Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' misja' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 43 wyników

  1. Łazik marsjański Perseverance, który ma wystartować za trzy tygodnie, zabierze ze sobą nietypowy ładunek. Na jego pokładzie znajdzie się niewielki autonomiczny helikopter Ingenuity. Jeśli wszystko pójdzie dobrze, będzie on pierwszym pojazdem wysłanym przez człowieka, który wykona wspomagany silnikiem lot w atmosferze innej planety. Lot na Marsie może nie wydawać się niczym imponującym, ale jest to niezwykle trudne zadanie. Dość wspomnieć, że gęstość atmosfery Marsa to zaledwie 1% gęstości atmosfery ziemskiej, a temperatura na Czerwonej Planecie może w nocy spaść do -100 stopni Celsjusza. Wyobraźmy sobie lekki wietrzyk na Ziemi. A teraz wyobraźmy sobie 100-krotnie mniej gęste powietrze, które trzeba wykorzystać do uzyskanie siły nośnej i kontroli pojazdu, mówi Theodore Tzanetos z Jet Propulsion Laboratory. Żaden ziemski śmigłowiec nigdy nie latał w tak rozrzedzonej atmosferze. Preserverance i Ingenuity mają wystartować 20 lipca bieżącego roku (okno startowe będzie otwarte do 11 sierpnia), a lądowanie na Marsie planowane jest na 18 lutego przyszłego roku. Około 60 marsjańskich dni później łazik opuści drona na powierzchnię planety i odsunie się od niego na odległość 100 metrów. Ingenuity waży 1,8 kilograma. Wyposażono go w dwa umieszczone jeden na drugim rotory z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością około 2400 obrotów na minutę. To pięciokrotnie szybciej niż wirniki śmigłowców na Ziemi. Gdy obracały się wolniej, dron nie mógłby oderwać się od powierzchni Marsa. Gdyby jednak obracały się znacznie szybciej, zewnętrzne krawędzie wirników zbliżyłyby się do prędkości dźwięku, wywołały falę uderzeniową, która zdestabilizowałaby pojazd. Głównym zadaniem Ingenuity jest sprawdzenie wykorzystanych technologii. Twórcy drona mają nadzieję, że w ciągu 30 dni uda im się wykonać 5 lotów. Żaden z nich nie ma trwać dłużej niż 90 sekund. Dron ma nie przekraczać wysokości 10 metrów, a długość każdego z lotów ma być nie większa niż 300 metrów. Josh Ravich, który stał na czele zespołu inżynierów projektujących Ingenuity, mówi, że dron będzie nieco mniej manewrowy niż drony wykorzystywane na Ziemi. Musimy jednak pamiętać, że marsjański śmigłowiec musi przetrwać start rakiety, lot z Ziemi na Marsa, wejście w atmosferę i lądowanie oraz zimne marsjańskie noce. Dlatego też inżynierowie przez wiele lat pracowali nad znalezieniem równowagi pomiędzy zużyciem energii, wytrzymałością, wagą i manewrowością. Większość energii, którą Ingenuity pozyskuje z niewielkiego panelu słonecznego umieszczonego nad wirnikami, zostanie zużyta nie na loty, a na ogrzewanie systemów drona podczas zimnych marsjańskich nocy. Inżynierowie zastanawiali się nad izolacją cieplną z aerożelu, jednak zrezygnowali z niej, gdyż uznali, że będzie zbyt wiele ważyła. Modelowanie wykazało, że marsjańska atmosfera, która w większości składa się z dwutlenku węgla, będzie w pewnym stopniu zapobiegała utracie ciepła przez drona. Naukowcy uznali też, że najlepszą porą na pierwszy lot będzie późny marsjański poranek. Słońce świeci wówczas na tyle mocno, że powinno zapewnić Ingenuity wystarczającą ilość energii do lotu. Jednak nie można lotu odkładać na późniejszą porę dnia, gdyż wówczas powierzchnia Marsa mocniej się nagrzewa przez co atmosfera unosi się, rozrzedza i lot byłby wówczas jeszcze trudniejszy. Jeśli misja Ingenuity się powiedzie, NASA będzie wyposażała w śmigłowce kolejne misje marsjańskie. Drony będą służyły łazikom, i w przyszłości ludziom, jako zwiadowcy, pokazujący, co znajduje się w trudnych do osiągnięcia miejscach, jak klify czy wulkany. Obecnie możemy obserwować Marsa albo z powierzchni, albo z orbity. A 90-sekukndowy lot drona pozwoli nam na obejrzenie setek metrów terenu znajdującego się przed nami, mówi Ravich. « powrót do artykułu
  2. Za miesiąc, 20 lipca, wystartuje kolejna misja na Marsa. Tym razem NASA chce umieścić na powierzchni Czerwonej Planety łazik Perseverance. Zadaniem pojazdu będzie poszukiwanie śladów życia w Kraterze Jezero oraz przetestowanie kluczowych technologii, które zostaną wykorzystane podczas przyszłych robotycznych oraz załogowych misji marsjańskich. Jednocześnie Perseverance pobierze próbki gruntu i skał, które zostaną przywiezione na Ziemię w ramach kolejnych misji. Pięćdziesiąt jeden lat temu NASA kończyła przygotowania do pierwszej załogowej misji na Księżyc. Obecnie stoimy w przededniu kolejnego ważnego momentu eksploracji kosmosu: zebrania próbek na Marsie, stwierdził szef NASA, Jim Bridenstine. Misja Mars 2020 została zaplanowana w grudniu 2012 roku. Od początku zakładano, że wystartuje ona latem 2020 roku. Na razie wszystko wskazuje na to, że misja odbędzie się zgodnie z planem. Biorąc pod uwagę pozycje Ziemi i Marsa, okienko startowe do misji na Czerwoną Planetę otwiera się co 26 miesięcy. Jeśli Perseverance nie wystartuje w planowanym terminie, trzeba będzie czekać do września 2022 roku. Takie opóźnienie poważnie zaburzyłoby realizację długoterminowych planów realizowanych przez NASA w ramach Mars Exploration Program. Każda z marsjańskich misji obarczona jest sporym ryzykiem. W przypadku Mars 2020 największym problemem jest posadowienie łazika Perseverance na powierzchni. Jest to bowiem najcięższy ładunek, jaki kiedykolwiek próbowano umieścić na Marsie. Inżynierowie NASA musieli opracować nowe procedury testowe, by sprawdzić, czy zaprojektowane przez nich spadochrony spełnią stawiane przed nimi zadanie. Innym poważnym wyzwaniem technicznym było stworzenie i przetestowanie Sample Caching System, najbardziej złożonego i czystego mechanizmu zbierania próbek kiedykolwiek wysłanego w kosmos. Jako, że ostateczne przygotowanie do misji Mars 2020 przypadły na szczególny moment, pandemię koronawirusa, zespół  postanowił uhonorować walczących z nią medyków medyków. Do obudowy łazika przymocowano specjalną plakietkę. Na aluminiowej płytce o wymiarach 8x13 centymetrów widzimy Ziemię wspartą na eskulapie, symbolu medycyny. Zaznaczono też trajektorię lotu misji Mars 2020 na Marsa. Chcieliśmy uhonorować tych, którzy postawili dobro innych nad swoim dobrem osobistym. Mamy nadzieję, że gdy przyszłe generacje polecą na Marsa i napotkają na nasz łazik, plakietka przypomni im, że w 2020 roku na Ziemi byli tacy ludzie, mówi Matt Wallace, zastepca dyrektora projektu Perseverance. Nowy marsjański łazik poszuka śladów życia, będzie badał klimat i geologię Marsa, przygotuje grunt pod przyszłe misje i zbierze oraz przechowa próbki gruntu. Już teraz NASA i Europejska Agencja Kosmiczna zastanawiają się nad przyszłymi misjami, które odbiorą te próbki od Perseverance i przywiozą je na Ziemię do dalszej analizy. Okienko startowe dla misji Mars 2020 będzie otwarte od 20 lipca do 11 sierpnia. Niezależnie od tego, kiedy misja wystartuje, lądowanie przewidziane jest na 18 lutego 2021 roku. Wyznaczenie ścisłej daty lądowania pozwoli lepiej zrozumieć warunki panujące w miejscu lądowania oraz odpowiednio dostosować pracę satelitów krążących na orbicie Marsa, których zadaniem będzie pomoc w komunikacji pomiędzy lądującą misją Mars 2020 a Ziemią. « powrót do artykułu
