Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' rośliny'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 8 results

  1. Ssaki spożywające mięso są bardziej narażone na nowotwory niż ssaki roślinożerne, wynika z badań przeprowadzonych na tysiącach zwierząt z ogrodów zoologicznych. Zrozumienie, dlaczego roślinożercy są mniej narażeni na nowotwory może pomóc w opracowaniu metod ochrony ludzi przed tymi chorobami. Orsolya Vincze i jej koledzy z węgierskiego Centrum Badań Ekologicznych przeanalizowali wyniki sekcji zwłok 110 148 zwierząt ze 191 gatunków ssaków, które padły w ogrodach zoologicznych. Naukowcy chcieli oszacować ryzyko zgonu z powodu nowotworów. Okazało się, że ssaki mięsożerne są bardziej narażone na nowotwory niż ssaki, które jedzą mięso rzadko lub nigdy. Najmniej narażoną grupą były parzystokopytne, do których należą owce czy krowy. Z kolei zwierzęciem najbardziej narażonym na zgon z powodu nowotworu był niewielki australijski kowari. W 16 na 28 badanych przypadków zgonów tych zwierząt przyczyną był nowotwór. Z kolei wśród padłych 196 antylop indyjskich i 213 mar patagońskich  nie stwierdzono żadnego przypadku nowotworu. Takie wyniki podważają powszechne przekonanie, że większe dłużej żyjące zwierzęta są bardziej narażone na nowotwory, gdyż mają więcej komórek, które mogą mutować i więcej czasu, by do tych mutacji doszło. Wydaje się, że ryzyko nowotworu jest w dużej mierze związane z dietą. Badacze zastrzegają jednak, że koniecznie jest zweryfikowanie, czy zjawisko zaobserwowane wśród zwierząt z ogrodach zoologicznych dotyczy również zwierząt dziko żyjących. Dlaczego jednak jedzenie mięsa miałoby być powiązane z większym ryzykiem rozwoju nowotworów? Vincze mówi, że jedną z przyczyn mogą być wirusy znajdujące się w mięsie. Niektóre z nich mogą powodować nowotwory. Wiadomo ma przykład, że u niektórych trzymanych w niewoli lwów nowotwory pojawiły się w z powodu papillomawirusów obecnych w spożywanym przez nie mięsie krów. Inną przyczyną mogą być zanieczyszczenia. W organizmach znajdujących się wyżej w łańcuchu pokarmowym zanieczyszczeń gromadzi się więcej, przypomina Beata Ujvari z Deakin University w Australii, która również brała udział w badaniach. Ponadto, zauważa uczona, zwierzęta mięsożerne spożywają więcej tłuszczu, mniej włókien i mają mniej zróżnicowany mikrobiom jelit niż roślinożercy. A wszystkie te czynniki są powiązane, przynajmniej u ludzi, z większym ryzykiem nowotworów. Ujvari dodaje, że obserwacje ze świata zwierząt niekoniecznie muszą odnosić się też do ludzi. Mamy inny styl życia i rzadko jemy surowe mięso. Przypomina jednak, że już wcześniej badania prowadzone wśród ludzi wykazały związek pomiędzy spożywaniem mięsa a nowotworami. Obecnie nie jest jasne, dlaczego – jak się wydaje – parzystokopytne są szczególnie odporne na rozwój nowotworów. Ale naukowców szczególnie interesują antylopa indyjska i mara patagońska. Jeśli dowiemy się, dlaczego u tych gatunków nowotwory występują tak rzadko, wykorzystamy tę wiedzę, by chronić samych siebie przed nowotworami. « powrót do artykułu
