Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'TSMC'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 21 results

  1. Przed tygodniem TSMC ogłosiło, że wykorzystywana przezeń technologia 7nm plus (N7+) jest pierwszym komercyjnie dostępnym wdrożeniem technologii EUV (litografii w ekstremalnie dalekim ultrafiolecie). Tym samym tajwański gigant ustawił się w roli światowego lidera EUV. I wielu analityków to potwierdza. TSMC jest ewidentnym liderem na rynku EUV, zarówno jeśli chodzi o zamówione i już wykorzystywane narzędzia, liczbę plastrów wytwarzanych w technologii EVU jak i zintegrowania EUV w swoich planach produkcyjnych, mówi Jim Fontanelli, analityk w firmie Arete Ressearc. Obecnie najnowocześniejszą z wykorzystywanych technologii jest 7+ z trójwarstwową maską EUV. W drugiej połowie połowie przyszłego roku TSMC ma zamiar wdrożyć 5 nm z maską 15-warstwową, a pod koniec 2020 roku zadebiutuje technologia 6 nm, w której wykorzystana zostanie 4-warstwowa maska EUV, twierdzi Fontanelli. Zdaniem analityka, obecnie największym odbiorcą plastrów 7+ produkowanych przez TSMC jest AMD i ma to związek z ograniczoną dostępnością produktu. Jednak przy przejściu na węzeł 5nm pozycję kluczowego klienta w tej technologii powinno zyskać Huawei, a na drugim miejscu znajdzie się Apple. Obie firmy chcą bowiem wykorzystać możliwości związane z miniaturyzacją, mniejszym poborem mocy oraz poprawieniem wydajności. Największym odbiorcą plastrów 6nm ma zostać, również w zwiazku z ograniczoną podażą 7nm, MediaTek. Wdrożenie EUV jest bardzo trudne. Dość wspomnieć, że technologia ta wymaga źródła światła o mocy 250W. Tymczasem w powszechnie obecnie wykorzystywanej litografii zanurzeniowej wykorzystuje się moc 90W. A kolejna generacja EUV, high-NA EUV będzie wymagała 500-watowego źródła. EUV oferuje jednak tak wiele zalet, że warto przebrnąć trudy jej wdrożenia. Przede wszystkim pozwala zaś skrócić czas produkcji i uniknąć wielokrotnego naświetlania plastra. Technologia ta jest jednak na tyle nowa, kosztowna i sprawia tak dużo problemów, że obecnie jedynie trzech światowych producentów – TSMC, Samsung i Intel – ma w planach jej wdrożenie do produkcji. Intel jest w tych pracach najmniej zaawansowany. Intel wydaje się całkowicie zaangażowany w EUV 7nm, którą wdroży w 2021 roku. Liczba warstw w masce będzie tam mniejsza niż liczba warstw w węźle 5nm TSMC. Ma to związek w różnicach wymagań technologicznych. Prawdopodobnie warstw tych będzie mniej niż 10, mówi Fontanelli. Fakt, dla którego Fontanelli w dużej mierze opiera się na domysłach, dobrze wyjaśniają słowa innego analityka, Dana Hutchesona z VLSI Reseearch. Intel to największa zagadka spośród tych trzech producentów, gdyż nie tworzy podzespołów na zamówienie, zatem nie ma powodu, dla którego miałby zdradzać, co robi. Ponadto warto pamiętać, że Intel zawsze wdrażał narzędzia litograficzne dla kolejnych węzłów wcześniej, niż ktokolwiek inny. Ponadto od lat najbardziej angażuje się w badania nad EUF. Nie ma też marketingowego powodu, by na bieżąco informować o postępach w EUF, dlatego też sądzę, że nic nie powiedzą, zanim nie będą pewni, że są gotowi do rozpoczęcia produkcji. Początkowo Intel miał zamiar rozpocząć produkcję 7-nanometrowych układów w 2017 roku, jednak w związku z opóźnieniami przy węzłach 14- i 10-nanometrowym plany te przesunięto o cztery lata. W bieżącym roku menedżerowie Intela zapowiedzieli, że procesy produkcyjne 7-nanometrowych układów tej firmy będą równie lub bardziej wydajne niż procesy produkcyjne 5-nanometrowych kości TSMC. « powrót do artykułu