  3. Polski Kret HP3 znalazł się pod powierzchnią Marsa. Urządzenie wykonane przez firmę Astronika, Polską Akademię Nauk, Centrum Badań Kosmicznych PAN, Instytut Lotnictwa, Instytut Spawalnictwa i inne to jeden z najważniejszych, a może nawet najważniejszy element misji InSigh. Zadaniem Kreta HP3 (Heat Flow and Physical Properties Package) jest wwiercenie się na głębokość 5 metrów i wykonywanie pomiarów przepływu ciepła z wnętrza planety. Przygotowana przez NASA misja InSight ma za zadanie zbadanie wnętrza Czerwonej Planety. Wylądowała ona na Marsie pod koniec listopada 2018 roku. NASA poinformowała, że robotyczne ramię właśnie pomogło Kretowi wniknąć w marsjańską glebę. Operacja byla poważnym wyzwaniem. Ramię potrzebowało asysty z Ziemi, a jako że obie planety dzieli spora odległość, sygnał w jedną stronę wędrował przez kilka minut. "Wciąż musimy przekonać się, czy kret będzie w stanie samodzielnie wiercić dalej", czytamy na oficjalnym koncie misji na Twitterze. Po wwierceniu się na głębokość 5 metrów czujniki Kreta zaczną rejestrować przepływ ciepła z wnętrza planety. Pozwoli to naukowcom na zbadanie, w jaki sposób przemieszcza się ono od jądra Marsa. Kret to całkowicie nowy typ instrumentu naukowego, jaki znalazł się na Marsie. Wciąż nie ma pewności, czy będzie działał tak, jak zaplanowano. Co prawda był wielokrotnie testowy na Ziemi, jednak nie możemy całkowicie przewidzieć tego, jak będzie się sprawował. Już zresztą pojawiły się pierwsze problemy. Kret miał kłopoty ze wstępnym wierceniem się w powierzchnię. Utykał lub wycofywał się. Właśnie dlatego zdecydowano o użyciu robotycznego ramienia. Nie była to łatwa decyzja, gdyż ramieniem trzeba było operować tak delikatnie, by nie uszkodzić kabla łączącego Kreta z lądownikiem InSight. Kablem tym popłyną dane zarejestrowane przez Kreta. Okazało się, że użycie ramienia było dobrym pomysłem. Kret znalazł się pod powierzchnią. Oznacza to, że pomiędzy 11 a 30 maja Kret wcisnął się w marsjańskie skały na głębokość 7 centymetrów. Oczywiście przez te 20 dni nie zajmowano się wyłącznie Kretem. Wszystkie instrumenty misji powinny być już gotowe do pracy więc Kretem zajmowano się raz w tygodniu. Teraz przed polskim urządzeniem najważniejsze. Najpierw zostanie przeprowadzony test „wolnego kreta”. Ma on wykazać, jak instrument radzi sobie bez asysty ramienia. Wszystko wskazuje na to, że musimy uzbroić się w cierpliwość. Na północnej półkuli Marsa zbliża się zima. Wkrótce rozpocznie się sezon burz piaskowych. W atmosferze już jest coraz więcej pyłu, spada ilość promieniowania słonecznego docierającego do lądownika InSight. Nie wiadomo zatem, czy w najbliższym czasie nie trzeba będzie ograniczyć operacji wymagających największych ilości energii. « powrót do artykułu
  4. US Air Force zapowiedziały kolejną misję tajemniczego mini wahadłowca X-37B. Pojazd wystartuje 16 maja. Będzie to już jego szósty pobyt w przestrzeni kosmicznej. O wcześniejszych misjach nie wiemy praktycznie niczego, poza tym, że przeprowadzano podczas nich tajne testy. Tym razem Amerykanie uchylili jednak rąbka tajemnicy. Wiemy, że USA posiadają dwa mini-wahadłowce tego typu. Długość każdego z nich to 8,8 metra, a rozpiętość skrzydeł wynosi 4,6 metra. Duże wahadłowce miały długość 37 metrów, przy rozpiętości skrzydeł 24 metrów. Pierwszy start X-37B odbył się w kwietniu 2010 roku, a pojazd wrócił na Ziemię po 224 dniach. Kolejne misje były coraz dłuższe. Ostatnia, najdłuższa, odbyła się pomiędzy 7 września 2017 a 27 października 2019 roku. Trwała więc 779 dni. W czasie pierwszych czterech pojazd był wynoszony przez rakietę Atlas V, podczas ostatniej wykorzystano Falcona 9. Najbliższa misja, OTV-6, wystartuje na pokładzie Atlasa V. W ramach tej ważnej misji przeprowadzili więcej badań niż podczas którejkolwiek z wcześniejszych. Znajdą się wśród nich dwa eksperymenty NASA, poinformowała sekretarz US Air Force, Barbara Barrett. Wyjaśniła, że jeden z eksperymentów dla NASA będzie badał wpływ promieniowania kosmicznego na nasiona, a podczas drugiego zostanie sprawdzone zachowanie się różnych materiałów w przestrzeni kosmicznej. Znacznie bardziej interesująco wygląda inny eksperyment, który zostanie przeprowadzony na zlecenie U.S. Naval Research Laboratory. W jego ramach badana będzie technologia zamiany energii słonecznej na energię mikrofalową i jej transfer na Ziemię. Nie zdradzono przy tym żadnych szczegółów, jednak z wcześniejszych informacji napływających z Naval Research Laboratory wiemy, że z technologią taką wiązane są duże nadzieje,  Dzięki niej Amerykanie mogliby stworzyć drony pozostające w powietrzu przez bardzo długi czas, może nawet bezterminowo, gdyż otrzymywałyby energię z satelitów. Ponadto satelity byłyby zdolne do przekazywania energii w dowolne miejsce na Ziemi, ewentualnie do pojazdów kosmicznych czy innych satelitów. Dzięki takiej technologii jednostki wojskowe czy zespoły naukowe działające w odległych miejscach globu nie musiałyby polegać na mało wydajnej technologii fotowoltaicznej czy na ciężkich, hałaśliwych zużywających sporo paliwa generatorach. Wystarczyłoby urządzenie z anteną odbierającą mikrofale. Ta sama technologia przydałaby się w regionach katastrof, gdzie zapewniłaby energię na długo zanim możliwe byłoby odbudowanie infrastruktury. Przypomnijmy, że po powrocie (maj 2017) X-37B z misji OTV-4 przyznano, że w czasie misji testowano zaawansowane systemy nawigacyjne, kontrolne, napędowe, ochrony termicznej oraz systemy lotu autonomicznego, lądowania i wejścia w atmosferę. Zauważono też wówczas, że X-37B latał niezwykle nisko. Pojawiły się sugestie, że USA testują technologie pozwalające satelitom szpiegowskim na latanie nisko nad Ziemią. To pozwoliłoby na wykonywanie bardziej dokładnych zdjęć, ale wymagałoby znacznie więcej paliwa. Wiemy też, że w ramach OTV-6 z pokładu mini wahadłowca zostanie wypuszczony niewielki satelita FalconSat-8, który przeprowadzi pięć eksperymentów na potrzeby U.S. Air Force Academy. Nie wiemy za to, jak długo potrwa misja OTV-6. « powrót do artykułu