  2. Około 30% gatunków drzew zagrożonych jest wyginięciem, a niemal 150 gatunków już wyginęło w środowisku naturalnym – czytamy w opublikowanym właśnie raporcie State of the World's Trees. W raporcie przygotowanym przez ekspertów z Botanic Gardens Conservation International we współpracy m.in. z naukowcami z Bournemouth University, Penn State University i Haiti National Trust, oceniono stan 58 497 gatunków drzew. Ekosystemy leśne pokrywają około 31% lądów. Odgrywają olbrzymią rolę w procesach biogeochemicznych odbywających się na naszej planecie. Wpływają na wytwarzanie gleby, obieg wody, węgla i składników odżywczych oraz na klimat. W drzewach uwięziona jest połowa węgla znajdującego się na powierzchni ziemi, a ponad 75% dostępnych zasobów słodkiej wody pochodzi z dorzeczy znajdujących się w lasach. Lasy zapewniają też habitat dla olbrzymiej liczby gatunków, żyje w nich co najmniej połowa lądowych gatunków roślin i zwierząt. Jednak lasy to nie wszystkie miejsca występowania drzew. Rośliny te znajdziemy też na sawannach, pustyniach, mokradłach, w ekosystemach przybrzeżnych i skalistych oraz w sztucznych, jak ekosystemy miejskie. Drzewa znajdują się u podstawy piramidy troficznej, wszędzie tam, gdzie istnieją, są powiązane z istnieniem wielu gatunków. O tym, jak olbrzymią rolę odgrywają, niech świadczy chociażby fakt, że na terenie Wielkiej Brytanii z rodzimym gatunkiem dębu powiązanych jest 2300 gatunków. Wyginięcie gatunku znajdującego się na dole piramidy troficznej grozi wywołaniem całej kaskady znikania innych gatunków, co może prowadzić do załamania całego ekosystemu. A drzewa są wskaźnikiem zdrowia ekosystemu i zapewniają mu cały szereg usług, od oczyszczania wody, zapobiegania powodziom i erozji gleby, po regulowanie temperatury i jakości powietrza. Drzewa zapewniają też całą gamę produktów, z których korzystają zarówno lokalni mieszkańcy, jak i światowa gospodarka – drewno, zarówno budowlane, do produkcji mebli jak i na opał, związki wykorzystywane w medycynie, przemyśle kosmetycznym, owoce i orzechy. Obecne zróżnicowanie gatunków drzew to wynik milionów lat ewolucji. Znamy 58 497 gatunków drzew, to jednak z pewnością nie wszystko. Niektóre regiony świata zostały pod tym względem słabo zbadane, więc można przypuszczać, że wielu gatunków jeszcze nie opisano. Najwięcej gatunków drzew – 23 631 – występuje w krainie neotropikalnej, obejmującej Amerykę Centralną i Południową. Kolejnym regionem jest kraina orientalna zwana indomalajską obejmująca tropikalne regiony Azji. Tam rozpoznano 13 739 gatunków. W krainie afrotropikalnej (Afryka subsaharyjska i Madagaskar) żyje 9 237 gatunków drzew, a w australijskiej, w skład której wchodzi Australia, Nowa Zelandia, Nowa Gwinea i większość wysp Pacyfiku, jest ich 7442. W największej z krain, palearktycznej (Europa, Afryka powyżej zwrotnika Raka, Półwysep Arabski, Japonia, Azja na północ od Himalajów) żyją 5994 gatunki drzew. Znacznie mniej jest ich w Oceanii (1602), a najmniej w nearktyce (Ameryka Północna i Grenlandia) – 1432. Z raportu dowiadujemy się, że w stanie naturalnym wyginęły 142 (0,2%) gatunki drzew. Zagrożonych jest zaś aż 17 510 (29,9%) gatunków, wśród nich jest ponad 440 gatunków reprezentowanych przez mniej niż 50 roślin. Jednym z nich jest np. Karomia gigas, którego populacja liczy zaledwie 21 dojrzałych drzew. Do kategorii prawdopodobnie zagrożonych zaliczono zaś 4099 (7,1%) gatunków. Wiemy też, że 24 255 (41,5%) gatunków nie jest zagrożonych. Autorzy raportu, ze względu na brak odpowiednich danych, nie byli w stanie ocenić stanu 7700 (13,2%) gatunków, a 4790 gatunków (8,2%) nie zostało poddanych ocenie. Najwięcej gatunków drzew wyginęło w krainie orientalnej, z której zniknęło ich aż 41. Kraina neotropikalna jest uboższa o 31 gatunków, z afrotropikalnej i nearktcznej zniknęło po 21 gatunków, w palearktycznej straciliśmy 9 gatunków, w Oceanii 8, a w krainie australijskiej 5. Nieco inaczej przedstawia się sytuacja gatunków zagrożonych. Największe straty może ponieść kraina neotropikalna, gdzie zagrożonych jest aż 7047 gatunków. Następna na niechlubnej liście jest kraina orientalna (3819 