  2. Pod koniec sierpnia GlobalFoundries pozwało TSMC i 20 jego klientów o naruszenie 16 patentów GF. Nie trzeba było długo czekać, by pojawił się kontrpozew, w którym TSMC oskarża GF o naruszenie 25 patentów. TSMC domaga się m.in. nałożenie na GF zakazu produkcji urządzeń naruszających patenty, zakazu sprzedaży już wyprodukowanych przedmiotów oraz znaczącego odszkodowania finansowego. Niedługo po tym, gdy pojawiły się informacje o pozwie TSMC, w GlobalFoundries odpowiedziało: TSMC od dawna wykorzystuje swoją dominująca pozycję do wywierania nacisków na mniejszych konkurentów i do wysuwania odwetowych kontrpozwów. Obecny pozew wpisuje się w tę strategię.  Jesteśmy pewni naszego stanowiska oraz wyniku procesu sądowego i nie pozwolimy się zastraszyć. Pod odpowiedzią podpisany jest Sam Azar, wiceprezes ds. prawnych GF. GlobalFoundries złożyło swój pozew w USA i Niemczech, kontrpozew TSMC został złożony w USA, Niemczech i Singapurze. TSMC twierdzi, że patenty, które narusza GF obejmują „co najmniej” technologie wytwarzania układów scalonych od 40 do 12 nanometrów. To „co najmniej” jest zapewne ostrzeżeniem skierowanym do GF, że jeśli uruchomi zapowiadane przez siebie linie produkcyjne w technologii 7 nm to pozew zostanie rozszerzony i na tę technologię. Jim McGregor, główny analityk firmy Tirias Research, komentując przepychanki pomiędzy firmami stwierdził: To sprawa, na której nie wygra nikt, prócz prawników. Tak, jak można się było tego spodziewać, TSMC złożyło kontrpozew w odpowiedzi na działania GlobalFoundries. Co prawda GF domaga się odszkodowania, ale prawdopodobnie sprawa skończy się szerokim porozumieniem dotyczącym wzajemnego licencjonowania patentów, co zabezpieczy obie firmy przed przyszłymi pozwami. W innym przypadku proces potrwa wiele lat, a wszelkie ugody finansowe i tak zostaną przejedzone na koszty procesu. « powrót do artykułu
  3. Infekcja wirusem komputerowym, do jakiej doszło w TSMC wywołała obawy o ciągłość dostaw 7-nanometrowych układów scalonych. Infekcja nie mogła wydarzyć się w gorszym momencie. Trzeci kwartał roku to szczyt sezonu dla producentów układów. Wówczas produkują kości, które trafiają do takich odbiorców jak Apple, przygotowujących swoje produkty na okres świątecznych zakupów. Do infekcji doszło wieczorem 3 sierpnia. TSMC musiało wyłączyć część ze swoich linii produkcyjnych. Zainfekowane zostały główne fabryki TSMC pracujące z 12-calowymi plastrami, w tym Fab 12 w Hsinchu Science Park i Fab 15 w Central Taiwan Science Park. Niektóre zakłady zostały zamknięte nawet na 10 godzin, co oznaczało uszkodzenie tysięcy plastrów. Teraz w Fab 15 trwa walka z czasem. TSMC chce wywiązać się z zamówień na 7-nanometrowe układy scalone. Kości te produkowane są głównie dla Apple'a, AMD, Qualcommu, Nvidii i Xilinksa. Tego typu układy stanowią coraz ważniejsze źródło przychodu TSMC. Firma już wcześniej zapowiadała, że w trzecim kwartale bieżącego roku uzyska z nich 10% przychodów, w czwartym będzie to 20%, a w całym roku ponad 20% przychodów TSMC ma pochodzić właśnie z najnowocześniejszych układów scalonych. Wstępne szacunki mówią, że atak szkodliwego kodu wpłynie na 3% przychodów z bieżącego kwartału, a opóźnione dostawy układów scalonych trafią do zamawiających w czwartym kwartale. Straty firmy wyniosą najprawdopodobniej 88-98 milionów dolarów, z czego wartość zniszczonych plastrów to około 30 milionów. Pojawiły się już głosy, że cała ta sytuacja wpłynie na spadek zaufania klientów do TSMC. Tajwański producent układów scalonych poinformował, że przyczyną infekcji był "błąd podczas instalacji oprogramowania dla nowego narzędzia". Dalszych szczegółów nie podano. « powrót do artykułu
  4. Tajwańska Centralna Agencja Prasowa poinformowała, że TSMC, największy na świecie producent układów scalonych, rozważa rozpoczęcie nowej inwestycji w stanie Nowy Jork. Dziennikarze dowiedzieli się, że wizytę w Ministerstwie Spraw Zagranicznych Tajwanu złożył kongresmen Bill Owens, który miał tam omawiać szczegóły inwestycji. TSMC potwierdziło wizytę Owensa, jednak nie chce zdradzić więcej informacji. Media spekulują, że TSMC chce wybudować w USA co najmniej jedną fabrykę układów scalonych. Jeśli przewidywania te się sprawdzą, to będzie to kolejna w ostatnim czasie tego typu inwestycja. W hrabstwie Saratoga powstaje właśnie fabryka firmy Globalfoundries, która ma rozpocząć produkcję w 2012 roku.
