Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'dinozaury' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 31 wyników

  1. Upadek asteroidy, która przed 66 milionami lat przyniosła zagładę dinozaurom, stał się szansą ewolucyjną dla wielu innych zwierząt. Skorzystały na tym m.in. węże. Jak twierdzą naukowcy z Milner Centre for Evolution na University of Bath, wszystkie ze znanych dzisiaj niemal 4000 gatunków węży wyewoluowały z niewielkiej grupy gatunków, które mogły zająć nowe nisze ekologiczne, z których zniknęła ich konkurencja zabita przez asteroidę. Naukowcy z Bath stali na czele grupy badawczej, w skład której weszli też specjaliści z uniwersytetów w Bristolu, Cambridge i Norymbergi. Podczas badań wykorzystali skamieniałości oraz techniki analizy genetycznej współczesnych węży, by zrekonstruować ewolucję tego podrzędu gadów. Wykazali w ten sposób, że wszystkie obecnie żyjące gatunki węży pochodzą od niewielkiej liczby gatunków, które przetrwały uderzenie asteroidy. W przeżyciu pomogła im zdolność schronienia się pod ziemią oraz możliwość obywania się bez pokarmu przez długi czas. A gdy mogły już wyjść z ukrycia, okazało się, że z powierzchni Ziemi zniknęła konkurencja w postaci nie tylko innych gatunków węży, ale również samych dinozaurów. Badania wykazały, że dopiero po uderzeniu asteroidy doszło do wysokiego zróżnicowania węży. Pojawiły się żmije, kobry i pytony, węże nadrzewne, wodne czy wielcy dusiciele. Skamieniałości pokazują, że zmienił się też kształt ich kręgosłupa. Jego budowa jest obecnie inna niż węży z kredy, pojawiły się też wielkie, nawet 10-metrowej długości, węże morskie. One nie tylko przeżyły okres, który przyniósł zagładę tak wielu gatunkom zwierząt, ale w ciągu kilku milionów lat zaszły w nich zmiany, pozwalające na wykorzystanie nowych habitatów w nowy sposób, mówi doktor Catherine Klein z Uniwersytetu Fryderyka i Aleksandra w Erlangen i Norymberdze. Przodkowie współczesnych węży żyli prawdopodobnie na półkuli południowej. Po zagładzie dinozaurów węże zaczęły rozprzestrzeniać się po całym świecie. Podbój planety rozpoczęły od Azji. Nasze badania sugerują, że wyginięcie dinozaurów zadziałało jak „kreatywna destrukcja”. Wyginęły stare gatunku, a ci, którzy przeżyli, mogli zająć nowe nisze ekologiczne oraz eksperymentować z nowymi sposobami życia i habitatami. Wydaje się, że to ogólna zasada ewolucji – po dużych epizodach wyginięcia życie jest najbardziej innowacyjne i widzimy najwięcej eksperymentów ewolucyjnych, mówi doktor Nich Longrich z University of Bath. Zniszczenie bioróżnorodności robi miejsce na nowe gatunki. W końcu życie staje się bardziej różnorodne niż wcześniej, dodaje. Naukowcy zdobyli też dowody, że drugim dużym skokiem bioróżnorodności był okres, w którym Ziemia przeszła z klimatu ciepłego do znacznie chłodniejszego, w którym uformowały się lądolody na biegunach i rozpoczęły epoki lodowe. « powrót do artykułu
  2. Trajektoria asteroidy, która przed 66 milionami lat spadła na Ziemię i doprowadziła do zagłady dinozaurów, była dokładnie taka, jaka powinna być, by spowodować jak najwięcej zniszczeń. Nowa analiza krateru Chicxulub połączona z licznymi symulacjami komputerowymi wykazała, że prędkość i kąt uderzenia asteroidy znajdowały się w najbardziej śmiercionośnym dla Ziemi zakresie. Gdy asteroida uderzyła w Ziemię, wybiła olbrzymi kater, do której następnie zapadła się część materiału przemieszczona podczas uderzenia. Uderzenie skruszyło i ugięło skorupę ziemską, która następnie wyprostowała się, tworząc równinę w centrum krateru. Równina ta jest nachylona w kierunku, z którego nadeszło uderzenie, a kąt jej nachylenia jest zależny od kąta uderzenia asteroidy. Stąd też, na podstawie danych o budowie krateru, osadach, jego części centralnej i otaczających go wyniesieniach można wyciągnąć wiele wniosków na temat asteroidy, jej prędkości i kąta, pod jakim spadła na Ziemię. Naukowcy z Imperial College London przeprowadzili setki symulacji komputerowych, by sprawdzić, jak powinien wyglądać krater po uderzeniu asteroidy nadlatującej z różną prędkością i pod różnym kątem. Znaleźli w końcu taką konfigurację, która najlepiej odpowiada rzeczywistemu wyglądowi krateru Chicxulub. Okazało się, że asteroida, która przyniosła zagładę dinozaurom, poruszała się w tempie około 20 km/s i uderzyła w Ziemię pod kątem około 60 stopni. Większość zniszczeń zostało spowodowane przez odparowanie skał, z których materiał trafił do atmosfery, zablokował promienie słoneczne i na planecie zapanowała atomowa zima. Jak mówi Gareth Collins z ICL, symulacje wykazały, że kąt 60 stopni jest idealny, by wyrzucić w powietrze jak najwięcej materiału. Jeśli asteroida uderzyłaby pionowo z góry, zmiażdżyłaby więcej skał, jednak mniej materiału trafiłoby do atmosfery. Jeśli zaś uderzyłaby pod mniejszym kątem niż 60 stopni, to nie odparowałaby tak wielkiej ilości skał. To było uderzenie idealne, dodaje Collins. To był bardzo zły dzień dla dinozaurów. Im zaś więcej szczególnych warunków musiało być spełnionych, tym mniejsze prawdopodobieństwo, że do takiego zdarzenia dojdzie ponownie, stwierdza uczony. « powrót do artykułu
  3. Gdy asteroida, która przyniosła zagładę dinozaurom, uderzyła w Ziemię, doszło do olbrzymich pożarów, pojawiły się wielkie tsunami, a uderzenie wyrzuciło do atmosfery olbrzymie ilości siarki, która na długo zablokowała dostęp promieni słonecznych, spowodowała ochłodzenie, co ostatecznie zabiło dinozaury. To scenariusz znany, ale hipotetyczny. Teraz został on potwierdzony przez naukowców University of Texas, którzy zbadali setki metrów skał, jakie w ciągu 24 godzin wypełniły krater uderzeniowy. Te dowody to m.in.kawałki węgla drzewnego, skały naniesione przez przepływ wsteczny tsunami oraz brak siarki. To zapis wypadków, który odczytujemy bezpośrednio z miejsca uderzenia. Sam świadek opowiada nam o tym wydarzeniu, mówi profesor Sean Gulick z Instytutu Geofizyki University of Texas. Gulick stał na czele misji 2016 International Ocean Discovery Program, w ramach którego przeprowadzono wiercenia w miejscu, w którym asteroida uderzyła w naszą planetę w pobliżu Jukatanu. Większość materiału, który wypełnił krater uderzeniowy w ciągu kilku godzin po katastrofie pochodziła albo z miejsca uderzenia, albo też została naniesiona przez wody Zatoki Meksykańskiej, które w wyniku uderzenia gwałtownie się cofnęły, a następnie zalały krater. W ciągu zaledwie doby krater został wypełniony warstwą materiału grubą na około 130 metrów. To jeden z najszybciej przebiegających procesów osadzania w historii geologii. Osady te zaczęły gromadzić się w ciągu minut i godzin po uderzeniu, stanowią więc szczegółowy zapis wydarzenia, które doprowadziło do wyginięcia 75% organizmów żywych na Ziemi. Gulick mówi, że po krótkotrwałym regionalnym piekle nastąpiła długotrwała planetarna zima. Dinozaury najpierw zostały upieczone, a później zamrożone. Nie wszystkie zginęły tego dnia, ale wiele poniosło śmierć, stwierdza uczony. Zdaniem