Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' Polska Akademia Nauk'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Całkowita odbudowa trwale uszkodzonych mięśni nadal pozostaje wyzwaniem dla medycyny. Międzynarodowy zespół kierowany m.in. przez dr. Marco Costantiniego z IChF PAN zaprezentował rozwiązanie, które umożliwia odbudowę znacznie uszkodzonych mięśni szkieletowych z niespotykaną dotąd skutecznością. Mięśnie stanowią największą tkankę w naszym ciele. Są niezbędne do wykonania jakiegokolwiek ruchu, a bez nich nie bylibyśmy w stanie wykonać nawet najprostszych czynności. Każdego dnia nasz układ mięśniowy wykonuje nieprawdopodobną ilość ruchów, a każdy z nich wymaga zaangażowania milionów włókien tkanki mięśniowej począwszy od kurczenia się, skracania, powrotu do pierwotnego kształtu – czytamy w komunikacie Instytutu Chemii Fizycznej PAN (IChF PAN). Każdy mięsień ma jednak swoje ograniczenia i wytrzymałość, a więc podobnie do innych tkanek w ciele, może zostać uszkodzony. Nagłe szarpnięcie lub skręcenie może je nadwyrężyć prowadząc do krótkotrwałego dyskomfortu. Z kolei w skrajnych przypadkach niektórych chorób, takich jak nowotwory, dystrofia mięśni lub wskutek uszkodzenia mechanicznego np. w wyniku wypadku lub operacji, całkowity powrót mięśnia do stanu pierwotnego może być niemożliwy. Pomimo imponującej zdolności naszego organizmu do codziennej regeneracji, w niektórych przypadkach mięśnie szkieletowe nie mogą zostać w pełni obudowane. Tuż po uszkodzeniu pojawia się zapalenie i obrzęk, a wraz z nimi organizm zaczyna produkować maleńkie włókna będące prekursorami mięśnia. Powstają one w procesie miogenezy, a ich rolą jest stworzenie nowej, odbudowanej, w pełni sprawnej tkanki mięśniowej - przypomina IChF PAN. Przy niewielkich uszkodzeniach, mięsień może całkowicie wyzdrowieć, lecz gdy uszkodzenie jest znaczące, naprawa dużych ubytków masy mięśniowej bywa niemożliwa, a szkody są nieodwracalne. To sprawia, że odbudowa i poprawa funkcjonalności mięśni jest jednym z największych wyzwań biomedycznych naszych czasów. Niedawno międzynarodowy zespół naukowców kierowany przez dr. Marco Costantiniego z IChF PAN oraz dr. Cesare’a Gargioliego z Uniwersytetu Tor Vergata w Rzymie zaprezentował rozwiązanie wytwarzania substytutu mięśnia na bazie biokompatybilnego żelu, które strukturą przypomina makaron typu spaghetti. Żel ten produkowany jest z polimerów naturalnych innowacyjną metodą biodruku 3D za pomocą urządzenia mikroprzepływowego umożliwiając wydruk obiektu o dowolnym rozmiarze. Co najważniejsze, żel zawiera komórki mięśniowe, będące prekursorami włókien mięśniowych, które stopniowo narastają w polimerowej matrycy. Wszczepienie do uszkodzonego mięśnia takiego żelu biomimetycznego z komórkami umożliwia regenerację uszkodzonych tkanek. Nasz system biodruku został zaprojektowany tak, aby dokładnie naśladować wysoce anizotropową architekturę mięśni szkieletowych, co skutkuje skutecznym wytworzeniem prekursorów mięśni w dowolnej formie – opisuje dr Costantini, cytowany w komunikacie. Wydrukowany żel wraz z komórkami poddawany jest hodowli in vitro przez tydzień w celu stymulacji wzrostu komórek, a następnie wszczepia się go do uszkodzonych tkanek pacjenta. Naukowcy przedstawili skuteczną regenerację mięśni u myszy, u której uraz był na tyle duży, że pełne wyleczenie skutkujące przywróceniem pierwotnych funkcji mięśnia nie byłoby możliwe nawet po kilku miesiącach. Na dodatek, częściowa regeneracja trwałaby pięć razy dłużej, osiągając nie więcej niż 20 proc. regeneracji. Zaprezentowany