  5. TSMC ogłosił, że jego najnowszy proces produkcyjny, 28HP (od High Performance), jest wykorzystywany w produkcji na masową skalę. Powstaną w nim procesory graficzne najważniejszych klientów TSMC - czyli AMD i Nvidii. 28HP to 28-nanometrowy proces produkcyjny. Wraz z nim TSMC po raz pierwszy używa metalowej bramki o wysokiej stałej dielektrycznej. Użycie materiału o wysokiej stałej dielektrycznej w miejsce tradycyjnego dwutlenku krzemu pozwala na znaczące zmniejszenie wycieków prądu, dzięki czemu możliwe jest obniżenie napięcia przy jakim pracują układy i, co za tym idzie, zwiększenie częstotliwości taktowania. Jak twierdzą źródła w TSMC proces 28HP sprawuje się tak dobrze, że częstotliwość taktowania układów może być aż o 45% wyższa niż w przypadku wcześniejszego procesu technologicznego. Jeszcze w bieżącym roku na rynek trafią wykonane w nowej technologii GPU AMD o nazwach kodowych Southern Islands i Tahiti. Natomiast w lutym zadebiutuje Kepler Nvidii.
  6. Shang-yi Chiang, wiceprezes TSMC ds. badawczo-rozwojowych poinformował, że w roku 2015 tajwańska firma rozpocznie produkcję 14-nanometrowych układów scalonych. Będą przy tym wykorzystywane plastry krzemowe o średnicy 450 milimetrów. Dzięki zastosowaniu większych plastrów, a zatem możliwości produkcji większej liczby układów z jednego plastra, TSMC będzie mogło zbudować mniej fabryk niż gdyby pozostało przy technologii 300 milimetrów. TO z kolei oznacza mniejsze koszty zakupu lub dzierżawy gruntów, mniejsze wydatki na budowy i mniejszą liczbę zatrudnionych. Szczególnie ważny jest ten ostatni element. Chiang przyznał, że TSMC ma obecnie problemy z niedostatkiem inżynierów. Problemem jest też postawa producentów wyposażenia dla fabryk. Niewiele firm stać na budowę fabryki dla 450-milimetrowych plastrów krzemowych. Dlatego też twórcy wyposażenia do takich zakładów nie chcą go produkować, gdyż jest zbyt mało klientów i produkcja może okazać się mało opłacalna.
  7. Nvidia prawdopodobnie o rok opóźni premierę układów wykonanych w technologii 28 oraz 22/20 nanometrów. Dwudziestoośmionanometrowy Kepler miał zadebiutować w bieżącym roku, a układ Maxwell wykonany w technologii 22 lub 20 nanometrów miał pojawić się w roku 2013. Z nieoficjalnych informacji wynika, że układy zadebiutują w roku 2012 i 2014. Przyczyną opóźnienia są problemy, jakie ma TSMC - zleceniobiorca Nvidii - z wdrażaniem kolejnych kroków technologicznych. To nie pierwsze problemy TSMC. Producent w 2009 roku miał trudności z wdrażaniem technologii 40 nanometrów, przez co opóźniły się premiery układu Ferii Nvidii oraz 40-nanometrowych procesorów AMD. Początkowo firma TSMC przewidywała, że w roku 2011 wdroży w jednej ze swoich fabryk technologię 28 nanometrów, a w roku 2012 rozpocznie pilotażową komercyjną produkcję układów 20-nanometrowych.