specjalistów energia uderzenia była 10 miliardów razy większa, niż energia bomb atomowych zrzuconych na Japonię. Była tak olbrzymia, że tysiące kilometrów dalej zapaliły się rośliny, a potężne tsunami dotarło na tereny dzisiejszego stanu Illinois. Teraz wewnątrz krateru znaleziono węgiel drzewny oraz chemiczny biomarker grzybów, co wskazuje, że powracające po tsunami wody naniosły wypalone resztki z całej okolicy. To był doniosły dzień w historii życia, a tutaj mamy dobrą dokumentację z samego centrum wydarzeń, mówi profesor Jay Melosh z Purdue University. Dla naukowców równie ważne jak to, co znaleźli, jest to, czego nie znaleźli. Obszar otaczający krater uderzeniowy jest pełny skał bogatych w siarkę. Jednak siarki nie ma w rdzeniu wydobytym z krateru. Odkrycie to potwierdza teorię mówiącą, że w wyniku uderzenia doszło do odparowania skał, olbrzymie ilości siarki trafiły do atmosfery i wywołały globalne ochłodzenie. Naukowcy szacują, że do atmosfery mogło trafić co najmniej 325 miliardów ton siarki. Aby zdać sobie sprawę, co to oznaczało dla klimatu, trzeba wiedzieć, że jest to o cztery rzędy wielkości więcej, niż ilość siarki, która trafiła do atmosfery w 1883 roku podczas erupcji wulkanu Krakatau. Erupcja ta spowodowała, że średnie temperatury na Ziemi na pięć lat obniżyły się o około 1,2 stopnia Celsjusza. Upadek asteroidy wywołał zniszczenia na skalę regionalną. Tym, co zabiło dinozaury i wiele innych roślin oraz zwierząt były zmiany klimatu. Prawdziwym zabójcą było to, co stało się w atmosferze. Jedynym sposobem na doprowadzenie na masowego wymierania są bowiem zmiany atmosferyczne, mówi Gulick. « powrót do artykułu
  4. Naukowcy zmierzyli wartość odżywczą diety roślinożernych dinozaurów, hodując ich pokarm w warunkach atmosferycznych zbliżonych do tych sprzed 150 mln lat. Wcześniej wielu specjalistów uważało, że rośliny wyhodowane w atmosferze o dużej zawartości dwutlenku węgla mają niską wartość odżywczą. Nowe podejście eksperymentalne zespołu dr. Fiony Gill z Uniwersytetu w Leeds pokazało jednak, że to niekoniecznie prawda. Brytyjczycy hodowali pokarm dinozaurów, np. skrzyp czy miłorząb, w warunkach wysokiego poziomu CO2. Sztuczny system fermentacyjny pozwalał symulować trawienie liści w żołądkach zauropodów. Dzięki temu autorzy publikacji z pisma Palaeontology stwierdzili, że wiele roślin miało o wiele wyższą wartość energetyczną i zawartość składników odżywczych niż dotąd sądzono. To z kolei oznacza, że wbrew wcześniejszym przypuszczeniom, megaroślinożercy nie musieli wcale tak dużo jeść i że ekosystem mógł utrzymać znacznie większą gęstość populacji (+20%). W mezozoiku, gdy żyły olbrzymie brachiozaury czy diplodoki, klimat był zupełnie inny, z prawdopodobnie o wiele wyższym poziomem CO2. Zakładano, że skoro rośliny rosły w takich warunkach szybciej i/lub stawały się wyższe, spadała ich wartość odżywcza. Uzyskane wyniki pokazują, że [przynajmniej] w przypadku niektórych roślin to nieprawda. Nasze badania nie dają pełnego obrazu diety dinozaurów. Nie obejmują też [całego] zakresu występujących wtedy roślin, ale lepsze zrozumienie, jak te zwierzęta jadły, może naukowcom pomóc w zrozumieniu [trybu] ich życia. Akademicy z Leeds dodają, że dzięki ich nowemu podejściu eksperymentalnemu będzie można symulować inne ekosystemy i diety innych prehistorycznych megaroślinożerców, np. mioceńskich ssaków będących przodkami wielu współczesnych ssaków. « powrót do artykułu
  5. Dinozaury, np. tyranozaury, często przedstawia się z obnażonymi zębami i wystawionym językiem. Nowe badania pokazują jednak, że nie mogły one wysuwać języka z pyska jak jaszczurki. Ich języki były bowiem prawdopodobnie zakotwiczone w dnie jamy ustnej podobnie jak u aligatorów. Naukowcy z Uniwersytetu Teksańskiego w Austin i Chińskiej Akademii Nauk doszli do takiego wniosku, badając kości gnykowe współczesnych ptaków i aligatorów, a także dinozaurów i pterozaurów. Autorzy publikacji z pisma PLoS ONE twierdzą, że istnieje związek między lataniem a wzrostem różnorodności i mobilności języka. Języki są często przeoczane. A dają one kluczowy wgląd w tryb życia wymarłych zwierząt - zaznacza prof. Zhiheng Li. W ramach badań wykonano wysokiej rozdzielczości zdjęcia tomograficzne mięśni i kości gnykowych 3 aligatorów i 13 gatunków współczesnych ptaków, np. strusi i kaczek. Okazy kopalne, głównie z północno-zachodnich Chin, obejrzano pod kątem zachowania delikatnych kości. Analiza objęła m.in. pterozaury i tyranozaury (Tyrannosaurus rex). Okazało się, że kości gnykowe większości dinozaurów przypominały kości gnykowe aligatorów i krokodyli, tzn. były krótkie, proste i połączone z niezbyt mobilnym językiem. Prof. Julia Clarke dodaje, że w związku z tym wszelkie rekonstrukcje, które przedstawiają języki dinozaurów wystawione z rozdziawionej paszczy, są błędne. Przez długi czas źle je rekonstruowano. U większości dinozaurów kości gnykowe były bardzo krótkie. U przedstawicieli rzędu krokodyli [Crocodilia] z podobnie krótkimi kośćmi gnykowymi język jest [zaś] przymocowany do dna jamy ustnej. U pterozaurów, dinozaurów ptasiomiednicznych i współczesnych ptaków występowała za to duża różnorodność kości gnykowych. Naukowcy sądzą, że spory zakres kształtów kości ma związek ze zdolnością lotu (kości nielotów, np. emu, wyewoluowały zaś od przodka, który umiał latać). Amerykańsko-chiński zespół przekonuje, że wzbicie się w przestworza doprowadziło do nowych sposobów żerowania/odżywiania się, a to z kolei miało związek z różnorodnością i ruchliwością języka. Generalnie ptaki w niezwykły sposób rozbudowały strukturę języka - zaznacza Clarke. Może to mieć związek ze spadkiem zręczności w wyniku przekształcenia dłoni w skrzydła - dodaje Li. Jeśli nie możesz wykorzystywać łap do manipulowania ofiarą, wzrasta rola języka w manipulowaniu pokarmem. To jedna z wysuniętych przez nas hipotez. Wyjątkiem od reguły łączącej różnorodność języka z lotem były dinozaury ptasiomiedniczne, do których należały m.in. stegozaury, ceratopsy i inne roślinożerne gady przeżuwające. Choć nie latały, także miały wysoce skomplikowane i bardziej mobilne kości gnykowe, które mimo wszystko różniły się strukturalnie od kości latających dinozaurów i pterozaurów. Clarke przekonuje, że dalsze badania nad zmianami anatomicznymi, które towarzyszyły przekształceniom funkcji języka, mogą poprawić stan wiedzy nt. ewolucji ptaków. Współcześnie da się bowiem np. prześledzić, jak zmiany języków ptaków wiążą się z położeniem głośni. To z kolei oddziałuje na sposób oddychania i wokalizacji. « powrót do artykułu