  5. Środowisko naukowe jest coraz bardziej zainteresowane zorganizowaniem dużej misji do Urana lub Neptuna, a jeszcze lepiej do obu planet. Te lodowe giganty to nieodkryte terytorium badań planetarnych. Wysłany przez człowieka pojazd odwiedził je tylko raz i to na krótko. W pobliżu obu planet w latach 80. przeleciał Voyager 2. Już przed 3 laty informowaliśmy, że część specjalistów z NASA zwraca uwagę, iż powoli kończy się czas na zorganizowanie tego typu misji. Jeśli w ciągu najbliższych lat nie rozpoczną się przygotowania, to na kolejną okazję do zbadania obu planet trzeba będzie czekać wiele kolejnych lat. Wtedy też cytowaliśmy Amy Simon, współprzewodniczącą grupy Ice Giants Pre-Decadal Study, która mówiła, że preferowana misja to umieszczenie orbitera w atmosferze Urana lub Neptuna. Dostarczy to najlepszych danych naukowych, pozwoli na dogłębne zbadanie całego systemu planetarnego: pierścieni, satelitów, atmosfery i magnetosfery. W styczniu bieżącego roku ta sama Amy Simon zorganizowała w Royal Society w Londynie spotkanie dotyczące tego typu misji. Najwyższy na to czas. Na początku lat 30. dojdzie bowiem do korzystnej koniunkcji pomiędzy Neptunem, Uranem a Jowiszem. Pozwoliłaby ona na skorzystanie z asysty grawitacyjnej Jowisza podczas podróży do Urana i Neptuna. Dzięki tej asyście czas podróży uległby skróceniu, więc ewentualna sonda mogłaby dotrzeć do któregoś z lodowych olbrzymów w czasie, gdy jej instrumenty będą w dobrym stanie, a ona sama będzie miała wystarczająco dużo paliwa na długotrwałe badania. Wykorzystanie Jowisza do przyspieszenia statku kosmicznego pozwoli też na zabranie mniejszej ilości paliwa, a więc będzie więcej miejsca na instrumenty naukowe. Jeśli jednak chcemy skorzystać z asysty grawitacyjnej Jowisza, to misja do Neptuna musiałaby zostać wystrzelona około 2031 roku, a do Urana nie później niż około 2035 roku. Czasu pozostało bardzo mało. Taką misję mogłaby zorganizować NASA lub byłoby to wspólne przedsięwzięcie, gdzie pierwsze skrzypce będzie grała NASA. Przygotowanie dużej misji o budżecie liczonej w miliardach dolarów zajmuje zwykle 7-10 lat. To, czy taka misja się odbędzie zależałoby od przyjęcia jej założeń w Planetary Science Decadal Survey. Okresowy przegląd tego programu odbędzie się w 2022 roku. Pozostały zatem dwa lata na przygotowanie założeń i planów misji. Jednak nawet i dobry plan nie gwarantuje sukcesu, gdyż z pewnością propozycje zorganizowania wyprawy do Urana czy Neptuna będą musiały konkurować z propozycjami dotyczącymi przywiezienia próbek z Marsa czy eksploracji Wenus. Jak zauważa Leigh Fletcher z University of Leicester, naukowcy zajmujący się lodowymi olbrzymami są daleko w tyle za kolegami specjalizującymi się w badaniach Marsa i Wenus. My nawet nie zakończyliśmy odpowiednika pierwszej fazy badań, którą Mars i Wenus mają dawno za sobą, stwierdza uczony. Fletcher mówi, że misja do którejś z lodowych planet powinna zawierać umieszczenie orbitera oraz wysłanie próbnika w atmosferę planety lub księżyca, tak jak uczyniono to w przypadku Saturna. Naukowcy postrzegają obie planety jako bliźniacze. Mają bowiem podobną masę i rozmiary. Jednak nikt nie wie, na ile rzeczywiście są podobne, jaki jest ich skład i jak powstały. Wykorzystywane modele obliczeniowe nie wyjaśniają dobrze ich struktury wewnętrznej, nie dają też odpowiedzi na pytanie, dlaczego bardziej odległy od Słońca Neptun wydaje się cieplejszy niż Uran. Zakłada się, że są zbudowane głównie z zamarzniętej wody lub z zamarzniętego amoniaku. Zbadanie obu planet znakomicie poszerzyłoby naszą wiedzę o egzoplanetach, gdyż około 40% znanych egzoplanet to lodowe olbrzymy. Dlatego też naukowcy chcieliby zorganizować misję chociaż do jednej z nich. Misja do obu byłaby zbyt kosztowna Trudno też zdecydować, którą z nich wybrać jako cel. Neptun wydaje się bardziej obiecujący, gdyż przy okazji można by zbadać jego księżyc, Trytona, który jest prawdopodobnie aktywny geologicznie, a pod jego powierzchnią może znajdować się ocean wody w stanie ciekłym. Z drugiej jednak strony Uran ma więcej dziwnych właściwości, których wyjaśnienie jest trudniejsze na gruncie obecnej wiedzy. Ponadto na zorganizowanie misji do Urana mamy więcej czasu. A czas się kończy. Europejska Agencja Kosmiczna (ESA) właśnie pracuje nad dwoma dużymi misjami, które miałyby się odbyć na początku przyszłej dekady. Nawet jeśli by zatwierdziła plany misji do Urana lub Neptuna w swoim najbliższym przeglądzie zadań, to może nie zdążyć z ich przygotowaniem na najbliższe okienko startowe. To zaś oznacza, że ESA mogłaby co najwyżej partycypować w misji zorganizowanej przez NASA. Oczywiście każda z tych agencji mogłaby przygotować mniejsza misję, związaną jedynie z przelotem obok któregoś z lodowych olbrzymów. To też poszerzyłoby naszą wiedzę, jednak nie pozwoliłoby na przeprowadzenie dogłębnych badań na jakie liczą naukowcy. Jeśli w 2031 roku wystrzelono by misję do Urana, to w roku 2036 pojazd skorzystałby z asysty grawitacyjnej Jowisza, a w 2043 roku dotarłby do Urana. Jeśli jednak nie wykorzystamy najbliższego okienka startowego, to kolejna okazja na wystrzelenie pojazdu pojawi się w połowie lat 40. Inną możliwością będzie wykorzystanie potężniejszego systemu rakietowego, takiego jak SLS przygotowywanego przez NASA. Jednak jego powstanie do kwestia kolejnych lat. « powrót do artykułu
  6. Chiny jeszcze w bieżącym roku przeprowadzą swoją pierwszą samodzielną misję na Marsa. W lipcu ma wystartować rakieta Long March-5 Y4, która wyniesie chiński próbnik i łazik. Po dotarciu do Czerwonej Planety próbnik ma wejść na jej orbitę, a łazik wyląduje na powierzchni. Wiadomo, że w listopadzie ubiegłego roku chińska agencja kosmiczna przeprowadzała symulacje procesu unikania przeszkód i lądowania na Marsie. Niedawno przeprowadzono też udany 100-sekundowy test silnika rakiety Długi Marsz-5 Y4. Na bieżący rok planowane są kolejne 24 testy takich silników, gdyż misja marsjańska nie będzie jedyną, którą Chiny zaplanowały. Przed końcem roku Państwo Środka rozpocznie też misję, której celem będzie pobranie próbek księżycowego gruntu i przywiezienie ich na Ziemię. Najpoważniejszym wyzwaniem dla chiński ekspertów będzie bezpieczne posadowienie łazika na powierzchni Marsa. Czerwona Planeta ma bardzo cienką atmosferę, trudno więc jest wyhamować pojazd z łazikiem. Dotychczas jedynie NASA udało się bezpiecznie wylądować na Marsie. Próby podejmowane przez ZSRR i Unię Europejską były nieudane. Chiny próbowały wcześniej przeprowadzić misję marsjańską wspólnie z Rosją. Misja Fobos-Grunt zakończyła się spektakularną porażką. Teraz Państwo Środka chce spróbować swoich sił samodzielnie. Misja nazwana Huoxing-1 (Huoxing to po chińsku Mars) zakłada umieszczenie na orbicie Marsa pojazdu, który pozostanie na niem przez co najmniej 1 ziemski rok. Z kolei niewielki łazik, o masie 240 kilogramów, ma pracować na Czerwonej Planecie przez 90 marsjańskich dni. Jego zadaniem będzie prowadzenie chemicznych analiz gruntu oraz wykorzystanie radaru do wykonania obrazowania na głębokość do 100 metrów pod powierzchnią planety. Chiny chcą też przy okazji sprawdzić technologie, których mają zamiar użyć w latach 30. w ramach misji przywiezienia próbek marsjańskiego gruntu. « powrót do artykułu