  8. TSMC potwierdził, że ma zamiar wybudować fabrykę półprzewodników, w której będą wykorzystywane 450-milimetrowe plastry krzemowe. To druga, po Intelu, firma, która skonkretyzowała swoje plany dotyczące prac z większymi niż dotychczas plastrami. Zgodnie z doniesieniami pierwsza tego typu linia produkcyjna ma powstać w Fab 12 i będzie wykorzystywana do produkcji 20-nanometrowych układów. Pilotażowa produkcja ma zostać uruchomiona w latach 2013-2014, a pełną gotowość linia uzyska w latach 2015-2016. Zdaniem analityków po tym, jak Intel i TSMC ogłosiły swoje plany dotyczące 450-milimetrowych plastrów, wkrótce podobne deklaracje usłyszymy od przedstawicieli Globalfoundries i Samsunga.
  9. TSMC zamierza ponoć wybudować kolejną gigantyczną fabrykę półprzewodników. Zakład Fab 16 ma kosztować 10 miliardów dolarów, a prace nad nim rozpoczną się w 2014 roku. Fabryka podwoi możliwości produkcyjne TSMC. Jej budowa zostanie podzielona na pięć etapów i potrwa wiele lat. Nie wiadomo, kiedy Fab 16 osiągnie pełną moc produkcyjną - TSMC nie chce komentować nieoficjalnych doniesień - jednak dzięki niej w TSMC ma powstawać miesięcznie około 600 tysięcy 300-milimetrowych plastrów krzemowych. Fab 16 nie tylko będzie miała takie zdolności produkcyjne jak w sumie wszystkie pozostałe zakłady TSMC, ale będzie też prawdopodobnie najdroższą fabryką półprzewodników na świecie. Można również przypuszczać, że nowa fabryka zostanie przygotowana do pracy z 450-milimetrowymi plastrami.
  10. TSMC, największy na świecie producent układów scalonych na zlecenie, rozpoczął budowę pierwszej z serii "gigafabryk". Kamień węgielny pod Fab 15 w Taichung położono w ostatni piątek, a początek komercyjnej produkcji chipów zaplanowano na I kwartał 2012 roku. Wydajność Fab 15 będzie wynosiła ponad 100 tysięcy 300-milimetrowych plastrów krzemowych miesięcznie. Całkowita wartość inwestycji to 9,322 miliarda dolarów. Jeszcze przed końcem marca 2012 z fabryki wyjadą pierwsze kości wykonane w technologiach 40 i 28 nanometrów. Fab 15 będzie drugim zakładem TSMC wyposażonym w linię produkcyjną na 28-nanometrowych układów. Jednocześnie TSMC rozbudowuje zakłady Fab 12 w Hsinchu i Fab 14 w Tainan. Po zakończeniu rozbudowy z obu fabryk będzie wyjeżdżało ponad 240 tysięcy 300-milimetrowych plastrów krzemowych w miesiącu. Fab 15 jest budowana na działce o wielkości 18,4 hektara. Składa się z dwóch budynków fabrycznych i jednego biurowca. Łączna powierzchnia budynków to 430 000 metrów kwadratowych, a powierzchnia clean roomu wyniesie 104 000 m2.