  6. Przed około 65 milionami lat na Ziemię spadła asteroida, która przyniosła zagładę dinozaurom. Naukowcy od dziesięcioleci próbują zrozumieć, co stało się później. Jak wyglądała Ziemia przez następne setki i tysiące lat. Badania miejsca upadku asteroidy sugerują, że do atmosfery przedostały się olbrzymie ilości siarki, które na całe lata lub nawet dekady zablokowały dostęp promieniom słonecznym. Na Ziemi prawdopodobnie zapanował rodzaj nuklearnej zimy, a temperatury na lądach mogły obniżyć się nawet o 28 stopni Celsjusza. A gdy już wyrzucony przez asteroidę materiał opadł, planeta odczuła skutki oddziaływania dwutlenku węgla, który przedostał się do atmosfery. Dotychczas jednak wszelkie oceny ilości CO2 w atmosferze i jego wpływu na temperatury pochodziły głównie z modeli klimatycznych. W najnowszym numerze Science ukazał się artykuł autorstwa geologa Kena MacLeoda z University of Missouri, który od lat bada okres po upadku asteroidy. Zdaniem uczonego, średnia globalna temperatura wzrosła o 5 stopni Celsjusza i utrzymywała się na tym poziomie przez około 100 000 lat. MacLeod podróżuje po całym świecie, badając warstwę osadów, która oddziela ostatnie lata istnienia dinozaurów od następującej po nich epoki. Warstwa ta, zwana granicą kreda-paleogen(K-Pg), jest łatwa do zidentyfikowania, gdyż znajduje się w niej dużo irydu, pierwiastka powszechnie występującego w asteroidach, ale rzadkiego na Ziemi. Na potrzeby najnowszych badań zespół MacLeoda prowadził wykopaliska w pobliżu El Kef w Tunezji. Znajduje się tam jedna z najważniejszych sekcji granicy K-Pg. W chwili uderzenia asteroidy, region ten znajdował się pod wodą. W wydobytym i przesłanym na University of Missouri materiale zidentyfikowano mikroskopijne pozostałości po rybach: zęby, łuski, ości. Materiał pochodzi z ostatnich 50 000 lat kredy i kilkuset tysięcy lat po upadku asteroidy. We wszystkich pobranych próbkach występowało wystarczająco dużo pozostałości po rybach, by przeprowadzić wszelkie potrzebne badania, mówi MacLeod. Naukowcy podzielili próbki na trzy części. W jednej znajdował się materiał sprzed upadku asteroidy, w drugiej ten z okresu bezpośrednio po upadku, a w trzeciej, materiał nieco od tego z drugiej próbki. Sygnatury izotopów tlenu w skamieniałych szczątkach ryb pozwalają na określenie temperatury, w jakiej żyły zwierzęta. A zaobserwowane przez zespół MacLeoda zmiany wskazują, że średnia globalna temperatura zwiększyła się o 5 stopni Celsjusza i pozostała na tym poziomie przez kolejne 100 000 lat. Badania MacLeoda potwierdzają to, co sugerowali wcześniej inni naukowcy badający skamieniałe liście. Jeśli zatem rzeczywiście mieliśmy do czynienia z tak znacznym wzrostem temperatur, oznacza to, że poziom dwutlenku węgla w atmosferze wynosił wówczas 2300 części na milion (ppm). To znacznie więcej, niż wskazywało wiele wcześniejszych badań. Dla porównania warto dodać, że obecny poziom dwutlenku węgla w atmosferze to 410 ppm i jest on najwyższy od wielu milionów lat. Skoro zatem emisja powodowana przez człowieka zwiększyła ilość CO2 do obecnego poziomu, a upadek asteroidy spowodował, że dwutlenku węgla było w atmosferze niemal 6-krotnie więcej niż obecnie, może to oznaczać, że po upadku asteroidy pożary lasów były znacznie bardziej rozpowszechnione niż się uważa, albo też pojawił się dwutlenek węgla ze źródeł, które nie były dotychczas brane pod uwagę. « powrót do artykułu
  7. Po przeprowadzeniu symulacji komputerowych grupa amerykańskich i czeskich naukowców doszła do wniosku, że do wyginięcia dinozaurów doprowadziła pozaziemska kolizja asteroid sprzed 160 mln lat. Powstały w wyniku zderzenia kosmiczny gruz krążył po Układzie Słonecznym, a jeden z odłamków uderzył ostatecznie w Ziemię. Inne trafiły w Księżyc, Wenus i Marsa, tworząc w ten sposób jedne z największych ich kraterów (Nature). Wierzymy, że istnieje bezpośredni związek między tym wybuchem, powstałym w wyniku tego wydarzenia deszczem [mniejszych] asteroid a potężnym uderzeniem, które miało miejsce 65 mln lat temu i doprowadziło, jak sądzimy, do wyginięcia dinozaurów – wyjaśniają dr Bill Bottke z Southwest Research Institute w Boulder i jego czescy współpracownicy David Vokrouhlicky i David Nesforny. Autorzy bardzo wielu badań dywagowali, co się stało w ciągu ostatnich 100-200 mln lat, że doprowadziło to do znacznego wzrostu uderzeń asteroid w Ziemię (odnotowano mniej więcej 2-krotne przekroczenie długoterminowej normy). Dr Bottke i zespół podjęli się próby wykazania, że spiętrzenie to było skutkiem rozbicia 170-kilometrowej skały w pierścieniu zlokalizowanym między Marsem a Jowiszem. Stało się to ok. 160 mln lat temu. Olbrzym roztrzaskał się po kolizji z trzykrotnie od siebie mniejszym (60-km) obiektem. Powstał wtedy rój planetoid (można go oglądać do dzisiaj), znany jako rodzina Baptistina. Symulacja komputerowa wykazała, że pierwotnie rój był większy. Część odłamków rozproszyła się po Układzie Słonecznym. Sto osiem milionów lat temu jeden z największych doprowadził do uformowania na Księżycu krateru Tycho. Dodajmy, że jego średnica to 85 kilometrów. Jeszcze bardziej prawdopodobne, że większy od rzeźbiącego powierzchnię Księżyca kawałek skały, była to asteroida o średnicy ok. 10 km, uderzył w Ziemię, tworząc krater Chicxulub. Dzisiaj jest on fragmentem półwyspu Jukatan. To wskutek tego wydarzenia po dinozaurach zostało tylko wspomnienie. Asteroida 298 Baptistina rozbiła się w pobliżu czegoś, co można by opisać jako dynamiczną superautostradę, drogę, za pośrednictwem której wiele obiektów ucieka z pierścienia – wyjaśnia dr Bottke. Zderzenie dużych fragmentów skał z planetami Układu Słonecznego było więc właściwie nieuniknione. Analiza chemiczna materiału z krateru Chicxulub także pozwoliła na powiązanie go ze skałami budującymi obiekty z roju Baptistina. W komentarzu zamieszczonym na łamach Nature Philippe Claeys i Steve Goderis z Vrije Universieit w Brukseli stwierdzają, że hipoteza przypisująca wyginięcie olbrzymich gadów uderzeniu komety przybyłej z rubieży Układu Słonecznego jest mało prawdopodobna, natomiast związki rodziny Baptistina z tą katastrofą wydają się dużo realniejsze.
  8. W skałach w Chinach znaleziono skamieniałości najstarszych i największych jak dotąd pcheł. Pasożyty ze środkowej jury i wczesnej kredy mierzyły nawet ponad 20 mm. Dla porównania: największe współczesne pchły, które gnębią północnoamerykańskie bobry górskie (Aplodontia rufa), mają zaledwie 12 mm. André Nel z Muzeum Historii Naturalnej w Paryżu, jeden z członków chińsko-francusko-amerykańskiego zespołu, uważa, że prehistoryczne pchły były tak duże, że żerowały raczej na upierzonych czy owłosionych dinozaurach niż małych wówczas jeszcze ssakach. W artykule opublikowanym w Nature można przeczytać, że tak jak w przypadku innych linii pasożytów zewnętrznych zachowało się niewiele skamieniałości, ograniczonych do przedstawicieli współczesnych rodzin z wcześniejszych okresów kenozoiku. W takiej sytuacji niewiele wiadomo o początkach pcheł w mezozoiku. Pochodzenie grupy koronnej pcheł Tarwinia z kredy nadal pozostaje przedmiotem sporów, dlatego sfosylizowane przykłady z Chin wydają się tym cenniejsze. Choć pod wieloma względami przypominały późniejsze pasożyty, prehistoryczne olbrzymy miały trochę prymitywnych cech, np. nieskoczne tylne odnóża. U wszystkich występowały wydłużone syfony ssące, co sugeruje, że pochodziły od mezozoicznych wojsiłków.