gatunków zagrożonych), później afrotropikalna (3644) i australijska (1487). W krainie palearktycznej zagrożonych jest zaś 1309 gatunków, w nearktycznej 345, a w Oceanii 275. Dla drzew największym problemem jest przede wszystkim działalność człowieka. Aż 29% drzew zagrożonych jest przez działalność rolniczą, a 27% przez wycinkę w celu pozyskania drewna. Wypas zwierząt zagraża istnieniu 14% drzew, rozwój budownictwa to zagrożenie dla 13% drzew. Taki sam odsetek zagrożony jest przez pożary. Działalność człowieka związana z produkcją energii i górnictwem stanowi zagrożenie dla 9%, wycinka pod plantacje drzew to zagrożenie dla 6%, gatunki inwazyjne i inne gatunki niszczące te rośliny to problem dla 5% drzew, a zmiany klimatyczne zagrażają 4%. « powrót do artykułu
  3. Powierzchnia Marsa jest bez przerwy poddawana działaniu dużych dawek promieniowania kosmicznego, a jego intensywność może wzrastać nawet 50-krotnie w wyniku pojawiania się wysoko energetycznych rozbłysków na Słońcu. Naukowcy holenderskiego Uniwersytetu w Wageningen postanowili sprawdzić, jak w takich warunkach rosną rośliny. Ekolog Wieger Wamelink mówi, że irytuje go przedstawiany w filmach sposób upraw na Marsie. Często pokazują uprawy w szklarniach, ale to nie blokuje promieniowania kosmicznego, stwierdza. Wysokoenergetyczne promieniowanie kosmiczne może zmieniać DNA roślin. A trzeba pamiętać, że powierzchnia Marsa nie jest chroniona ani przez atmosferę, ani przez pole magnetyczne, które zapewniają ochronę organizmom żywym na Ziemi. Wamelink wraz z zespołem postanowili odtworzyć warunki panujące na Marsie. Dlatego też wykorzystali promieniowanie gamma, generowane przez radioaktywny kobalt. Co prawda promieniowanie docierające do powierzchni Marsa składa się w różnych typów promieni, w tym alfa i beta, jednak ich uzyskanie jest już znacznie trudniejsze. Cząstki alfa i beta można wytworzyć w akceleratorach i Wamelink z chęcią by któregoś użył, jednak wie, że to nie możliwe. "Musielibyśmy wsadzić rośliny do akceleratora na 2-3 miesiące. Biorąc pod uwagę, jak duże jest zapotrzebowanie na te urządzenia i jakie kolejki chętnych się do nich ustawiają, przeprowadzenie tak długotrwałego eksperymentu nie byłoby możliwe", stwierdza uczony. Holendrzy musieli więc zadowolić się samym promieniowaniem gamma. Rozpoczęli więc pracę z radioaktywnym kobaltem i nasionami żyta i pieprzycy siewnej. Część z nich hodowali w standardowych warunkach panujących na Ziemi, a drugą część w takich samych warunkach z dodatkiem promieniowania gamma. Cztery tygodnie po kiełkowaniu ziaren naukowcy porównali rośliny i stwierdzili, że liście żyta i pieprzycy, które rosły w środowisku pełnym promieni gamma mają nienormalne kształty i kolory. Ponadto żyto hodowane w promieniach gamma było o 48% lżejsze niż żyto z normalnych warunków. W przypadku pieprzycy siewnej okazało się, że rośliny z uprawy z dodanym promieniowaniem są o 32% lżejsze od roślin ze standardowych upraw. Naukowcy przypuszczają, że wszystkie te różnice są wynikiem uszkodzenia DNA i białek roślinnych przez promieniowanie. Badania Holendrów pochwalił Michael Dixon z kanadyjskiego University of Guelph. Należy on do grupy, która ma zamiar w ciągu najbliższych 10 lat założyć eksperymentalną hodowlę jęczmienia na Księżycu. Jednym z pierwszych pytań, na jakie trzeba będzie odpowiedzieć, brzmi, czy rośliny są w stanie przeżyć promieniowanie docierające do Srebrnego Globu. Dixon mówi, że praca uczonych z Wageningen pokazuje, jak olbrzymie trudności może sprawić kolonizacja Marsa. Dodaje, że idealne odtworzenie marsjańskich warunków na Ziemi jest niemożliwe, dlatego ostatecznym testem byłaby eksperymentalna uprawa roślin na Marsie. Dopiero ona pokaże, czy produkcja żywności na Czerwonej Planecie będzie możliwa. « powrót do artykułu