  11. Podczas konferencji LithoVision 2010 wiele uwagi przyciągnęło wystąpienie przedstawicieli Intela. Z jednej strony poinformowali oni, że technologia litografii w ekstremalnie dalekim ultrafiolecie (EUV) pojawi się, jak dla niej, zbyt późno, z drugiej zaś - że dostosują obecnie używane narzędzia do produkcji 11-nanometrowych układów scalonych. Problemy z EUV nie są dla nikogo tajemnicą. Jednak obecnie opóźnienie z wdrożeniem nowej technologii grozi komplikacjami na rynku półprzewodników. Intel miał nadzieję, że będzie w stanie wykorzystać EUV przy 22-nanometrowym procesie technologicznym, którego uruchomienie przewidziano na przyszły rok. Jednak, jak powiedział Yan Borodovsky, odpowiedzialny za zaawansowane technologie litograficzne w intelowskiej Technology and Manufacturing Group, EUV nie będzie gotowa na czas. Przynajmniej dla Intela pojawi się ona za późno. Dlatego też koncern, który obecnie używa wyłącznie urządzeń Nikona, ma zamiar przystosować je w tych procesach technologicznych, w których miał zamiar korzystać z EUV. Intel korzysta teraz ze 193-nanometrowych "suchych" skanerów Nikona do produkcji układów w technologii 45 nanometrów, a od niedawna korzysta z podobnych maszyn do litografii zanurzeniowej. Już w ubiegłym roku firma, obawiając się, że producenci sprzętu litograficznego nie będą w stanie dostarczyć jej na czas skanerów EUV, oznajmiła, że ma zamiar przystosować 193-nanometrowe skanery zanurzeniowe do produkcji 22-nanometrowych układów. Koncern nie wykluczył też, że rozważy przystosowanie takich maszyn do 15-nanometrowego procesu produkcyjnego, który chce wdrożyć w 2013 roku. Teraz firma mówi, że zastanawia się też nad produkowaniem w ten sposób również 11-nanometrowych układów. Przedstawiciele Intela mają jednak nadzieję, że do tego czasu pojawią się już odpowiednie urządzenia EUV lub do litografii bezmaskowej i 193-nanometrowe skanery będą stanowiły jedynie uzupełnienie nowej technologii. Na razie nie wiadomo, którą technologię wybierze Intel. Firma, by zdążyć z wdrożeniem w swoich liniach produkcyjnych skanerów EUV musi otrzymać je w 2011 lub 2012 roku. Urządzenia do litografii bezmaskowej muszą być dostępne najpóźniej w 2012 roku. Tymczasem na pojawienie się urządzeń EUV czeka coraz więcej firm. ASML Holding NV, producent urządzeń litograficznych, poinformował właśnie, że TSMC złożył zamówienie na EUV. To spora niespodzianka, bo dotychczas TSMC odrzucało możliwość korzystania z EUV. Firma nastawiała się na litografię bezmaskową. Współpracuje ona zresztą przy jej rozwoju z firmą Mapper Lithography BV. Na producentów urządzeń silny nacisk wywierają też inne firmy. Samsung oświadczył właśnie, że chce korzystać z technologii EUV, ale musi być ona gotowa do roku 2012. Wciąż jednak nie wiadomo, czy Nikon bądź ASML będą w stanie dostarczyć za dwa lata odpowiednie urządzenia. Na razie ASML oferuje swoim partnerom wersje "przedprodukcyjne". Producenci urządzeń do EUV wciąż zmagają się z poważnymi trudnościami. Kłopoty sprawiają zapewnienie im odpowiedniego zasilania, stworzenie fotorezystu oraz pozbawionych defektów masek. Sporym wyzwaniem będzie też cena. Już obecnie ASML sprzedaje "przedprodukcyjne" wersje urządzeń w cenie 90 milionów dolarów za sztukę.
  12. Od powstania Globalfoundries minął rok, a firma już doprowadziła do zmian na rynku. Klientem Globalfoundries został właśnie Qualcomm,największy na świecie producent półprzewodników, który nie posada własnych fabryk. Dzięki temu prawdopodobnie stała się ona drugim graczem, a przy tym tempie rozwoju może zagrozić wieloletniemu liderowi - TSMC. Globalfoundries powstało z marcu 2009 roku dzięki wyłączeniu z AMD wydziałów zajmujących się produkcją i dofinansowaniu ich przez pochodzącą z Abu Zabi firmę Advanced Technology Investment co. (ATIC). Już w lipcu Globalfoundries rozpoczęło budowę nowej fabryki i ogłosiło zdobycie pierwszego, poza AMD, dużego klienta. Została nim firma STMicroelectronics. W październiku 2009 klientem GF została firma ARM, a w styczniu bieżącego roku zakończył się proces przejmowania przez Globalfoundries singapurskiego producenta Chartered Semiconductor. Teraz portfolio koncernu wzbogaciło się o Qualcomm. Ze niemal stuprocentową pewnością można stwierdzić, że Globalfoundries jest drugim graczem na rynku. We wrześniu ubiegłego roku, a zatem jeszcze przed umową z ARM-em i Qualcommem połączone siły GF i Chartered posiadały 14,6% rynku półprzewodników na zlecenie. Niewiele więcej, bo 15,2% należało do UMC, a rynkowy lider - TSMC - mógł pochwalić się udziałami rzędu 48,6%.