  9. Naukowcy od lat zastanawiają się, czemu wiele teropodów ze skamieniałości przyjęło charakterystyczną pozycję z silnie wygiętą ku tyłowi głową i podwiniętym do góry ogonem (nazywa się ją pozycją opistotoniczną). Alicia Cutler i zespół z Brigham Young University uważają, że można to wyjaśnić zanurzeniem w słodkiej wodzie. Początkowo Cutler prowadziła eksperymenty ze świeżymi i mrożonymi kurczakami. Ustawiała je na 3 miesiące na piasku i sprawdzała, czy w wyniku wysuszenia ptaki charakterystycznie się wygną. Żaden ze skurczów mięśni do tego nie doprowadził, a rozkład przebiegał w całkowicie przewidywalny sposób. Kiedy jednak 7 kolejnych ptaków włożono do zimnej słodkiej wody, szyja wygięła się w łuk w ciągu zaledwie paru sekund. Pozostawienie ich w zanurzeniu na miesiąc tylko lekko pogłębiło wygięcie. Wyniki Cutler pozostają w sprzeczności z wynikami badań Cynthii Marshall Faux z Museum of the Rockies i Kevina Padiana z Uniwersytetu Kalifornijskiego w Berkeley, którzy umieszczali przepiórki w słonej wodzie, a ponieważ nic się nie działo, stwierdzili, że wygięcie występujące w tak licznych skamieniałościach stanowi skutek drgawek przedśmiertnych. Cutler sądzi jednak, że sprzeczność może być tylko pozorna, bo obiekty należy zanurzać w wodzie słodkiej, nie słonej. Choć dróg do pozycji opistotonicznej jest wiele, zanurzenie w wodzie to najprostsze wyjaśnienie. Podczas wystąpienia na tegorocznej konferencji Stowarzyszenia Paleontologii Kręgowców Cutler wyjaśniła, że u teropodów i innych zwierząt z wygięciem opistotonicznym sklepienie czaszki znajduje się nad kością krzyżową, a ogon zawija się nad czaszką i szyją. To wersja skrajna, przy pośrednich ogon i głowa mogą się ustawiać w pionie. Spośród wcześniejszych wyjaśnień pozycji opistotonicznej poza wysuszeniem warto wymienić zatrucie i uduszenie. Prelegentka podkreślała, że większość "upozowanych" w ten sposób zwierząt znajdowano w środowiskach wodnych (jeziornych bądź rzecznych). Wg Cutler, rezultaty uzyskane przez jej zespół sugerują, że naturalne napięcie mięśni nadosiowych, czyli leżących nad osią długą kręgosłupa, "naciąga" czaszkę i szyję. Ruch ten ułatwia ich niewielka waga, związana z właściwościami kości pneumatycznych.
  10. Dinozaury rozmiarów psa, które żyły w pobliżu bieguna południowego, miały podobną tkankę kostną, co dinozaury zamieszkujące inne rejony Ziemi. Fakt ten obala wyniki studium sprzed 13 lat i może wyjaśnić, czemu gady te były w stanie panować nad naszą planetą aż przez 160 mln lat – uważa doktorantka Holly Woodward z Uniwersytetu Stanowego Montany (PLoS ONE). Jeśli szukamy odmienności na poziomie fizjologicznym, powinniśmy się ich spodziewać u dinozaurów z ekstremalnych środowisk, takich jak biegun południowy. W oparciu o tkankę kostną można jednak stwierdzić, że dinozaury żyjące w obrębie południowego koła podbiegunowego były podobne fizjologicznie do dinozaurów żyjących gdziekolwiek indziej. To pokazuje nam coś interesującego; że zasadniczo od początku wczesne dinozaury, a może nawet ich przodkowie, wyewoluowały fizjologię, która pozwoliła całej grupie przez miliony lat z powodzeniem eksploatować rozmaite warunki środowiskowe. Promotor Woodward prof. Jack Horner podkreśla, że jej ustalenia są spójne z innymi wynikami zgromadzonymi w laboratorium histologicznym uniwersyteckiego Museum of the Rockies. Sądzę, że najważniejszym odkryciem jest ustalenie, że polarne dinozaury nie wydają się inne od reszty pod względem wzrostu kości. Dinozaury mają pierścienie przyrostu rocznego, a jeśli ich nie widać, to znaczy, że nie skończyły jeszcze roku – wyjaśnia Horn. Woodward opowiada, że zdecydowała się przeprowadzić swoje badania pod wpływem studium z 1998 r. Dzięki dofinansowaniu National Science Foundation pojechała w 2010 r. do Australii i tam analizowała rzadką kolekcję kości z muzeum w Melbourne. Doktorantka zbadała kości 17 dinozaurów, które żyły 100-112 mln lat temu. Wszystkie gady poza jednym były roślinożercami. Wszystkie żyły na terenie południowego koła podbiegunowego (dzięki tektonice płyt wiadomo, że obecnie jest to terytorium stanu Wiktoria). W studium Woodward wzięli także udział naukowcy będący autorami badania sprzed 13 lat: Tom Rich z Melbourne Museum, Anusuya Chinsamy z University of Cape Town oraz Patricia Vickers-Rich z Monash University (w czerwcu 1998 r. na łamach Journal of Vertebrate Paleontology opublikowali oni artykuł pt. "Histologia kości polarnych dinozaurów"). Dawny zespół z Australii i RPA zaakceptował teorię młodej Amerykanki. Woodward tłumaczy, że teraz wzięto pod uwagę więcej kości, gdyż kolekcja rozrasta się od 25-30 lat. W 1998 r. paleontolodzy przyglądali się mikrostrukturze kości i stwierdzili, że różnice świadczą o tym, że niektóre gady radziły sobie z trudnymi warunkami polarnymi, hibernując, podczas gdy inne wytworzyły w toku ewolucji przystosowania, które pozwoliły im na całoroczną aktywność. Najnowsze studium pokazało, że wszystkie dinozaury poza najmłodszymi miały linie zatrzymania wzrostu (ang. Lines of Arrested Growth, LAGs). Ponieważ hipoteza hibernacyjna opierała się na obecności bądź braku LAGs, w ten sposób udało się ją obalić. W 1998 r. Rich, Chinsamy i Vickers-Rich analizowali kości hipsylofodonta oraz ornitomimozaura z wczesnej kredy. Pochodziły one ze stanowiska Otway Group of Dinosaur Cove w południowo-wschodniej Australii, która przed milionami lat leżała w obrębie południowego koła podbiegunowego. Trio paleontologów badało 6 kości udowych, jednak analizowano histologię tylko 2 z nich. Choć ich właściciele żyli w podobnym środowisku, hipsylofodont wykazywał stałe tempo odkładania tkanki kostnej, a ornitomimozaur cykliczny wzorzec tworzenia kości. Obecność LAGs u ornitomimozaura została więc zinterpretowana jako przejaw wprowadzania się w stan hibernacji. Już wkrótce po publikacji pracy pojawiły się głosy krytyki. Powoływano się m.in. na przykład niedźwiedzi polarnych, które nie hibernują, a mimo to mają w kościach pierścienie przyrostu rocznego. Badania prowadzone na współczesnych zwierzętach sugerują, że LAGs powstają w cyklu rocznym, bez względu na szerokość geograficzną czy klimat. Jak słoje przyrostów rocznych drzew, mogą być sprowadzone do wieku właściciela, dlatego brak takich znaków najprawdopodobniej wskazuje, że dinozaur nie skończył jeszcze roku. Znaki te można również znaleźć u dinozaurów, które żyły na dużo mniejszych szerokościach geograficznych i nie musiały hibernować. Woodward tłumaczy, że jej badania nie oznaczają, że dinozaury z okolic bieguna południowego niczym się nie odróżniały od reszty, na pewno jednak nie różniły się pod względem budowy kości.
  11. Do niedawna sądzono, że ptaki mają słabo rozwinięty węch, jednak w ostatnich latach dowiedzieliśmy się, że to nieprawda, a dzięki węchowi ptaki poszukują pożywienia, komunikują się między sobą, a nawet orientują się w terenie. Teraz naukowcy twierdzą, że to właśnie węch pomógł tym zwierzętom przetrwać wymieranie kredowe, które doprowadziło do zagłady dinozaurów. W 2009 roku paleontolog Darla Zelenitsky z kanadyjskiego University of Calgary odkryła, iż dinozaury, z których wyewoluowały ptaki, miały lepszy węch od reszty dinozaurów. Teraz Zelenitsky i jej koledzy postanowili zbadać, jak zmysł węchu wpłynął na ewolucję ptaków. Uczeni zbadali 157 gatunków dinozaurów, wymarłych ptaków oraz ptaków obecnie żyjących. Do przybliżonego stwierdzenia, na ile czuły jest węch zwierząt, użyli tzw. stosunku węchowego, czyli stosunku wielkości opuszki węchowej do półkul mózgu. Wiele dotychczasowych badań dowiodło, że stosunek węchowy jest dobrym odzwierciedleniem rzeczywistej czułości zmysłu węchu u ptaków. Kanadyjczycy wyliczyli stosunek węchowy dla 20 gatunków dinozaurów, 7 wymarłych gatunków ptaków i 130 gatunków ptaków obecnie występujących. Obliczeń dokonano posługując się zarówno danymi z literatury fachowej jak i badając czaszki zwierząt za pomocą tomografii komputerowej. Następnie stosunek węchowy umieścili na wykresie przedstawiającym ewolucję ptaków. Uczeni stwierdzili, że w procesie ewolucji z dinozaurów do ptaków stosunek węchowy ulegał zmniejszeniu, gdyż obszary mózgu odpowiedzialne za węch ustępowały tym odpowiedzialnym za wzrok i utrzymanie równowagi, które są niezbędne do lotu. Jednak mimo to, stosunek węchowy u najwcześniejszych ptaków wynosił ponad 20% i był co najmniej tak duży, jak u dinozaurów żyjących w tym samym czasie. Gdy pierwsze ptaki zaczęły ewoluować, stosunek węchowy jeszcze się zwiększył, wynosząc co najmniej 30%. Dopiero później, około 10 milionów lat po wymieraniu kredowym, węch ptaków zaczął w toku ewolucji tracić na znaczeniu i stosunek węchowy spadł u większości gatunków do znacznie poniżej 20%.Współcześnie istnieje jednak kilka gatunków, jak np. kiwi czy ptaki morskie, u których węch jest tak ważny, że stosunek węchowy nadal wynosi powyżej 30%. Uczeni przypuszczają, że węch ptaków najpierw uległ udoskonaleniu, gdyż dzięki niemu mogły łatwiej wynajdować pożywienie. Okres dobrego węchu zbiegł się w czasie z wymieraniem kredowym, a węch dał ptakom przewagę nad innymi zwierzętami, dzięki czemu przetrwały. Później ptaki zaczęły rozwijać inne umiejętności, takie jak zaawansowana nawigacja, skuteczniejsze techniki polowań czy - u niektórych gatunków - używanie narzędzi. Węch stracił więc na znaczeniu. Prace swoich kanadyjskich kolegów pochwalili uczeni z Nowego Jorku i Los Angeles, podkreślili jednak, że teoria o tym, iż to węch pozwolił ptakom przetrwać wymieranie jest naciągana, gdyż nie ma na to twardych dowodów.