  4. Nad nowymi, ekologicznymi sposobami ochrony roślin uprawnych pracują młodzi badacze z koła naukowego Bio-Top, działającego przy Wydziale Chemicznym PWr. Sprawdzają, jak w tej roli radzą sobie naturalni wrogowie szkodników, czyli grzyby owadobójcze. Jak grzyby mogą chronić rośliny przed szkodnikami? Projekt KN Bio-TopWydajna uprawa roślin to jedna z podstawowych potrzeb współczesnego świata. Rośliny są niezbędne nie tylko do wyżywienia ludzkości czy utrzymania zwierząt gospodarskich, ale to także źródło surowców wykorzystywanych na ubrania, do ogrzewania czy wytwarzania energii. Naturalni i ekologiczni wrogowie Z tych właśnie powodów niezbędne stało się szukanie sposobów zwiększenia wydajności upraw. Zaczęto więc dostosowywać je do warunków środowiskowych, zabezpieczać na różne sposoby przed chorobami, szkodnikami czy chwastami. W trosce o bezpieczne środowisko zaczęto także interesować się jak najszerszym wykorzystaniem naturalnie występujących możliwości, tak aby sięganie po środki chemiczne odbywało się tylko w razie konieczności i w jak najmniejszych dawkach. W ten sposób powstała strategia zintegrowanego zwalczania szkodników, czyli IPM – ang. integrated pest management. Jednym z elementów tej strategii jest wykorzystanie naturalnych wrogów szkodników roślin, czyli np. niektórych nicieni, bakterii czy właśnie grzybów – wyjaśnia dr Beata Greb-Markiewicz z Katedry Biochemii, Biologii Molekularnej i Biotechnologii PWr, która nadzoruje badania prowadzone przez członków Koła Naukowego Studentów Biotechnologii Bio-Top. Ona też podsunęła młodym naukowcom tę tematykę. Od pewnego czasu zainteresowanie grzybami owadobójczymi wzrosło. Podczas doktoratu zajmowałam się właśnie tym tematem. Uważam, że to ważny i bardzo przyszłościowy kierunek działań w stronę ekologicznego rolnictwa. Stosowanie żywych organizmów do zwalczania np. szkodliwych owadów ma tę zaletę, że obie strony ewoluują. Owady nie są w stanie tak łatwo i szybko wytworzyć oporności, jak to bywa w przypadku określonego środka chemicznego. Dodatkowo pasożyty są często bardziej wyspecjalizowane i atakują określone gatunki owadów – tłumaczy dr Greb-Markiewicz. Dodaje, że grzyby mogą być wyspecjalizowanymi patogenami lub takimi, które atakują tylko osłabione osobniki. Obecnie dostępne na rynku środki zawierają jedynie kilka najlepiej scharakteryzowanych szczepów grzybów. Pozostałe nie zostały jeszcze przebadane pod tym kątem. Alternatywa dla środków chemicznych Młodzi naukowcy planują przeprowadzić badania związków wydzielanych przez grzyby, a także sprawdzić ich wpływ na owady oraz komórki ssacze i roślinne. Jak grzyby mogą chronić rośliny przed szkodnikami? Projekt KN Bio-TopZespół pracujący nad projektem składa się z 15 osób i podzielony jest na odpowiednie sekcje, które skupiają się na konkretnej tematyce. Dr Greb-Markiewicz nauczyła studentów, jak zajmować się grzybami, jak je przeszczepiać, a także, w jaki sposób pracować z owadzimi organizmami modelowymi – molem woskowym (Galleria mellonella) i wywilżną karłowatą potocznie zwaną muszką owocową (Drosophila melanogaster). Do tej pory przeprowadziliśmy wstępny dobór warunków hodowli dla dwóch szczepów. Udało nam się także wyizolować i zidentyfikować opisany w literaturze związek o aktywności antybiotycznej oraz hamującej wzrost komórek nowotworowych – opowiada Dawid Kramski z Bio-Topu, który jest wiceprezesem koła i doktorantem na W3. Uzyskaliśmy