  13. TSMC, największy na świecie producent układów scalonych na zamówienie, przeznaczy 6 miliardów dolarów na budowę dwóch nowych fabryk. Zakłady powstaną na Tajwanie. Pierwszy z nich, Fab 12 zostanie zlokalizowany w Parku Naukowym Hsinchu na północy wyspy, a drugi - Fab 14 - w Parku Naukowym Tainan na jej południu. Fab 12 ma stać się okrętem flagowym TSMC. Na budowę tego zakładu firma przeznaczy nawet 5 miliardów USD. Będzie to nie tylko fabryka, ale również zakład badawczo-rozwojowy. Ma on produkować układy w technologiach 45, 40, 28, 22 i 16 nanometrów. Obie fabryki będą pracowały z 300-milimetrowymi plastrami krzemowymi. Rozpoczną produkcję jeszcze przed końcem 2011 roku, a jej początkowa wielkość wyniesie 35 000 plastrów miesięcznie. Z czasem będzie z nich wyjeżdżało aż 840 000 plastrów w ciagu miesiąca. To niewątpliwie odpowiedź na plany Globalfoundries, które ma zamiar otworzyć w 2012 roku fabrykę w USA, w której przed końcem 2013 roku ma powstawać 35 000 plastrów miesięcznie.
  14. Przemysłowi półprzewodnikowemu doszedł kolejny problem związany z koniecznością przełamywania kolejnych barier w miarę zmniejszania się poszczególnych elementów umieszczanych na krzemie. Tym razem nie chodzi o kłopoty związane z właściwościami materiałów czy odpowiednimi technikami produkcyjnymi. Z nieoficjalnych doniesień wynika, że Canon poinformował swoich partnerów, iż nie będzie więcej rozwijał nowoczesnych urządzeń litograficznych. Firma w 2007 roku zaprezentowała skaner to 193-nanometrowej litografii zanurzeniowej, jednak od tamtej pory udało się jej sprzedać tylko jedną tego typu maszynę. W związku z tym Canon ma zamiar skupić się na rozwoju maszyn do 248-nanometrowej litografii. Dla producentów układów scalonych może być to poważny problem. Wycofanie się Canona z rynku najbardziej zaawansowanych urządzeń może oznaczać, że już w niedalekiej przyszłości nowoczesne urządzenia do 193-nanometrowej litografii mogą zdrożeć nawet dwukrotnie i osiągnąć ceny rzędu 80-90 milionów dolarów za sztukę. Tyle będą musiały zapłacić firmy, które zechcą produkować kości w 22-nanometrowym procesie. Przejście na kolejny stopień zaawansowania technologicznego będzie zaś wymagało użycia narzędzi do pracy w ekstremalnie dalekim ultrafiolecie. Ich cena przekroczy 100 milionów USD. Canon od dawna jest obecny na rynku narzędzi litograficznych. Firma produkowała nieco mniej zaawansowane urządzenia, ale były one tańsze, niż to, co proponowała konkurencja. Wiele przedsiębiorstw produkujących półprzewodniki mogło dzięki Canonowi negocjować lepsze ceny u rynkowych liderów - ASML i Nikona. Canonowi nie udało się jednak przebić na rynku najbardziej zaawansowanych urządzeń i postanowił z niego zrezygnować. To oznacza, że ASML i Nikon pozostaną jedynymi dostawcami tego typu sprzętu. Część analityków twierdzi jednak, że decyzja Canona nie ma wpływu na rosnące ceny urządzeń. Przypominają, że w połowie lat 80. ubiegłego wieku, gdy przekraczano granicę 1000 nanometrów, ceny urządzeń wahały się w granicach 1 miliona dolarów. Wówczas o rynek ten konkurowali ASET, ASML, Canon, GCA, Eaton, Nikon, Perkin-Elmer, SVG i Ultratech. Jednak od tamtej pory amerykańscy producenci przestali istnieć i pozostał tylko holenderski ASML i japońskie Canon oraz Nikon. W 2008 roku średnia cena systemu do litografii zanurzeniowej firmy ASML wynosiła 42 miliony dolarów. Teraz trzeba zapłacić 45 milionów. Wraz z każdym etapem zmniejszania się procesu produkcyjnego, cena urządzeń rośnie o 50-70 procent. To oznacza, że coraz mniej producentów układów scalonych może pozwolić sobie na zakup najnowocześniejszych narzędzi i produkcję najnowocześniejszych układów scalonych. Wiadomo, że na zakup skanerów po 80 milionów USD za sztukę stać tylko Intela, Samsunga, TSMC i Toshibę. Bez Canona nie ma co liczyć na to, że ceny będą rosły wolniej.