przez badaczy biodrukowany żel zawierający komórki mięśniowe umożliwił przywrócenie o 90 proc. rzeczywistych funkcji. Ponadto, mięśnie zostały odbudowane w zaledwie 20 dni, sprawiając, że zaprezentowany żel jest obiecującym materiałem do zastosowań biomedycznych wspomagających regenerację tkanek – informuje IChF PAN. Przywrócenie masy i funkcjonalności o 90 proc. usuniętego mięśnia w zaledwie 20 dni to absolutny rekord, który motywuje nas do dalszego zgłębiania tego podejścia w najbliższej przyszłości. Teraz musimy rozszerzyć naszą platformę na wytwarzanie żelu na większą skalę, aby wspierać regenerację mięśni u dużych zwierząt. Mamy nadzieję, że ta technologia niebawem będzie gotowa do zastosowania klinicznego u ludzi – twierdzi dr Marco Costantini. « powrót do artykułu
  2. Polski Kret HP3 znalazł się pod powierzchnią Marsa. Urządzenie wykonane przez firmę Astronika, Polską Akademię Nauk, Centrum Badań Kosmicznych PAN, Instytut Lotnictwa, Instytut Spawalnictwa i inne to jeden z najważniejszych, a może nawet najważniejszy element misji InSigh. Zadaniem Kreta HP3 (Heat Flow and Physical Properties Package) jest wwiercenie się na głębokość 5 metrów i wykonywanie pomiarów przepływu ciepła z wnętrza planety. Przygotowana przez NASA misja InSight ma za zadanie zbadanie wnętrza Czerwonej Planety. Wylądowała ona na Marsie pod koniec listopada 2018 roku. NASA poinformowała, że robotyczne ramię właśnie pomogło Kretowi wniknąć w marsjańską glebę. Operacja byla poważnym wyzwaniem. Ramię potrzebowało asysty z Ziemi, a jako że obie planety dzieli spora odległość, sygnał w jedną stronę wędrował przez kilka minut. "Wciąż musimy przekonać się, czy kret będzie w stanie samodzielnie wiercić dalej", czytamy na oficjalnym koncie misji na Twitterze. Po wwierceniu się na głębokość 5 metrów czujniki Kreta zaczną rejestrować przepływ ciepła z wnętrza planety. Pozwoli to naukowcom na zbadanie, w jaki sposób przemieszcza się ono od jądra Marsa. Kret to całkowicie nowy typ instrumentu naukowego, jaki znalazł się na Marsie. Wciąż nie ma pewności, czy będzie działał tak, jak zaplanowano. Co prawda był wielokrotnie testowy na Ziemi, jednak nie możemy całkowicie przewidzieć tego, jak będzie się sprawował. Już zresztą pojawiły się pierwsze problemy. Kret miał kłopoty ze wstępnym wierceniem się w powierzchnię. Utykał lub wycofywał się. Właśnie dlatego zdecydowano o użyciu robotycznego ramienia. Nie była to łatwa decyzja, gdyż ramieniem trzeba było operować tak delikatnie, by nie uszkodzić kabla łączącego Kreta z lądownikiem InSight. Kablem tym popłyną dane zarejestrowane przez Kreta. Okazało się, że użycie ramienia było dobrym pomysłem. Kret znalazł się pod powierzchnią. Oznacza to, że pomiędzy 11 a 30 maja Kret wcisnął się w marsjańskie skały na głębokość 7 centymetrów. Oczywiście przez te 20 dni nie zajmowano się wyłącznie Kretem. Wszystkie instrumenty misji powinny być już gotowe do pracy więc Kretem zajmowano się raz w tygodniu. Teraz przed polskim urządzeniem najważniejsze. Najpierw zostanie przeprowadzony test „wolnego kreta”. Ma on wykazać, jak instrument radzi sobie bez asysty ramienia. Wszystko wskazuje na to, że musimy uzbroić się w cierpliwość. Na północnej półkuli Marsa zbliża się zima. Wkrótce rozpocznie się sezon burz piaskowych. W atmosferze już jest coraz więcej pyłu, spada ilość promieniowania słonecznego docierającego do lądownika InSight. Nie wiadomo zatem, czy w najbliższym czasie nie trzeba będzie ograniczyć operacji wymagających największych ilości energii. « powrót do artykułu
×
×
  • Create New...