również ekstrakt działający silnie toksycznie na larwy Galleria mellonella, powodujący ich śmierć w ciągu 15 minut od momentu iniekcji – dodaje. Studenci są przekonani, że ich badania w przyszłości znajdą zastosowanie w przemyśle rolniczym jako alternatywa dla chemicznych środków ochrony roślin oraz biostymulanty wzrostu. Część otrzymanych wyników zaprezentowali już podczas sesji posterowej na Ogólnopolskiej Konferencji Naukowej „Pierwotne i wtórne metabolity grzybów i roślin”, w lutym bieżącego roku. Niedawno projekt BioTop-u zakwalifikował się do finału konkursu 3Mind, organizowanego przez Naczelną Organizację Techniczną i firmę 3M. Koło stara się też o dofinansowanie badań w ramach ministerialnego konkursu „Studenckie koła naukowe tworzą innowacje”. Z powodu pandemii niektóre prace nad projektem musiały być wstrzymane. W obecnej sytuacji nie zostało nam nic innego jak studia literaturowe, planowanie dalszych działań na papierze i spotkania w formie zdalnej – przyznaje doktorant. Podkreśla, że jest to bardzo ważna cześć projektu, bez której nie da się praktycznie wykonać eksperymentu. Kilkoro studentów pojawia się jednak regularnie w laboratorium, żeby pilnować hodowli grzybów i owadów. Mamy oczywiście zgodę dziekana. Pracujemy na żywych organizmach i nie możemy ich zostawić bez opieki. Ktoś musi o nie dbać i je karmić – mówi Dawid Kramski. « powrót do artykułu
  5. Botanicy sądowi chcą sprawdzić, czy rośliny mogą pomóc w odnalezieniu ciał. Artykuł dotyczący tego zagadnienia ukazał się właśnie w piśmie Trends in Plant Science. W mniejszych, otwartych krajobrazach patrole piesze mogą być skuteczne w odnajdowaniu zaginionych osób, jednak w bardziej zalesionych [...] rejonach świata, takich jak Amazonia, rozwiązania tego rodzaju nie są możliwe. Mając to na uwadze, zaczęliśmy patrzeć na rośliny jako wskaźniki rozkładu ludzkich zwłok. Powinno to prowadzić do szybszego [...] odnalezienia ciała - wyjaśnia prof. Neal Stewart Junior z Uniwersytetu Tennessee. Badania dot. związków między roślinami i rozkładem ludzkich zwłok zostaną przeprowadzone na tzw. trupiej farmie Uniwersytetu Tennessee. Oficjalnie jest ona nazywana Anthropology Research Facility. To tu naukowcy badają rozkład ludzkich ciał w różnych warunkach. W tym samym miejscu specjaliści będą sprawdzać, w jaki sposób wyspy rozkładu zwłok [ang. cadaver decomposition islands] - obszary w bezpośrednim otoczeniu zwłok - zmieniają stężenie substancji odżywczych w glebie i jak te zmiany manifestują się w pobliskich roślinach. Najbardziej oczywistym skutkiem wyspy będzie uwolnienie do gleby dużych ilości azotu, zwłaszcza latem, gdy rozkład zachodzi tak szybko. W zależności od tego, jak prędko rośliny reagują na napływ azotu, może to powodować zmiany barwy liści i współczynnika odbicia - podkreśla Stewart. Amerykanie dodają, że w miejscach, gdzie giną ludzie, mogą także umierać inne duże ssaki, np. jelenie. Wyzwaniem, z którym musi się więc zmierzyć zespół Stewarta, jest odkrycie związków specyficznych dla ludzkiego rozkładu. Ponieważ ludzka dieta zazwyczaj nie jest naturalna, mogą istnieć specyficzne metabolity, np. te związane z lekami czy konserwantami, które będą miały swoisty wpływ na wygląd roślin. Jeśli zaginęła osoba, która dajmy na to, bardzo dużo pali, być może jej ciało ma profil chemiczny, który wyzwala unikatową reakcję roślin i w ten sposób ułatwia odnalezienie. Naukowcy dodają, że gdy wpływ rozkładu zwłok zostanie lepiej poznany, specjaliści będą mogli wykorzystywać urządzenia rejestrujące obrazy, żeby skanować roślinność pod kątem specyficznych sygnałów fluorescencyjnych