  7. NASA zdecydowała o otwarciu zapieczętowanych dotychczas próbek księżycowego gruntu i skał, przywiezionych na Ziemię w ramach misji Apollo 17. Po raz pierwszy od ponad 40 lat agencja ma szansę badać nienaruszone próbki z misji Apollo. Naukowcy wykorzystają próbki do ćwiczeń, które posłużą im do badania próbek, jakie w przyszłości trafią na Ziemię w ramach projektu Artemis (Artemida). Projekt ten ma na celu doprowadzenie do powrotu człowieka na Księżyc. Jeśli wszystko pójdzie zgodnie z planem, to w 2024 roku ramach misji Artemis 3 ludzie staną na Księżycu. Próbki, które właśnie odpieczętowano, zostały zebrane przez Gene'a Cernana i Jacka Schmitta. Obecnie możemy wykonać badaniach, jakie nie były możliwe w czasie trwania programu Apollo, mówi doktor Sarah Noble. Analiza tych próbek przyniesie kolejne korzyści z programu Apollo oraz pozwoli przyszłej generacji naukowców udoskonalić swoją technikę i przygotować przyszłych astronautów. NASA do dzisiaj przechowuje wszystkie próbki przywiezione w ramach programu Apollo. Większość z nich została dobrze przebadana, część wciąż jest tematem badań. Już w czasie trwania Apollo zdecydowano, że niektóre próbki zostaną zapieczętowane, a ich badania rozpoczną się w przyszłości, gdy pojawią się bardziej zaawansowane techniki badawcze. Nieotwarte dotychczas próbki zostały zebrane w ramach misji Apollo 15, 16 i 17. Dwie właśnie otwarte, oznaczone numerami 73002 i 73001, będą teraz przedmiotem badań za pomocą zaawansowanych technik, takich jak niedestrukcyjne obrazowanie 3D czy spektrometria mas. Próbki te stanowią część zbioru znajdującego się w metrowej długości tubie. Zebrano je w miejscu osuwiska w pobliżu krateru Lara. Zostały zebrane tak, że zachowano układ warstw księżycowego gruntu. Pierwszą próbką wyjętą z tuby jest 73002. Była ona szczelnie zapieczętowana, ale nie zamknięta w warunkach próżniowych. Przez kolejne miesiące będzie ona badana przez różne zespoły. Przed otwarciem próbki przeprowadzono badania za pomocą mikrotomografii komputerowej o wysokiej rozdzielczości. Zdjęcia pozwoliły wstępnie zbadań strukturę próbki przed wyjęciem oraz posłużyły do opracowania sposobu wyjęcia jej w nienaruszonym stanie. Z kolei próbka 73001 zostanie otwarta na początku przyszłego roku. Już na księżycu zamknięto ją w pojemniku próżniowym, który został umieszczony w kolejnym pojemniku próżniowym, a ten zapieczętowano na Ziemi. Naukowcy otworzą ją, gdy dopracują metody przechwycenia gazów, który się z niej uwolnią po otwarciu. « powrót do artykułu
  8. Panel ekspertów złożony ze specjalistów z NASA i zewnętrznych instytucji zakończył przegląd założeń misji Lucy, pierwszej misji do planetoid trojańskich. Lucy Critical Design Review trwał od 15 do 18 października. W tym czasie eksperci zostali zapoznani ze wszelkimi szczegółami planowanej misji, w tym z budową pojazdu, jego wyposażeniem, szczegółami budowy, planowanych testów, systemów naziemnych, założeń naukowych misji itp. itd. Przegląd wypadł pomyślnie i eksperci dali zielone światło do kontynuowania misji. Tym samym misja Lucy wkroczyła w etap budowania odpowiedniego sprzętu. To bardzo ekscytujący moment, gdyż wykraczamy poza fazę planowania oraz projektowania i zaczynamy budować pojazd. W końcu staje się on rzeczywistością, mówi Hal Levison z Southwest Research Institute, główny naukowiec misji Lucy. Critical Design Review to ostatni etap planowania i projektowania. Jego celem jest zapewnienie, że wszystko przygotowano jak należy, a misja spełni stawiane przez nią cele, jest wsparta solidną wiedzą naukową, odpowiednimi analizami, dokumentacją i będzie przebiegała bezpieczne. Lusy będzie pierwszą misją do asteroid trojańskich. Zostanie wystrzelona w październiku 2021 rkou i w ciągu 12 lat odwiedzi siedem planetoid, jedną z pasa głównego – znajdującego się pomiędzy Marsem a Jowiszem – i sześć trojańczyków. Asteroidy trojańskie to pozostałości po formowaniu się planet. Są one uformowane w dwóch grupach znajdujących się na orbitach bardzo podobny do orbity Jowisza. Dotychczas nie odwiedził ich żaden wysłany z Ziemi pojazd. Od strony naukowej ze misję Lucy będzie odpowiedzialny Southwest Research Institute (SwRI) w Boulder w stanie Colorado. Pojazd zostanie zbudowany przez Lockheed Martin Space Systems, a zarządzanie całą misją, kwestie inżynieryjne oraz bezpieczeństwa spoczną na barkach specjalistów z Goddard Space Flight Center. Misje przygotowywane w ramach programu Discovery, takie jak Lucy, są stosunkowo tanie. Maksymalny koszt rozwoju każdej z nich określono na 450 milionów dolarów. Celem takich misji jest znalezienie kluczowych odpowiedzi na pytania dotyczące Układu Słonecznego. Są one zarządzane przez głównego badacza, który dobiera sobie zespół naukowców i inżynierów, a ich celem jest przygotowanie misji od początku do końca.   « powrót do artykułu
  9. Misja Dragonfly będzie kolejną – czwartą – jaką NASA przygotuje w ramach programu New Frontiers. Koncepcja badań Tytana, największego księżyca Saturna, wygrała więc w propozycją przywiezienia próbek komety 67P/Churyumov-Gerasimenko. Misja, którą kieruje Elizabeth Turtle z Uniwersytetu Johnsa Hopkinsa, wystartuje w 2026 roku. Będzie ona odmienna od innych przedsięwzięć związanych z robotyczną eksploracją Układu Słonecznego. Tytan jest inny niż jakiekolwiek miejsce w Układzie Słonecznym, więc i Dragonfly będzie inną misją, powiedział Thomas Zurbuchen, wiceadministrator NASA ds. badań naukowych. Tytan otoczony jest przez atmosferę składającą się głównie z azotu. Jest on większy od Merkurego, a naukowcy przypuszczają, że pod zamarzniętą skorupą znajduje się ocean. Księżyc był badany przez sondę Cassini, która w 2005 roku umieściła w atmosferze Tytana próbnik Huygens. Na powierzchni Tytana znajdują się skały, wyżyny i pustynie. Są one jednak zbudowane z lodu, a rzeki i oceany to płynny metan. Zarejestrowano tam też obecność molekuł organicznych. To niezwykle interesujące miejsce. Tytan może być kolebką dla jakiegoś rodzaju życia. Niezależnie od tego, czy życie się tam pojawiło, czy też nie, węglowodorowe rzeki i jeziora Tytana oraz węglowodorowy śnieg, czynią go jednym z najbardziej fascynujących obiektów w Układzie Słonecznym, mówi Lindy Elkins-Tanton z Arizona State University i główna badaczka misji Psyche. Jako, że Tytan jest tak zróżnicowany, umieszczenie próbnika w jednym miejscu nie da nam zbyt wielu informacji na temat procesów chemicznych zachodzących na księżycu. Stąd też pomysł misji Dragonfly – śmigłowca, który będzie latał nad Tytanem i pobierał próbki. Dragonfly będzie składał się z czterech ramion, z których każde zostanie wyposażone w dwa śmigła, jedno u dołu, drugie u góry. Dzięki gęstej atmosferze i słabej grawitacji 300-kilogramowy śmigłowiec wielkości samolotu, zasilany generatorem radioizotopowym, będzie mógł podróżować nad Tytanem pobierając co 16 ziemskich dni próbki i zużywając przy tym 38-krotnie mniej energii niż na Ziemi. Dragonfly przybędzie na Tytana w 2034 roku. W tym czasie na półkuli północnej będzie panowała długotrwała zima. Okolice bieguna północnego to miejsce występowania interesujących naukowców mórz metanowych. Jednak Dragonfly nie będzie mógł tam lądować