  12. Najnowsze badania wskazują, że dinozaury były prawdopodobnie wczesnymi, jeśli nie pierwszymi zwierzęcymi żywicielami owadów z rzędu Phthiraptera, do których należą np. wszy. Kevin Johnson, ornitolog z Illinois Natural History Survey, wykorzystał skamieniałości i dane molekularne, by prześledzić ewolucję wszy i ich gospodarzy. Znalazł mocne dowody na to, że przodkowie wszy pasożytujących dziś na ptakach i ssakach zaczęli się różnicować jeszcze przed wymieraniem kredowym, które miało miejsce ok. 65 mln lat temu. Wyniki studium wspierają pomysł [i doniesienia autorów najnowszych badań genetycznych], że główne grupy ptaków i ssaków istniały przed wyginięciem dinozaurów. Jeśli były wszy, gdzieś w pobliżu musieli się kręcić ich żywiciele. Naukowcy stale próbują zrozumieć czynniki, które doprowadziły do powstania dzisiejszej różnorodności ptaków i ssaków. Jedna z teorii głosi, że wyginięcie dinozaurów wspomogło wczesne etapy różnicowania i ekspansji ptaków i ssaków (proces zwany radiacją ewolucyjną), dając im dostęp do nowych terytoriów i habitatów. Bazując na dowodach związanych z wszami, można jednak stwierdzić, że radiacja ssaków i ptaków już trwała, gdy olbrzymie gady wymierały. Czemu naukowcy tak bardzo skupili się na Phthiraptera? Ponieważ ściśle dopasowują się do metod obronnych gospodarza. Trichodectidae, które kiedyś nazywano wszołami, mają np. rowki na szczycie głowy. Pasują one idealnie do pojedynczego pasma włosów. Podchodząc w ten sposób żywiciela, owady unikają co prawda usunięcia, ale i mają niewielkie szanse na zmianę rodzaju żywego lokum. Wskutek tego historia ewolucyjna żywicieli i pasożytów mocno się ze sobą splata. Johnson i Vincent Smith sporządzili częściowe drzewo filogenetyczne Phthiraptera, porównując sekwencje DNA 69 współczesnych linii. Wszy są jak żywe skamieniałości. W tych pasożytach znajduje się zapis naszej przeszłości, dlatego rekonstruując ich historię ewolucyjną [zmiany w sekwencji genów, które się akumulują i pozwalają na określenie przybliżonego czasu wyewoluowania spokrewnionych grup organizmów], da się [...] również odtworzyć historię gospodarzy- przekonuje Smith. Amerykanie wykorzystali skamieniałości wszy, ptaków i ssaków do wytyczenia punktów czasowych na drzewie rodowym. Datowanie skamieniałości przeprowadzano w oparciu o wiek formacji geologicznych, w obrębie których zostały znalezione. Nasze analizy wskazują, że zarówno ptasie, jak i ssacze wszy zaczęły się różnicować przed wymieraniem kredowym. Biorąc pod uwagę, jak bardzo Phthiraptera są rozpowszechnione wśród ptaków, a do pewnego stopnia także wśród ssaków, prawdopodobnie i przed milionami lat występowały u wielu gospodarzy, w tym dinozaurów - podsumowuje Johnson.
  13. Sondaż, przeprowadzony ostatnio przez państwowy instytut badania opinii publicznej VsTIOM na próbie 1600 Rosjan z różnych regionów kraju, wykazał, że 32% naszych wschodnich sąsiadów wierzy, że Ziemia stanowi centrum Układu Słonecznego. Geocentryczne przeświadczenie nie jest jedną rzeczą, która zaskoczyła ankieterów. Okazało się bowiem, że 55% Rosjan uważa, że cała radioaktywność stanowi wynik działalności człowieka (naturalne promieniowanie tła zostało więc całkowicie pominięte). Co więcej, wg 29% respondentów, pierwsi ludzie żyli na Ziemi razem z dinozaurami. To naprawdę zdumiewające. Wszystkie [pytania] były absolutnie oczywiste. Dane świadczą o poziomie edukacji w kraju – podkreśla rzeczniczka VsTIOM Olga Kamenczuk. Kobiety częściej niż mężczyźni wierzyły w spreparowane informacje. Margines błędu wynosił 3,4%.
  14. Globalne ocieplenie zniszczyło 300 mln lat temu tropikalne lasy deszczowe. Naukowcy z Royal Holloway, University of London i Uniwersytetu Bristolskiego sądzą, że utorowało to drogę eksplozji ewolucyjnej gadów i przypadkowo umożliwiło pojawienie się 100 mln lat później dinozaurów. Opisywane zdarzenia miały miejsce w karbonie. W tym czasie Europa i Ameryka Północna leżały na równiku i pokrywały je lasy deszczowe. Gdy klimat Ziemi stał się gorętszy i bardziej suchy, lasy zniknęły, ułatwiając ewolucję gadów. Zmiana klimatu spowodowała, że lasy deszczowe uległy pofragmentowaniu na małe wysepki zieleni. Izolowane populacje gadów [...] ewoluowały w odrębnych kierunkach, prowadząc do wzrostu różnorodności – tłumaczy dr Howard Falcon-Lang z Wydziału Nauk o Ziemi na Royal Holloway. To klasyczna ekologiczna reakcja na rozdrobnienie habitatu. Dziś widzimy te same procesy, ilekroć jakaś grupa zwierząt zostanie oddzielona od macierzystej populacji. Badano je na wysepkach drogowych między głównymi systemami drogowymi, Karol Darwin obserwował je też na Galapagos [...] – dodaje prof. Mike Benton z Uniwersytetu Bristolskiego. Jego koleżanka z uczelni, Sarda Sahney, podkreśla, że to fascynujące, że nawet w obliczu pustoszącego upadku ekosystemu zwierzęta mogą się nadal różnicować, tworząc endemiczne populacje. Wg niej, scenariusz niekoniecznie będzie tak optymistyczny w przypadku zniknięcia lasów deszczowych Amazonii. W ramach badań Brytyjczycy analizowali zapis kopalny gadów przed i po zniszczeniu tropikalnych lasów. Wykazali, że przystosowując się do szybko zmieniającego się klimatu i środowiska, gady stały się bardziej zróżnicowane i zmieniły swoją dietę. Ze szczegółowymi wynikami studiów zespołu można się zapoznać na łamach pisma Geology.