czy odbicia. Amerykanie wyjaśniają, że choć część rozwiązań technologicznych już istnieje, trzeba jeszcze ustalić, które gatunki roślin są najlepsze i jakiego sygnału należy poszukiwać. Zbudowaliśmy już urządzenie [...], które może analizować sygnatury fluorescencji. Nasze początkowe działania będą miały bardzo niedużą skalę. Przyjrzymy się poszczególnym liściom i zmierzymy zmiany dot. współczynnika odbicia czy fluorescencji, które zachodzą w czasie, gdy rośliny znajdują się w pobliżu zwłok. Gdy diagnostyczne spektra zostaną skompilowane, można będzie zacząć myśleć o przeskalowaniu technologii na potrzeby np. dronów, za pomocą których w krótkim czasie analizowano by większe obszary. Uczeni dodają, że choć taki scenariusz postępowania wydaje się bardzo ekscytujący, musi minąć kilka lat, nim będzie można wykorzystać rośliny jako narzędzia w misjach poszukiwawczych. W międzyczasie wielodyscyplinarny zespół botaników, antropologów i gleboznawców musi zaplanować i przeprowadzić na trupiej farmie swoje eksperymenty. Stewart i inni podkreślają, że na wyspach rozkładu zwłok sukcesja może faworyzować egzotyczne rośliny inwazyjne i chwasty. Rośliny inwazyjne często mają rozbudowany system korzeniowy i mogą szybko reagować na zmiany środowiskowe. Rośliny te mają potencjał, by w reakcji na napływ różnych substancji do gleby prędko zmieć swój skład chemiczny i komórkowy. « powrót do artykułu
  6. Arktyka to jedno z najszybciej ocieplających się miejsc na Ziemi. Wiemy, że ocieplanie się przyspieszają roztapiające się śniegi i lody, że przyczynia się do niego zmiana cyrkulacji atmosferycznej. Jest wiele powodów, dla którego to w Arktyce ocieplenie zachodzi wyjątkowo szybko. Teraz naukowcy uważają, że znaleźli dodatkowy czynnik. A są nim... drzewa. Nie tylko zresztą drzewa, ale w ogóle rośliny mogą mieć niespodziewany wpływ na globalne ocieplenie. Gdy w atmosferze rośnie ilość dwutlenku węgla, rośliny bardziej wydajnie przeprowadzają fotosyntezę. Bardziej wydajny proces oznacza często mniejsze straty wody, czyli mniejsze parowanie z roślin. Parowanie zaś jest procesem powiązanym z chłodzeniem. Jeśli się ono zmniejsza, otoczenie ogrzewa się. I właśnie na ten proces zwrócili uwagę naukowcy z University of Edinburgh na łamach Nature Communications. Dotychczas przegapiano wpływy roślin. To badanie pokazuje wpływ roślinności na ocieplanie się Arktyki w warunkach zwiększonej koncentracji CO2 w atmosferze, mówi współautor badań Jin-Soo Kim. Naukowcy wykorzystali modele klimatyczne, w których uwzględnili parowanie z roślin. Modele te wykazały, że wraz z rosnącym poziomem atmosferycznego dwutlenku węgla rośliny na półkuli północnej tracą mniej wody. W wyniku tego procesu poszczególne regiony ocieplają się bardziej niż wynikałoby z samej tylko zmiany klimatu. Autorzy badań szacują, że opisany przez nich wpływ roślin jest odpowiedzialny za niemal 10% ocieplenia w Arktyce i nawet 28% ocieplenia na niższych szerokościach półkuli północnej. Podkreślają jednocześnie, że ich szacunki obarczone są sporym marginesem błędu. Podczas badań naukowcy wykorzystali 8 modeli i porównali je między sobą. Okazało się, że istnieją spore różnice w uzyskiwanych wynikach dotyczących wpływu roślin na ocieplanie się Arktyki. Może się tak dziać zarówno z powodu sporej niepewności odnośnie reakcji lodu morskiego na ocieplający się klimat jak i z powodu braku zgody w środowisku naukowym odnośnie wpływu zwiększonej koncentracji CO2 na rośliny. Z jednej strony gdy mamy więcej dwutlenku węgla w atmosferze, rośliny nie muszą tak szeroko otwierać aparatów szparkowych, więc tracą