ani komunikować się z Ziemią. Dlatego pojazd zajmie się badaniem okolic równika. Znajdujące się tam wielkie pustynie zawierają prawdopodobnie materiał opadający z całego księżyca. Dragonfly skupi się na poszukiwaniu kraterów uderzeniowych i wulkanów lodowych. Misja podstawowa Dragonfly potrwa 3 lata. W tym czasie pojazd przebędzie 175 kilometrów, a każdy z lotów będzie miał długość do 8 km. W końcu śmigłowiec dotrze do krateru Selk, który jest jego głównym celem. To 80-kilometrowy krater uderzeniowy. Dragonfly nie zostanie wyposażony w robotyczne ramię. Badania będzie prowadził emitując promieniowanie gamma, dzięki któremu rozróżni różne typy gruntu. Zostanie też wyposażony w wiertło, za pomocą którego pobierze próbki. Te trafią do tuby próżniowej, a stamtąd do spektrometru mas, który przeanalizuje ich skład. Taki system badań najbardziej niepokoił NASA. Obawiano się, że bogata w węglowodory atmosfera Tytana doprowadzi do jego zatkania. Potrzeba było dwóch lat badań, testowania nowych materiałów i architektury systemu, by rozwiać te wątpliwości. Dragonfly nie skupi się jedynie na powierzchni Tytana. Będzie też badał wnętrze księżyca i jego atmosferę. Podczas lotu będzie zbierał próbki atmosfery, a dzięki sejsmometrowi zarejestruje wibracje powodowane przez interakcje Tytana z Saturnem oraz wpływ grawitacji planety na uwięziony pod lodem ocean. Jeśli śmigłowiec nie ulegnie awarii, to nie można wykluczyć, że jego misja zostanie przedłużona. Zasilania wystarczy mu bowiem na 8 lat, a – jak pamiętamy z dotychczasowych misji – NASA często, gdy ma taką możliwość, wydłuża misje poza ich program podstawowy i próbuje osiągnąć dodatkowe cele Całkowity koszt misji zamknie się w kwocie 1 miliarda dolarów. Dragonfly – czyli New Frontiers 4 – to kolejne po New Horizons (misja do Plutona i obiektu 2014 MU69 w Pasie Kuipera), Juno (misja do Jowisza) i OSIRIS-REx (misja do asteroidy Bennu) – przedsięwzięcie w ramach programu New Frontiers. Jak poinformował Thomas Zurbuchen, w roku 2021 lub 2022 NASA rozpocznie przyjmowanie propozycji dla misji New Frontiers 5.   « powrót do artykułu
  10. NASA ujawniła szczegóły programu Artemis (Artemida), w ramach którego człowiek ma wrócić na Księżyc. Nazwa programu wyraźnie nawiązuje do misji Apollo, w ramach którego ludzie po raz pierwszy stanęli na Srebrnym Globie. Artemida była siostrą Apollina. Jeszcze przed końcem bieżącego miesiąca NASA podpisze pierwszy kontrakt na dostawę sprzętu na Księżyc. Jeśli lądowniki księżycowe, rozwijane przez prywatne firmy, będą gotowe, to pierwszy ładunek sprzętu dla programu Artemis trafi na powierzchnię Księżyca jeszcze w bieżącym roku. W przyszłym roku ma odbyć się misja Artemis 1. Będzie to pierwszy wspólny start SLS (Space Launch System) i kapsuły Orion. Będzie to bezzałogowy próbny lot testowy. W jego ramach zostaną też wyniesione satelity typu CubeSat, które będą prowadziły eksperymenty naukowe i testy technologii. Na rok 2022 przewidziano Artemis 2 – pierwszy załogowy test Oriona i SLS. Po raz pierwszy od 50 lat ludzie polecą poza orbitę Księżyca. W tym samym roku ma zostać wystrzelony pierwszy element stacji Lunar Gateway. Wczoraj NASA poinformowała, że za stworzenie modułu odpowiedzialnego za zapewnienie energii, napędu oraz komunikacji będzie odpowiedzialna firma Maxar Technologies. Lunar Gateway to niewielka stacja kosmiczna, która zostanie umieszczona na orbicie Księżyca. Będzie ona spełniała rolę huba komunikacyjnego, laboratorium naukowego, tymczasowego miejsca zamieszkania oraz miejsca przechowywania łazików i innych robotów. Kolejnym elementem misji Artemis będzie umieszczenie w 2023 roku na Księżycu łazika. Jego zadaniem będzie lepsze zbadanie i zrozumienie pyłu księżycowego oraz zbadanie lodu pod kątem wykorzystania go do produkcji paliwa, tlenu i wody pitnej. W tym samym 2023 roku na orbitę Srebrnego Globu trafi drugi element stacji Gateway. Będzie to niewielki moduł mieszkalny. Pierwsi astronauci, którzy trafią na stację, przejdą z kapsuły Orion do tego modułu i tam przygotują się do lądowania na Biegunie Południowym Księżyca. W roku 2024 odbędzie się kilka misji, w ramach których w przestrzeń kosmiczną trafią poszczególne elementy Human Landing System. Zostaną one złożone na orbicie i zadokowane do Gateway. W tym samym roku odbędzie się załogowa misja Artemis 3. Astronauci, korzystając z SLS i Oriona, polecą na orbitę Księżyca i zadokują do stacji Gateway. Załoga sprawdzi stację oraz Human Landing System, a następnie uda się na Księżyc. Będzie to pierwsze od ponad 50 lat lądowanie człowieka na Księżycu. W latach 2025–2028 każdego roku będzie odbywała się kolejna misja załogowa. Astronauci biorący udział w Artemis 4 – Artemis 7 będą pracowali zarówno na stacji Gateway jak i na powierzchni satelity Ziemi. Stacja będzie ciągle rozbudowywana tak, by od roku 2028 możliwa była stała obecność i praca ludzi na stacji i Księżycu. W końcu, w oparciu o możliwości eksploracji Księżyca, w latach 30. ma odbyć się załogowa misja na Marsa. « powrót do artykułu
  11. NASA wybrała przyszłą misję, która pozwoli lepiej zrozumieć ewolucję wszechświata oraz zbadać, na ile powszechne w naszej galaktyce są podstawowe składniki niezbędne do powstania życia. Wspomniana misja to Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx). Ma ona wystartować w 2023 roku i została zaplanowana na 2 lata. Koszt misji, bez kosztów wystrzelenia, to 242 miliony dolarów. SPHEREx będzie badała nieboskłon zarówno w świetle widzialnym jak i w bliskiej podczerwieni. Posłuży ona do zebrania informacji o ponad 300 milionach galaktyk i ponad 100 milionach gwiazd w Drodze Mlecznej. Ta niezwykła misja będzie prawdziwą skarbnicą unikatowej wiedzy. Dzięki niej stworzymy wyjątkową mapę galaktyk, zawierającą ślady pierwszych chwil istnienia wszechświata. I dostarczy nam danych, które pomogą w odpowiedzi na jedną z największych tajemnic nauki: co spowodowało, że wszechświat zaczął rozszerzać się tan szybko w ciągu mniej niż nanosekundy po Wielkim Wybuchu?, mówi Thomas Zurbuchen, menedżer Dyrektoriatu Misji Naukowych. SPHEREx będzie badała zarówno pobliskie galaktyki, jak i te znajdujące się w odległości 10 miliardów lat świetlnych. Misja będzie poszukiwała też wody i molekuł organicznych w Drodze Mlecznej. Co sześć miesięcy SPHEREx będzie tworzył mapę całego nieboskłonu w 96 zakresach fal świetlnych. To znaczący skok jakościowy w porównaniu z obecnie dostępnymi mapami. Dane takie posłużą, m.in., do określenia celów badawczych dla innych misji, jak JWST czy WFRIST. SPHEREx odbędzie się w ramach Astrophysics Explorers Program. We wrześniu 2016 roku NASA poprosiła o przedstawienie propozycji misji. Otrzymała 9 takich koncepcji, z czego w sierpniu 2017 roku do dalszych prac wybrano dwie. Po ich szczegółowej przeprowadzonej zarówno przez NASA jak i niezależne zespoły eksperckie uznano, że największy potencjał naukowy oraz najbardziej realny plan realizacji ma SPHEREx. Głównym naukowcem misji jest James Bock z Caltechu (California Institute of Technology). Za zarządzanie misją będzie odpowiedzialne Jet Propulsion Laboratory. Pojazd i urządzenia potrzebne do wykonania misji dostarczy firma Ball Aerospace, a Koreański Instytut Astronomii i Nauki o Kosmosie z Daejeon jest odpowiedzialny za dostarczenie urządzeń testowych oraz analizy naukowe. Program Explorer, którego częścią jest Astrophysics Explorers Program to najstarszy wciąż kontynuowany program naukowy NASA. Pierwszą misją, jaką przeprowadzono w jego ramach, była Explorer 1 wystrzelona w 1958 roku. Dotychczas w ramach programu przeprowadzono ponad 90 misji w przestrzeni kosmicznej. « powrót do artykułu