  15. Wyginięcie 65 mln lat temu dinozaurów utorowało drogę wzrostowi rozmiarów ssaków – po tym historycznym wydarzeniu stały się one 1000-krotnie większe niż wcześniej. Dinozaury zniknęły i nagle nie było komu zjadać roślin. Ssaki zaczęły bazować na wolnym źródle pożywienia, a gdy jest się dużym, korzystniej być roślinożercą – wyjaśnia dr Jessica Theodor z Uniwersytetu w Calgary. Kanadyjka podkreśla, że studium jej zespołu pokazuje, jak szybko w kategoriach geologicznych ekosystem potrafi się na nowo skalibrować. Dinozaury straciliśmy 65 mln lat temu, a w ciągu 25 mln lat system zresetował się i nastawił na nowe maksimum dla zwierząt, które nadal go zamieszkiwały. [...] To naprawdę szybka ewolucja. Pani biolog zdradziła, że z maksymalnej wagi 10 kg, gdy ssaki dzieliły środowisko z olbrzymimi gadami, ich gabaryty wzrosły do maksimum 17 ton (!) po przejęciu habitatu tylko dla siebie. Theodor ujawnia, że dotąd naukowcy tylko dyskutowali o wzorcach zmiany gabarytów w wyniku "konkurencyjnego uwolnienia" ssaków po wyginięciu dinozaurów, ale nikt nie przeprowadził odpowiednich wyliczeń. Dopiero ona i 19 specjalistów z różnych krajów uczyniło ten ważny krok. Przejrzeliśmy każdy okres geologiczny, zastanawiając się, kto jest największy w danej grupie ssaków. Potem szacowaliśmy masę ciała. Akademicy zbierali dane dotyczące maksymalnych rozmiarów głównych grup ssaków lądowych na każdym kontynencie, w tym nieparzystokopytnych (Perissodactyla), trąbowców (Proboscidea), szczerbaków (Xenarthra) oraz wielu wymarłych taksonów. Wyniki wskazują, że na wielkość wpływają ilość dostępnego miejsca i klimat – im chłodniej, tym ssaki były większe, gdyż większe zwierzęta lepiej utrzymują ciepło. Okazało się również, że żadna pojedyncza grupa ssaków nie zawłaszczyła sobie kategorii największych – w różnym czasie i miejscach najwięksi z największych należeli bowiem do różnych grup. Ze szczegółami studium międzynarodowego zespołu można się zapoznać na łamach Science.
  16. Brytyjsko-chińskiemu zespołowi badaczy udało się, jako pierwszemu w historii, ustalić kolor piór noszonych przez dinozaury. Odkrycie dostarcza informacji nie tylko na temat wyglądu badanych gadów, lecz także na temat roli piór w ich organizmach. Identyfikacji barw noszonych przez prehistoryczne zwierzęta dokonano podczas badań nad skamieniałościami znalezionymi na stanowisku Jehol w północno-wschodnich Chinach. Jak uważają autorzy odkrycia, analizowane przez nich szczątki liczyły sobie ponad 100 mln lat. Odkrycia dokonano dzięki poszukiwaniu ciałek barwnych zwanych melanosomami, wbudowanych w białkową strukturę piór. Ponieważ barwniki zawarte w ich wnętrzu mogły ulec rozkładowi, badacze identyfikowali melanosomy głównie na podstawie ich kształtu. Punktem odniesienia, pozwalającym na przypisanie kształtu określonego typu ciałek do ich możliwej barwy, były analogiczne struktury występujące u żyjących obecnie ssaków i ptaków. Analiza materiału pobranego ze szczątków wielu zwierząt zakończyła się stwierdzeniem melanosomów w skamieniałościach zaledwie dwóch gatunków dinozaurów - sinozauropteryksa oraz sinornitozaura. U pierwszego z nich badacze stwierdzili obecność feomelanosomów, sferycznych struktur znanych m.in. z występowania we włosach osób o rudych włosach. Pasma piór bogatych w te struktury przeplatały się u tego gatunku z pasmami niezawierającymi melanosomów, co sugeruje, że ogony tych zwierząt mogły mieć ubarwienie biało-pomarańczowe. W przypadku sinornitozaura badacze zidentyfikowali znacznie większą różnorodność kolorów. Okazało się bowiem, że osobniki tego gatunku wytwarzały nie tylko feomelanosomy, lecz także eumelanosomy - ciałka o kiełbaskowatym kształcie, u współczesnych zwierząt zabarwione na czarno lub brązowo. Co więcej, poszczególne osobniki sinornitozaura wytwarzały pióra o różnym zagęszczeniu ciałek z obu grup, co sugeruje, że w obrębie tego gatunku istniała wyraźna różnorodność kolorystyczna. Zawsze mówimy początkującym studentom paleontologii, że cechy takie jak dźwięki lub kolor nigdy nie zostaną wykryte w materiale kopalnym. Oczywiście przesłanie to trzeba będzie przemyśleć, żartuje prof. Michael Benton, pracownik Uniwersytetu w Bristolu i główny autor odkrycia. Oprócz ustalenia możliwego wyglądu prehistorycznych dinozaurów badaczom udało się także ustalić prawdopodobną funkcję upierzonych ogonów u gadów. Jak wykazała analiza zebranych piór, były one zdecydowanie zbyt małe, by zapewnić zwierzęciom siłę nośną potrzebną do latania. Naukowcy wnioskują w związku z tym, że mogły one pełnić rolę termoizolacyjną lub służyć jako nośnik jakiejś informacji.
  17. Australijczycy odkryli, że obfitość pożywienia i brak drapieżników po wyginięciu dinozaurów doprowadziły do tego, że latające uprzednio ptaki utyły i straciły zdolność lotu (Systematic Biology). Dr Matthew Phillips z Australijskiego Uniwersytetu Narodowego i jego zespół przyjrzeli się sekwencjom mitochondrialnego DNA (mtDNA) wymarłych moa. Choć spodziewali się, że będą spokrewnione z nielotami, ku zaskoczeniu wszystkich okazało się, że ich najbliższymi krewnymi są niewielkie latające kusacze z Ameryki Południowej. Badania molekularne akademików z antypodów wykazały, że strusie północnoafrykańskie, australijskie emu i kazuary, południowoamerykańskie nandu oraz nowozelandzkie moa niezależnie utraciły zdolność do lotu, ale miało to bliski związek z zagładą dinozaurów ok. 65 mln lat temu. Sądzono, że wiele największych nielotów świata, bezgrzebieniowców (Ratitae), miało wspólnego nielatającego przodka. My skupiliśmy się na podnoszonych ostatnio wątpliwościach dotyczących tego założenia. Nasze studium sugeruje, że latający przodkowie bezgrzebieniowców żerowali na poziomie gruntu i dobrze biegali. Wyginięcie dinozaurów zniosło presję ewolucyjną wywieraną przez drapieżniki, by ptaki umiały latać i były lekkie. Dr Phillips zaznacza, że niezależne korzenie nielotności pozwalają rozwiązać zagadkę, w jaki sposób bezgrzebieniowce mogły się rozprzestrzenić po świecie, pokonując wiele barier morskich. Ich przodkowie po prostu umieli latać. Wg niektórych, Ratitae miały być reliktami superkontynentu Gondwany, która łączyła Afrykę, Amerykę Południową, Australię, Antarktydę, Nową Zelandię, Indie i Madagaskar. My wykazaliśmy, że odrębne linie bezgrzebieniowców wyewoluowały zbyt niedawno, by znajdować się na Gondwanie, zanim doszło do rozpadu superkontynentu. Niewykluczone też, że nie tylko strusie, ale i wszystkie Ratitae pochodzą z północnych kontynentów.
  18. Choć badanie szczątków dinozaurów jest jedną z najważniejszych gałęzi paleontologii, badaczom do dziś nie udało się jednoznacznie ustalić, czy zwierzęta te były za życia stałocieplne, czy zmiennocieplne. W czasopiśmie PLoS ONE pojawiła się jednak interesująca praca, dostarczająca nowych danych uzyskanych dzięki zupełnie nowemu spojrzeniu na to zagadnienie. Główny autor pracy, dr Herman Pontzer z Uniwersytetu Waszyngtońskiego, zajmuje się na co dzień badaniem układu ruchu u człowieka. Kiedy jednak uświadomił sobie, że stosowane przez niego metody można zastosować także w odniesieniu do dinozaurów, skontaktował się z dr. Johnem Hutchinsonem - ekspertem z zakresu motoryki ciał pradawnych gadów. Wspólnie badacze stworzyli matematyczny model, który pozwolił na określenie prawdopodobieństwa występowania stałocieplności u dinozaurów. Podstawowa forma metody opracowanej wiele lat temu przez dr. Pontzera opiera się na istnieniu zależności pomiędzy długością nogi oraz siłą, którą jest ona w stanie wytworzyć, i masą ciała, którą może ona unieść. Model ten pozwala na dokładne ustalenie energetycznego kosztu poruszania się dla większości gatunków, lecz na wszelki wypadek wzbogacono go dodatkowo o ustalenie objętości mięśni, które musiałyby zostać uruchomione, by umożliwić dinozaurowi chodzenie. Uzbrojeni w zestaw równań, badacze przystąpili do pomiarów kości należących do 13 gatunków dinozaurów. Jak się okazało, obie metody obliczeniowe - podstawowa oraz ulepszona - wykazały, że mięśnie gadów najprawdopodobniej wytwarzały podczas swojej pracy tak wiele ciepła, że wystarczało ono do utrzymania stałej ciepłoty ciała. Mało tego - po uwzględnieniu ewolucyjnych zależności pomiędzy badanymi gatunkami uznano za bardzo prawdopodobne, że stałocieplność mogła wyewoluować bardzo wcześnie, być może na samym początku wyodrębniania się linii rozwojowej dinozaurów. Czy zebrane informacje zakończą raz na zawsze debatę na temat energetyki organizmów dinozaurów? Najprawdopodobniej nie, skoro nie wierzą w to nawet sami autorzy najnowszych badań. Wiedza, którą podzielili się ze światem, będzie jednak istotna dla zwolenników tezy o stałocieplności wielkich gadów.