mniej wody. Z drugiej strony CO2 może czasem przyspieszać wzrost roślin. A jeśli roślin jest więcej, to mamy i większe parowanie. Te oba zjawiska – większy wzrost roślin i mniejsze rozwarcie aparatów szparkowych – mogą mieć przeciwny wpływ na lokalne temperatury. Omawiane tutaj badanie sugeruje jednak, że silniejszy jest wpływ zmian w otwarciu aparatów szparkowych. W wielu ekosystemach nie obserwujemy takiego wzrostu roślin, jaki naiwnie założyliśmy myśląc o wzroście stężenia CO2, mówi doktor Leander Anderegg z Uniwersytetu Kalifornijskiego w Berkeley. « powrót do artykułu
  7. Kurtis Baute zamknął się w mierzącym 3 na 3 m foliowym hermetycznym namiocie, by sprawdzić, czy 200 znajdujących się w środku roślin wystarczy, by przekształcić CO2 w tlen na tyle szybko, by utrzymać go przy życiu przez co najmniej 3 dni. Szalony "naukowiec" rozpoczął eksperyment w zeszłym tygodniu w ogródku swojego brata w Kolumbii Brytyjskiej, ale związane z nim plany snuł na YouTube'ie już w sierpniu. Test miał trwać 3 dni, został jednak przerwany już po 15 godzinach, gdyż poziom dwutlenku węgla osiągnął krytyczny poziom, grożący uszkodzeniem mózgu czy zapadnięciem w śpiączkę. Prawdopodobnie mógłbym przeżyć tam 3 dni, jednak nie chodziło mi o to, by po prostu nie umrzeć. Moim celem było zakończenie projektu bez niebieskiego zabarwienia powłok skórnych, uszkodzenia mózgu, udaru cieplnego czy generalnie trwałego uszkodzenia ciała. We wpisie z Twittera z 24 października Kanadyjczyk spekuluje, że z powodu zachmurzenia rośliny nie miały dostępu do wystarczającej ilości światła, co upośledziło ich osiągi fotosyntetyczne. Mimo wycofania się z eksperymentu już po 15 godzinach, Baute nadal twierdzi, że to sukces. Zależało mu bowiem głównie na pokazaniu skutków zmiany klimatu.   « powrót do artykułu
  8. Naukowcy zmierzyli wartość odżywczą diety roślinożernych dinozaurów, hodując ich pokarm w warunkach atmosferycznych zbliżonych do tych sprzed 150 mln lat. Wcześniej wielu specjalistów uważało, że rośliny wyhodowane w atmosferze o dużej zawartości dwutlenku węgla mają niską wartość odżywczą. Nowe podejście eksperymentalne zespołu dr. Fiony Gill z Uniwersytetu w Leeds pokazało jednak, że to niekoniecznie prawda. Brytyjczycy hodowali pokarm dinozaurów, np. skrzyp czy miłorząb, w warunkach wysokiego poziomu CO2. Sztuczny system fermentacyjny pozwalał symulować trawienie liści w żołądkach zauropodów. Dzięki temu autorzy publikacji z pisma Palaeontology stwierdzili, że wiele roślin miało o wiele wyższą wartość energetyczną i zawartość składników odżywczych niż dotąd sądzono. To z kolei oznacza, że wbrew wcześniejszym przypuszczeniom, megaroślinożercy nie musieli wcale tak dużo jeść i że ekosystem mógł utrzymać znacznie większą gęstość populacji (+20%). W mezozoiku, gdy żyły olbrzymie brachiozaury czy diplodoki, klimat był zupełnie inny, z prawdopodobnie o wiele wyższym poziomem CO2. Zakładano, że skoro rośliny rosły w takich warunkach szybciej i/lub stawały się wyższe, spadała ich wartość odżywcza. Uzyskane wyniki pokazują, że [przynajmniej] w przypadku niektórych roślin to nieprawda. Nasze badania nie dają pełnego obrazu diety dinozaurów. Nie obejmują też [całego] zakresu występujących wtedy roślin, ale lepsze zrozumienie, jak te zwierzęta jadły, może naukowcom pomóc w zrozumieniu [trybu] ich życia. Akademicy z Leeds dodają, że dzięki ich nowemu podejściu eksperymentalnemu będzie można symulować inne ekosystemy i diety innych prehistorycznych megaroślinożerców, np. mioceńskich ssaków będących przodkami wielu współczesnych ssaków. « powrót do artykułu
×
×
  • Create New...