  12. Specjalistom z Jet Propulsion Laboratory (JPL) wciąż nie udało się nawiązać kontaktu z marsjańskim łazikiem Opportunity. Szanse, że urządzenie, które od kilkunastu lat pracuje na Marsie, ponownie podejmie swoje zadania, są coraz mniejsze. W czerwcu 2018 nad znaczną częścią Marsa rozszalała się potężna burza piaskowa. Promienie słoneczne przestały padać na panele słoneczne Opportunity. Jako, że łazik nie pozyskiwał energii, NASA zdecydowała się wprowadzić go w stan hibernacji, by zaoszczędzić energię. Od tamtej pory JPL wysłało do Opportunity ponad 600 komend w nadziei, że łazik ponownie ruszy. Eksperci liczyli na to, że sezonowe wiatry, które wieją pomiędzy listopadem a styczniem, oczyszczą z piasku panele słoneczne łazika, umożliwiając ponowne naładowanie jego baterii. Niestety, dotychczas to się nie udało. Koniec sezonu wiatrów może być końcem łazika. Jeśli jednak tak się stanie, to nie mógłbym wyobrazić sobie lepszego sposobu na ten koniec... misja, przewidziana na 90 dni kończy się po 15 latach, a jej kres przynosi jedna z najpotężniejszych od lat burz piaskowych, mówi Steven Squyres, główny naukowiec misji z Cornell University. Mamy jeszcze tydzień. Kończy nam się czas, stwierdza John Callas, menedżer misji z JPL. Bliźniak Opportunity, łazik Spirit, zamilkł w marcu 2010 roku. Obecne próby uruchomienia Opportunity trwają już niemal tak długo, co próby uruchomienia Spirita. Dlatego można się spodziewać, że NASA pozostały ostatnie dni prób nawiązania kontaktu. Inżynierowie mogą jeszcze wydać polecenie przełączenia komunikacji łazika na tylną antenę. Jeśli to nie wypali, to nie wiem, co potem, przyznaje Callas. Jeszcze przed zamknięciem rządu USA planowano zebranie, podczas którego miała zapaść decyzja, czy po sezonie wiatrów będą kontynuowane próby nawiązania kontaktu. Jako, że rząd został tymczasowo otwarty, wkrótce możemy poznać ostateczną decyzję. Jeśli nawet to koniec misji Opportunity, to łazik zyskał sobie miejsce w historii. Miał pracować przez 90 dni, przetrwał ponad 5000. Przejechał 45 kilometrów, często jadąc tyłem z powodu przegrzewającego się układu sterowania. Łazik wylądował w 2004 roku na równinie Meridiani Planum. Szybko odkrył minerały bogate w siarkę, które w przeszłości prawdopodobnie były dnem laguny. Przesłane przez łazik dane wskazują, że na Marsie okresowo istniały jeziora. Dzięki niemu dowiedzieliśmy się, że Czerwona Planeta mogła podtrzymywać życie znacznie dłużej, niż wcześniej sądzono. W 9. roku misji Opportunity przeprowadził pierwsze obserwacje gliny liczącej sobie ponad 4 miliardy lat. Przed trzema dniami NASA rozpoczęła serię prób nawiązania kontaktu z łazikiem. Inżynierowie będą wysyłali komendy, uwzględniając trzy scenariusze: pierwszy, że główna antena łazika została uszkodzona, drugi, mówiący o uszkodzeniu głównej i pomocniczej anteny oraz trzeci, zgodnie z którym doszło do awarii zegara łazika. Specjaliści mają nadzieję, że uda się skontaktować z anteną zapasową i zresetować zegar. « powrót do artykułu
  13. Nikołaj Kardasziew, szef Centrum Badań Kosmicznych Instytutu Fizycznego im. P.N. Lebiediewa, poinformował, że niektóre systemy komunikacyjne radioteleskopu RadioAstron (in. Spektr-R) przestały działać. Nadal może on jednak przesyłać dane naukowe. Misja radioteleskopu była planowana na 5 lat. Na orbitę wprowadzono go 18 lipca 2011 r. W lutym 2014 r. Spektr-R został oficjalnie uznany za największy radioteleskop orbitalny. Specjaliści wielokrotnie, niestety bezskutecznie, próbowali przywrócić łączność utraconą rankiem 11 stycznia. Jurij Kowaliew, szef projektu Spektr-R, dodaje, że nadal jest nadzieja. Na marzec br. planowane jest wprowadzenie na orbitę rosyjsko-niemieckiego satelity Spektr-RG (Spectrum-X-Gamma). Jego operatorami są Rosyjski Instytut Badań Kosmicznych oraz Instytut Fizyki Pozaziemskiej Maxa Plancka. « powrót do artykułu
  14. Za kilka dni, w poniedziałek 26 listopada, na Marsie wyląduje kolejna misja. Na Czerwoną Planetę trafi trójnożny robot geologiczny wysłany tam w ramach misji InSight. To pierwsze amerykańskie urządzenie, które ląduje na Marsie od czasu łazika Curiosity z 2012 roku i pierwsze urządzenie badawcze wyspecjalizowane w badaniu tego, co znajduje się pod powierzchnią Marsa. Lądowanie robota zostanie przeprowadzone podobnie, jak lądowanie innych urządzeń posadowionych dotychczas na powierzchni Marsa. Tutaj jednak podobieństwa się kończą. Gdy tylko specjaliści z centrum kontroli lotu w Kalifornii dojdą do wniosku, że miejsce lądowania jest bezpieczne – wystarczająco płaskie i pozbawione kamieni – mierzące 1,8 metra długości ramię robota zdejmie i ustawi na powierzchni Marsa dwa urządzenia naukowe. Dotychczas nikt nie próbował takiej operacji na powierzchni innej planety. Pierwsze z urządzeń wykona w powierzchni Marsa dziurę o głębokości 5 metrów. Zostanie użyty do tego specjalny gwóźdź z czujnikami temperatury, który pozwoli ocenić temperaturę wewnętrzną planety. Jeśli projekt się uda, będzie to najgłębszy otwór wykonany przez człowieka na innym ciele niebieskim. Dotychczas rekordowo głęboką dziurę wykonali astronauci, którzy wwiercili się na głębokość 2,5 metra pod powierzchnię Księżyca. Drugi z eksperymentów to specjalny sejsmometr, którego zadaniem jest rejestrowanie ruchów skorupy Marsa. Misja InSight nie będzie poszukiwała śladów życia. Nie została wyposażona w żadne odpowiednie czujniki. Jej celem są badania geologiczne Czerwonej Planety. Najpierw jednak misja InSight musi wylądować na Marsie, a to nie jest proste. Spośród wszystkich misji marsjańskich podjętych przez ludzkość sukcesem zakończyło się około 50%. Największy odsetek udanych misji ma za sobą NASA, która jako jedyna doprowadziła do udanego lądowania urządzenia i przeprowadzenia misji na powierzchni Czerwonej Planety. Jednak, jako że każde lądowanie jest inne, nawet doświadczona agencja kosmiczna nie może z góry stwierdzić, że misja się uda. Nigdy nie wiadomo, co się wydarzy. To, że robiliśmy to już wcześniej nie znaczy, że się nie denerwujemy, stwierdził Tom Hoffman, odpowiedzialny za misję InSight. Podmuch wiatru może wprowadzić zmienić położenie lądującego pojazdu, mogą poplątać się linki spadochronu, już na powierzchni Marsa może przydarzyć się burza piaskowa, która uniemożliwi generowanie energii z paneli słonecznych. Może dojść do zablokowania którejś z nóg robota lub jego automatycznego ramienia. InSight wejdzie w atmosferę Marsa z prędkością 19 800 km/h. Później wszystko będzie zależało od silników hamujących i spadochronu. Jeśli wszystko pójdzie dobrze, wyląduje na dużej równinie Elysium Planitia. Samo urządzenie jest niewysokie. Jego górny pokład będzie znajdował się zaledwie metr nad powierzchnią planety, a po rozłożeniu okrągłych paneli słonecznych zajmie ono tyle miejsca co duży samochód. Przy okazji misji InSight wysłano też miniaturowe satelity CubeSat, które przelecą nad Marsem i wejdą na orbitę okołosłoneczną. Po lądowaniu minie co najmniej 10 tygodni zanim wszystkie instrumenty naukowe rozpoczną pracę. I kolejnych kilka tygodni zanim na Marsie rozpoczną się wiercenia. Misję zaplanowano na 1 marsjański rok. To odpowiednich 2 lat na Ziemi. « powrót do artykułu