  19. Po 10 latach badań Jack Horner z Uniwersytetu Stanowego Monatany stwierdził, że aż 1/3 zidentyfikowanych jako nowe gatunki dinozaurów mogła w ogóle nie istnieć. Wg niego, dobrym przykładem błędnej interpretacji skamielin może być Nanotyrannus, który w rzeczywistości był prawdopodobnie młodym tyranozaurem. Czaszka Tyrannosaurus rex przechodziła podczas dojrzewania ogromną przemianę i stawała się bardziej wydłużona. Taką interpretację dowodów zaproponowano, gdy paleontolodzy odkryli osobnika o rozmiarach pośrednich między nanotyranem (Nanotyrannus lancensis) a tyranozaurem. Horner, który wystąpił w dokumencie "Dinozaury odkodowane" National Geographic, twierdzi, że nanotyran, w którego żuchwie tkwiło 17 zębów, był w rzeczywistości młodym T. rex (gatunek ten dysponował 12-zębną żuchwą). U odkrytego niedawno dinozaura w żuchwie występowało 14 zębów, co wg Amerykanina, oznacza, że gdy drapieżny gad rósł, tracił drobne zęby na rzecz większych, nadających się do kruszenia kości. Naukowiec analizował też skamieliny z późnej kredy, m.in. pozostałości triceratopsów z formacji Hell Creek we wschodniej Montanie. Gady te umierały w różnym wieku, dzięki czemu można było prześledzić przemiany anatomiczne, jakim podlegały podczas wzrostu. Okazało się, że u młodych zwierząt rogi wyginały się ku tyłowi, podczas gdy u dorosłych wystawały do przodu. Ponadto z wiekiem kości wokół kryzy spłaszczały się i wydłużały. Współpracownik Hornera, Mark Goodwin z Uniwersytetu Kalifornijskiego w Berkeley, wyjaśnia, że zespół miał dostęp do danych, które pozwoliły dokładniej niż kiedykolwiek dotąd zobrazować cykl rozwojowy poszczególnych dinozaurów. Tak duże zmiany w wyglądzie miały pozwolić wszystkim przedstawicielom gatunku na odróżnienie osobników dorosłych od młodych, które wymagały opieki. Niektórzy specjaliści odnoszą się sceptycznie do rewelacji Hornera i Goodwina. Owszem, zgadzają się, że w przypadku niektórych "nowych" gatunków mogło dojść do nieprawidłowej identyfikacji, lecz 1/3 to dla nich za duży odsetek błędów. Ponadto taką teorię trudno potwierdzić lub obalić, gdyż skamielin jest nadal zbyt mało.
  20. W stanie Tamil Nadu w południowych Indiach znaleziono setki skamieniałych dinozaurzych jaj. Zespół geologów z Periyar University natrafił na nie przypadkiem 12 września. Naukowcy szukali wtedy miejsca do rozpoczęcia wykopalisk w basenie rzeki Kaweri. Odpoczywając przy strumieniu w pobliżu wioski Ariyalur, zobaczyli zakopane w dnie sferyczne obiekty. Mogli się domyślać, z czym mają do czynienia, biorąc pod uwagę fakt, że obszar ten słynie ze skamielin dinozaurów już od XIX wieku (1843 r.), gdy pierwszy raz ukazały się one oczom pary Brytyjczyków. Wkrótce natknęliśmy się na kilka ich skupisk i zdaliśmy sobie sprawę, że to prawdopodobnie gniazda. Geolodzy zrobili zdjęcia, a następnie wysłali je do ekspertyzy do ośrodka w Pudiyarturiyal i doktora Kelmera z Międzynarodowego Centrum Badań nad Dinozaurami, gdzie potwierdzono, że to rzeczywiście jaja prehistorycznych gadów. Należały one do karnozaurów (Carnosauria) i zauropodów (Sauropoda). Dalsze badania są prowadzone przy współpracy specjalistów z Niemiec, Szwajcarii i USA. Szef indyjskiej ekipy, dr Ramkumar, opowiada, że jaja miały od 13 do 20 cm średnicy i leżały w kupkach po 7-8 w piaskowych gniazdach o przekroju 1,25 m, rozproszonych na powierzchni ok. 2 kilometrów kwadratowych (na brzegach i w dnie cieków). Znaleziono je w kilku warstwach gleby. Oznacza to, że dinozaury wracały tu przez wiele lat. Jaja pokrywała warstwa pyłu wulkanicznego, co wg geologa, tłumaczy, czemu pozostały one niezapłodnione, nic się z nich nie wylęgło, a dinozaury ostatecznie wyginęły. Przypomnijmy, że jedna z teorii wyginięcia dinozaurów jest taka, że zabiła je seria wybuchów wulkanicznych na dzisiejszym płaskowyżu Dekan w Indiach. Po raz pierwszy jaja dinozaurów znaleziono we Francji w 1859 r. Potem natrafiano na nie w ponad 200 miejscach na całym świecie, często właśnie w Azji. Zespół doktora Ramkumara zaapelował do rządów centralnego i stanowego o ochronę "jurajskiego skarbu". Obszar wykopalisk ogrodzono. Wiele wskazuje na to, że to największy obszar lęgowy w tej okolicy, a może nawet w Indiach. Ramkumar i jego studenci pojechali do Ariyaluru, by przeszukiwać tutejsze skały i osady w ramach studium finansowanego przez indyjskie i niemieckie instytucje naukowe. Oprócz jaj, w ich ręce wpadły skamieniałe kości, odchody, a także odciski jaj.
  21. Kto do niedawna miał wątpliwości na temat istnienia upierzonych dinozaurów, dziś musi stawić czoła nowym danym paleontologicznym. Badacze z Chińskiej Akademii Nauk przedstawili bowiem zdjęcia wyjątkowo dobrze zachowanych szczątków gatunku nazwanego Anchiornis huxleyi, opierzonych gadów żyjących co najmniej 10 milionów lat przed słynnym archeopteryksem. Skamieniałości odkryto w północno-wschodnich Chinach. Ich wiek oceniono na co najmniej 150 milionów lat, co oznacza, że to najstarsze pozostałości piór znane nauce. Zdaniem prof. Xu Xinga, szefa zespołu, który dokonał tego niezwykłego znaleziska, jest to także ostateczny dowód na to, że ptaki wyewoluowały od gadów. Nowy gatunek nazwano Anchiornis huxleyi. Jego nazwa rodzajowa oznacza "krewny ptaków", zaś nazwa gatunkowa została mu nadana na cześć Thomasa H. Huxleya - jednego z pierwszych popularyzatorów teorii ewolucji. Odkryte okazy są bardzo obficie pokryte piórami. Przedstawiciele A. huxleyi mieli opierzone nie tylko kończyny górne, lecz także ogony. O pokrewieństwie z ptakami świadczy także typowo "ptasia" budowa stóp, zaopatrzonych w cztery palce. Prof. Michael Benton, niezwiązany z zespołem prof. Xinga paleontolog w Uniwersytetu w Bristolu, nie ukrywa podekscytowania odkryciem. Kiedy patrzy się na drzewo życia, jest dość oczywiste, że pióra pojawiły się przed pojawieniem się szczątków archeopteryksa. Teraz fantastyczne odkrycia profesora Xu Xinga udowadniają to raz a dobrze.
