazowano na lokalnym niszczeniu komórek naczyń krwionośnych; miało to zwiększyć transport leku z naczyń do tkanki nerwowej. W naszej metodzie fizjologiczna bariera między krwiobiegiem a tkanką nerwową pozostaje nienaruszona.
Obecnie naukowcy oceniają skuteczność nowej metody na zwierzęcych modelach choroby psychicznej czy zaburzeń neurologicznych. Badają ją także pod kątem nieoperowalnych guzów mózgu.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.