  15. Astri Polska dostarczyła urządzenie dla misji badawczej Europejskiej Agencji Kosmicznej (ESA), której celem będzie zbadanie Jowisza i jego lodowych księżyców. Urządzenie będzie miało istotne znaczenie dla powodzenia tej misji i jest najbardziej zaawansowanym technicznie produktem opracowanym przez warszawską firmę. JUICE (JUpiter ICy moons Explorer) to misja badawcza Europejskiej Agencji Kosmicznej, która ma za zadanie przeprowadzić badania Jowisza i jego trzech lodowych księżyców. Start sondy planowany jest na rok 2022. Urządzenie dostarczane przez Astri Polska zostanie podłączone do sondy i umożliwi przetestowanie jej systemów elektronicznych, przed wysłaniem w przestrzeń kosmiczną. Jest to ważny etap każdego programu kosmicznego, ponieważ po rozpoczęciu misji inżynierowie nie mają już możliwości dokonania modyfikacji systemów urządzenia umieszczonego na orbicie. Docelowo, warszawska firma przekaże dla misji JUICE jeszcze jedno urządzenie tego typu oraz cyfrowe środowisko testowe, które pozwoli na przetestowanie oprogramowania obsługującego komputer pokładowy sondy. Przekazanie urządzenia dla misji JUICE jest ważnym wydarzeniem dla Astri Polska. Cieszymy się, że nasz produkt spełnił rygorystyczne wymagania i odegra istotną rolę we flagowym programie Europejskiej Agencji Kosmicznej. Warto podkreślić, że od strony technicznej, urządzenie dla misji JUICE, jest najbardziej zaawansowanym produktem spośród wszystkich, które dostarczyliśmy dotychczas dla europejskich programów kosmicznych  – powiedziała Iuliia Strotska, Business Development Manager w Astri Polska. Astri Polska jest liderem polskiego sektora kosmicznego pod względem współpracy przemysłowej z Europejską Agencją Kosmiczną (ESA), dla której tylko w tym roku dostarczy aż 10 gotowych produktów. Będą to m.in.: systemy elektroniczne dla satelitów meteorologicznych, telekomunikacyjnych i środowiska testowe dla odbiorników nawigacji satelitarnej GNSS przeznaczonych do zastosowań kosmicznych. W nadchodzącym roku, firma planuje dalszy wzrost zaangażowania w projekty ESA. W tym celu firma zamierza zaproponować ESA autorską koncepcję innowacyjnej platformy do testowania satelitów. Opracowanie modułowego systemu do testowania satelitów będzie kolejnym krokiem milowym Astri Polska. Zakładamy, że dzięki jego uniwersalności będziemy mogli wpłynąć na obniżenie kosztów związanych z realizacją programów kosmicznych, co da nam dużą przewagę konkurencyjną na rynku w tej dziedzinie – powiedziała Strotska. Astri Polska specjalizuje się w projektowaniu i produkcji urządzeń dla wiodących europejskich programów kosmicznych oraz projektowaniu dedykowanych usług i aplikacji w oparciu o dane pochodzące z satelitów. Od powstania w 2010 r. firma zaangażowana była w ok. 50 projektów związanych z rozwojem technologii kosmicznych i satelitarnych. W chwili obecnej, firma realizuje ok. 20 projektów, zatrudniając 80 polskich inżynierów. « powrót do artykułu
  16. Jutro wystartuje misja BepiColombo, której zadaniem jest zobrazowanie Merkurego w niespotykany dotychczas sposób. Merkury to wyjątkowy obiekt. To najmniejsza planeta Układu Słonecznego. W południe temperatury na niej sięgają 425 stopni Celsjusza, by przed świtem spaść do -180 stopni. Ma on też orbitę o wyjątkowo dużym mimośródzie. Jej peryhelium znajduje się w odległości 46 milionów, a aphelion – 70 milionów kilometrów od Słońca. Merkury znajduje się blisko Ziemi, jednak trudno jest się doń dostać. Dotychczas odwiedziły go jedynie 2 pojazdy wysłane z naszej planety. Międzynarodową misję BepiColombo nazwano tak na cześć włoskiego naukowca, matematyka i inżyniera Giuseppe „Bepi” Colombo. Opisał on ja, korzystając z asysty grawitacyjnej Wenus, można dostać się do Merkurego. NASA z powodzeniem przetestowała jego pomysły wysyłając pojazd Mariner 10. Przeleciał on blisko Merkurego dwukrotnie w 1974 roku i raz w 1975, dostarczając pierwszych zdjęć tej planety. Na zdjęciach było widać m.in. niziny, które mogły uformować się albo wskutek działalności wulkanicznej, albo powstać w wyniku uderzenia w Merkurego dużego obiektu i pojawienia się roztopionego materiału. Następca Merkurego, pojazd Messenger, wysłany przez NASA w 2004 roku, dostarczył dowodów na działalność wulkaniczną. Mariner 10 i Messenger ujawniły wiele fascynujących informacji o Merkurym, jednak jeszcze więcej pozostało do zbadania. Tutaj na scenę wchodzi BepiColombo. Początkowo Europejska Agencja Kosmiczna (ESA) planowała wysłanie trzech pojazdów. Miały to być Mercury Planetery Orbiter (MPO), Mercury Magnetospheric Orbiter (MMO), które badałyby planetę z góry, oraz Mercury Sufrace Element (MSE), któy miał trafić na powierzchnię i przetrwać tam tydzień, prowadząc badania. Z powodu problemów budżetowych zrezygnowano z lądownika. Powstały za to MPO i MMO. Na pokładzie MPO znajduje się 11 instrumentów naukowych będących dziełem 35 zespołów ze Szwajcarii, Niemiec, Włoch, Wielkiej Brytani, Rosji, Finlandii, Szwecji, Austrii, Francji i USA. BepiColombo Laser Altimeter (BELA) i Spectrometers and Imagers for MPO BepiColombo Integrated Observatory System (SIMBIO-SYS) stworzą mapę geologiczną, zbadają skład powierzchni planety i określą jej wiek. Wraz z Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), Mercury Gamma-Ray and Neutron Spectrometer (MGNS) i Mercury Imaging X-Ray Spectrometer (MIXS) zidentyfikują kluczowe pierwiastki wchodzące w skład skał, zmierzą średnie temperatury na powierzchni i pozwolą na zweryfikowanie obecnych teorii na temat powstania i ewolucji planety. Instrumenty te poszukają złóż lodu, określą wpływ wulkanizmu na planetę oraz przeanalizują lotne związki z wysokich części atmosfery. Za analizę składu, struktury i sposobu formowania się eksosfery Merkurego będą odpowiedzialne BepiColombo’s Probing of Hermean Exosphere by Ultraviolet Spectroscopy (PHEBUS) id Search for Exosphere Refilling and Emitted Neutral Abundances (SERENA). Z kolei Solar Intensity X-Ray and