  22. Powieści czy filmy nawiązujące do idei, że część dinozaurów przeżyła katastrofę, która spowodowała ich wyginięcie, przemawiają do ludzkiej wyobraźni. Okazuje się, że może to być nie tylko fikcja literacka, ale również fakt potwierdzony naukowo, ponieważ znalezione w Ojo Alamo Sandstone (USA) kości olbrzymich gadów wskazują, że żyły one na terenie dzisiejszego Nowego Meksyku i Kolorado nawet przez 500 tys. lat po katastrofie (Palaeontologia Electronica). Głównym autorem badań jest Jim Fassett. Jego zespół przeprowadził drobiazgową analizę chemiczną skamieniałości, określano też wiek skał, w których je znaleziono. "Potwierdzenie tej hipotezy jest trudne, [...] gdyż trzeba wykluczyć możliwość, iż mamy do czynienia z kośćmi datowanymi na okres sprzed wyginięcia. Po zabiciu i odłożeniu w piaskach oraz błocie mogło dojść do ekshumowania kości przez rzekę, a następnie do "wchłonięcia" ich przez młodsze utwory skalne. Nie jest to powszechne zjawisko, ale było wcześniej wykorzystywane do wytłumaczenia istnienia innych pokredowych skamieniałości. By wykluczyć takie wyjaśnienie, Fassett zgromadził wiele dowodów, które wskazywały, że kości z Ojo Alamo Sandstone nie zostały wygrzebane i zaniesione gdzie indziej przez wodę, a dinozaury naprawdę przetrwały w tym ustronnym miejscu. Paleontolodzy przeanalizowali biegunowość magnetyczną skał i występujących w nich pyłków. Wszystko wskazywało na to, że utwory skalne powstały już po katastrofie eliminującej dinozaury. Fassett podkreśla też, że zawartość metali ziem rzadkich w kościach z USA była inna niż w tych znajdowanych w skałach datowanych na kredę. Wg niego, oznacza to, że ekshumowanie skamielin przez wodę z leżących niżej osadów było mało prawdopodobne. Co więcej, 34 kości hadrozaura znaleziono w jednym miejscu. Nie tworzyły one wyodrębnionego szkieletu, ale bez wątpienia należały do jednego zwierzęcia. Gdyby "zajęła się" nimi rzeka, nie leżałyby w pobliżu siebie. David Polly, jeden z wydawców Palaeontologia Electronica, uważa, że wnioski Fassetta są kontrowersyjne i wielu paleontologów się z nimi nie zgodzi. Skoro jednak śmierci wymknęły się latające teropody i krokodyle, niewykluczone, że istniały także inne siedliska ocaleńców. Nawet gdyby się tak stało, populacje dinozaurów nie były tak liczne jak te z okresu kredy i na pewno nie zachowały się na długo.
  23. Pomimo posiadania wyjątkowo długiej szyi, gigantyczne dinozaury z grupy zauropodów najprawdopodobniej utrzymywały swoje głowy... na poziomie reszty ciała. Tak twierdzi przynajmniej ekspert w dziedzinie badań nad ewolucją, dr Roger Seymour z Uniwersytetu w Adelajdzie. Z obliczeń przeprowadzonych przez badacza wynika, że pompowanie krwi za pośrednictwem niezwykle długiej szyi byłoby niemal niemożliwe. Dobrze ilustruje to przykład mamenchizaura, żyjącego na Ziemi około 150 mln lat temu. Jego ogromna, dziewięciometrowa szyja była tak długa, że utrzymywanie krwi w obiegu pochłaniałoby aż połowę energii wydatkowanej przez całe ciało. Zdaniem dr. Seymoura to stanowczo zbyt dużo, by gad pozwolił sobie na trzymanie głowy zbyt wysoko. Pionowa szyja wymagałaby wysokiego ciśnienia krwi tętniczej. Oznacza to, że znacznie bardziej opłacalne pod względem energetycznym jest używanie szyi w pozycji mniej więcej poziomej, co umożliwiałoby rozglądanie się po znacznym obszarze przy utrzymaniu niskiego ciśnienia krwi - podsumowuje badacz. Opinię naukowca potwierdzają niektóre wcześniejsze badania, z których wynikało, że utrzymanie wydajnego przepływu krwi do głowy zawieszonej tak wysoko wymagałoby serca ważącego aż 5% całego ciała gada. O wynikach studium przeprowadzonego przez dr. Seymoura informuje czasopismo Biology Letters.
  24. Choć kolekcja zebranych przez naukowców szczątków dinozaurów nie zawiera szkieletów wszystkich gatunków, nasza wiedza na ich temat jest zadziwiająco precyzyjna - oceniają naukowcy z Uniwersytetu Bath oraz londyńskiego Muzeum Historii Naturalnej. Wiek znalezisk kopalnych ocenia się zwykle za pomocą jednej z dwóch metod. Pierwsza z nich to stratygrafia, czyli ustalanie wieku skał, w których zostały one pochowane. Druga metoda, zwana morfologią, polega na badaniu charakterystycznych cech wyglądu skamieniałości i dopasowaniu ich do wieku innych, podobnych szczątków, których wiek został dokładnie określony. Choć trudno w to uwierzyć, obie te techniki były stosowane bardzo często, lecz... bardzo rzadko używano ich jednocześnie. Na pomysł porównania zgodności obu metod wpadło dwóch brytyjskich badaczy, dr Matthew Wills z Uniwersytetu w Bath oraz dr Paul Barrett z Muzeum Historii Naturalnej w Londynie. Naukowcy ocenili dane statystyczne dotyczące znalezisk szczątków czterech ważnych grup dinozaurów i porównali je z informacjami na temat stopnia ich ewolucyjnego pokrewieństwa. Przeprowadzone studium wykazało zadziwiająco wysoką zbieżność informacji uzyskiwanych za pomocą obu sposobów. Zebrane dane niemal idealnie wpasowują się w kształt tzw. drzewa filogenetycznego, określającego kolejność powstawania kolejnych gatunków oraz czas ich ewolucji. Uzyskane informacje pozwalają także na zrozumienie ewolucji gatunków, których szczątków... nigdy nie odnaleziono. Jeżeli bowiem udowodniono, że ewolucja poszczególnych gatunków zachodzi w sposób bardzo przewidywalny, można wysnuć wiele wniosków na temat ogniw pośrednich na "ewolucyjnej drodze" do powstania znanych gatunków. Jest to niezwykle istotne, gdyż szansa, że kiedykolwiek uda się odnaleźć szczątki wszystkich dinozaurów żyjących kiedykolwiek na Ziemi, jest praktycznie zerowa. To ekscytujące, że nasze dane pokazują niemal idealną zgodność pomiędzy drzewem ewolucyjnym i wiekiem skamielin [znalezionych] w skałach. Dzieje się tak, ponieważ potwierdzają one, że znaleziska kopalne pokazują bardzo dokładnie, w jaki sposób te niezwykłe zwierzęta ewoluowały z biegiem czasu, i dostarczają nam wskazówek na temat tego, w jaki sposób wyewoluowały z nich ssaki i ptaki, podsumowuje efekty swojego odkrycia dr Wills.
  25. Chińczycy twierdzą, że znaleźli największy na świecie depozyt kości dinozaurów. Mogą one mieć ponad 100 mln lat. Odkrycia dokonano na obrzeżach miasta Zhucheng. Robotnicy przekopywali stok 300-metrowego wzgórza, gdy natrafili na pokład gęsto upakowanych skamielin. Jak dotąd wydobyto 7600 próbek, z czego większość datuje się na późną kredę. Od jakiegoś czasu w rejonie Zhucheng pojawiało się wielu łowców śladów olbrzymich gadów. Momentem przełomowym było odkrycie ponad 20 lat temu największych pozostałości kaczodziobego dinozaura (Hadrosauridae). Miasto zostało po raz pierwszy uznane za ważne centrum paleontologiczne w 1964 roku. Pracujący dla biura geologicznego poszukiwacze ropy natrafili wtedy na skamieniałe szczątki gadów. W nowo odkrytych pokładach znalazły się m.in. czaszka dużego ceratopsa oraz kości ankylozaura (Ankylosaurus). Zhao Xijin, który z ramienia Chińskiej Akademii Nauk nadzorował prace w Zhucheng, powiedział agencji Xinhua, że w normalnych okolicznościach szanse na to, iż kość dinozaura stanie się skamieliną, wynosi 1:1000000. Wg niego, okolica ta była w późnej kredzie pokryta płytką wodą. Dzięki temu rosło tu dużo drzew, traw i innych roślin, zapewniając bogactwo pożywienia roślinożernym gatunkom dinozaurów, np. hadrozaurom. Eksperci uważają, że duże populacje olbrzymich gadów występowały w Państwie Środka już 235 mln lat temu. Musiało ich być naprawdę wiele, ponieważ dokonuje się sporo ważnych odkryć, mimo że dla miejscowej ludności obfitujące w wapń kości latających smoków nadal stanowią podstawę sporządzania tradycyjnych mikstur, a marnie opłacani robotnicy sprzedają co lepsze kąski prywatnym kolekcjonerom.
×
×
  • Dodaj nową pozycję...