Particles Spectrometer (SIXS) zbada wpływ wiatru słonecznego na erozję powierzchni planety. Zadaniem Italian Spring Accelerometer (ISA) and Mercury Orbiter Radioscience Experiment (MORE) jest zaś zbadanie pola grawitacyjnego planety i zrozumienie budowy jej jądra, płaszcza i skorupy. Na pokładzie MMO znajduje się też jedna część Mercury Magnetometer (MERMAG), który będzie badał pole magnetyczne. Druga część MERMAG znajduje się na zbudowanym przez Japońską Agencję Kosmiczną (JAXA) pojeździe MMO, którego nazwę zmieniono ostatnio na Mio. Mio ma na pokładzie pięć instrumentów. Poza MERMAG są to Mercury Sodium Atmosphere Spectral Imager (MSASI), który zbada sód w atmosferze, Mercury Dust Monitor (MDM), odpowiedzialny za monitorowanie pyłu i jego wpływu na powierzchnię. Mercury Plasma Particle Experiment (MPPE) będzie badał interakcję pola magnetycznego planety z wiatrem słonecznym, a Plasma Wave Investigation (PWI) jest odpowiedzialny za badanie pól elektrycznych, magnetycznych, poszukiwanie zórz i pasów radiacyjnych. Podróż BepiColombo do Merkurego potrwa 7 lat. Misja zostanie wystrzelona z Gujany Francuskiej na pokładzie rakiety Ariane 5, a sześciotygodniowe okienko startowe otwiera się dzisiaj. Po odłączeniu się od rakiety nośnej pojazd będzie napędzany przez brytyjski Mercury Transport Module (MTM), który składa się z czterech silników jonowo-ksenonowych, 24 silników chemicznych i dwóch paneli słonecznych. Podróż do Merkurego wymaga, ze względu na duże oddziaływanie grawitacyjne Słońca, więcej energii niż opuszczenie Układu Słonecznego. Ponadto prędkość orbitalna Merkurego jest o 60% większa od prędkości Ziemi, przez co konieczne są znaczne zmiany prędkości BepiColombo i związane z tym zużycie dużej ilości paliwa. Początkowo BepiColombo wejdzie na orbitę podobną do orbity ziemskiej. Wykona 1,5 orbity wokół Słońca, a w kwietniu 2020 roku powróci w pobliże Ziemi i skorzysta z asysty grawitacyjnej naszej planety. W październiku 2020 i sierpniu 2021 zliży się do Wenus, dzięki czemu zmniejszy swój peryhelium do podobnego jaki ma Merkury. Manewry będą tak wymagające, że zużyje na nie połowę paliwa. Pomiędzy październikiem 2021 a styczniem 2025 BepiColombo wykona sześć przelotów w pobliżu Merkurego. W końcu w grudniu 2025 roku wejdzie na orbitę okołobiegunową. Po oddzieleniu się MTM dojdzie do oddzielania się Mio, a trzy miesiące później oba pojazdy rozpoczną badania naukowe. MPO zajmie orbitę, której wysokość nad powierzchnią planety będzie wahała się od 480 do 1500 kilometrów. Okrążenie orbity będzie trwało 2,3 godziny. Mio wejdzie na wysoce eliptyczną orbitę przebiegającą w odległości od 590 do 11 640 kilometrów od powierzchni planety. Będzie ją przebywał w ciągu 9,3 godziny. Misja BepiColombo ma potrwać do maja 2027 roku, ale jest wysoce prawdopodobne, że zostanie wydłużona o co najmniej rok. « powrót do artykułu
  17. W ramach programu Next Space Technologies for Exploration Partnerships (NextSTEP) NASA zachęca swoich partnerów do opracowania technologii pozbywania się odpadów podczas długotrwałych misji w głębszych partiach przestrzeni kosmicznej. Życie na Międzynarodowej Stacji Kosmicznej wymaga rozsądnego gospodarowania zasobami, redukowania liczby odpadów, wielokrotnego wykorzystywania materiałów i recyklingu wody oraz powietrza. Każdego roku na ISS dostarczanych jest około 12 ton metrycznych towarów, co z kolei rodzi poważne wyzwania dotyczące ich przechowywania. Obecnie każdy odpad jest ręcznie zgniatany przez astronautów i pakowany do worka. Na ISS przechowywane są w ten sposób nawet 2 tony śmieci. Odpadki te są albo przywożone na Ziemię, albo spalane w atmosferze. W przyszłości podczas misji znacznie bardziej oddalonych od Ziemi, astronauci prawdopodobnie nie będą mogli liczyć na regularne misje zaopatrzeniowe, które będą odbierały też odpadki. Dlatego też NASA wezwała przemysł prywatny do opracowania systemu radzenia sobie ze śmieciami. Ich przechowywanie na pokładzie pojazdu kosmicznego wiąże się nie tylko z zajęciem cennego miejsca, ale stwarza też ryzyko fizyczne i biologiczne. Ponadto składowanie odpadów oznacza utratę potencjalnych zasobów, które można by ponownie wykorzystać. NASA chce, by powstał bezpieczny dla załogi system maksymalnie wykorzystujący dostępne zasoby, zmniejszający objętość odpadków, których nie da się wykorzystać. Chętni do udziału w programie nie będą musieli zaczynać od zera. NASA od lat 80. rozwija system zarządzania odpadkami i ma na swoim koncie takie rozwiązania jak Heat Melt Compactor. Wspomniany program będzie składał się z dwóch etapów. Podczas Fazy A firmy mają opracować koncepcję systemu, poprawić je pod kierunkiem inżynierów z NASA oraz zbudowanie i przetestowanie na Ziemi prototypu. Firmy biorące udział w projekcie będą mogły wystąpić do NASA o zgodę na wykorzystanie infrastruktury Agencji. Z kolei w Fazie B zaproponowane systemy zostaną przetestowane na pokładzie Międzynarodowej Stacji Kosmicznej. Testy mogą rozpocząć się już w roku 2022. Zainteresowane firmy będą musiały co najmniej 20% kosztów prac nad swoimi systemami (10% w przypadku małych przedsiębiorstw). « powrót do artykułu
  18. Dzisiaj, 51 minut po północy czasu polskiego, wystrzelono misję TESS. Pojazd, którego zadaniem jest poszukiwanie pobliskich planet pozasłonecznych podobnych do Ziemi, wystartował w Przylądka Canaveral na pokładzie rakiety Falcon 9. Przez najbliższych kilka tygodni TESS będzie stopniowo zmieniał swoją orbitę tak, by ostatecznie osiągnęła ona apogeum 400 000 kilometrów. Wówczas, dzięki asyście grawitacyjnej Księżyca pojazd znajdzie się na swojej docelowej orbicie. Czas obiegu TESS wokół Ziemi będzie wówczas wynosił 13,7 doby, a jego rezonans z Księżycem będzie miał wartość 2:1, co oznacza, że średnie zakłócenia ruchu TESS spowodowane obecnością Księżyca będą bliskie zeru. Na tak stabilnej orbicie TESS pozostanie przez kilkadziesiąt lat. Uzyskanie takiej właśnie orbity jest ważne dla pojazdu, który jest bardzo ograniczony co do masy, więc nie mógł zabrać na pokład zbyt wiele paliwa dla silników manewrujących. TESS niemal nie będzie musiał wykonywać manewrów korygujących orbitę. Po osiągnięciu docelowej orbity nastąpi 60-dniowy okres uruchamiania i testowania urządzeń, po którym TESS rozpocznie właściwą część swojej misji. Oczywiście misja TESS nie została zaplanowana na kilkadziesiąt lat. Pojazd ma pracować przez dwa lata. W tym czasie będzie obserwował 200 000 najjaśniejszych bliskich Słońcu gwiazd,  poszukując w ich pobliżu planet. Naukowcy szacują, że TESS odnajdzie wiele tysięcy planet, z czego około 300 będą to planety nie większe niż dwukrotna średnica Ziemi. Staną się one celem przyszłych misji badawczych. "Planety, które znajdzie TESS, będą wspaniałym celami badawczymi w kolejnych dekadach. To początek nowej epoki badań nad egzoplanetami", powiedział Stephen Rinehart z Goddard Flight Center. « powrót do artykułu
×
×
  • Dodaj nową pozycję...