  15. Zdaniem analityka Boba Johnsona, firma Globalfoundries, która wyłoniła się z AMD i ma zajmować się produkcją układów scalonych, już teraz należy do najnowocześniejszych przedsiębiorstw tego typu. Udoskonalili technologię litografii zanurzeniowej, a wkrótce będą w stanie wykorzystywać litografię w ekstremalnie dalekim ultrafiolecie. Prowadzą zaawansowane prace nad technologią 40 nm, mają bardzo ambitne plany i do końca przyszłego roku zaoferują 28-nanometrowy proces - mówi Johnson, który jest wiceprezesem Gartnera ds. rynku zaawansowanych technologii. Dodaje, że Globalfoundries jest bardziej zaawansowane technologicznie niż rynkowy lider - TSMC. GF skupia się na najnowocześniejszych technologiach i procesach produkcyjnych od 45 nanometrów w dół. Zaś głównym rynkiem TSMC są technologie 65-nanometrowe - mówi. Niedawno Globalfoundries zyskało pierwszego, poza AMD, klienta. Została nim szwajcarska firma STMicroelectronics, a na podpisanie kontraktu mogła wpłynąć, zdaniem Johnsona, bliskość fabryki w Dreźnie. Teraz GF chce wybudować fabrykę w stanie Nowy Jork. Nie zdziwiłbym się, gdyby prowadzili już rozmowy z Texas Instruments - stwierdził analityk. Jeśli ma rację, GF wkrótce zyska kolejnego klienta.
  16. Jak donosi EE Times, fabryki układów scalonych korzystające z 450-milimetrowych plastrów krzemowych, rzeczywiście mogą powstać, jednak nie tak szybko, jakby sobie niektórzy życzyli. Najwięksi producenci chipów, Intel, TSMC i Samsung, obiecują, że tego typu zakłady powstaną około roku 2012. Ich zapewnieniom nie wierzy wielu ekspertów, którzy uważają, że stworzenie odpowiednich urządzeń, technologii i wybudowanie linii produkcyjnych jest zbyt kosztowne. Analityk Dean Freeman z Gartnera uważa, że tego typu zakłady rzeczywiście powstaną, ale rozpoczną produkcję nie wcześniej niż w 2017 roku. Koszt wdrożenia nowej technologii jest szacowany na 20-40 miliardów dolarów. Zdaniem Freemana kalendarium wdrażania technologii będzie wyglądało następująco: - w roku 2009 producenci układów scalonych ustalą zasady współpracy nad nową technologią; - w 2010 pojawią się prototypowe plastry krzemowe o średnicy 450 mm; - w latach 2012-2013 będą produkowane prototypowe urządzenia; - pomiędzy rokiem 2014 a 2016 będą uruchamiane pilotażowe linie produkcyjne; - w latach 2017-2019 ruszą pierwsze linie korzystające z 450-milimetrowych plastrów, z których zjadą układy wykonane w technologii 8 lub 5 nanometrów. Powierzchnia 450-milimetrowego plastra jest ponaddwukrotnie większa, niż wykorzystywanych obecnie plastrów 300-milimetrowych. To obniża cenę na pojedynczy układ, pozwala też zaoszczędzić wodę, energię oraz inne zasoby potrzebne do produkcji kości.
  17. Z nieoficjalnych doniesień wynika, że TSMC, największy na świecie producent układów scalonych, rozpocznie w przyszłym roku produkcję 40-nanometrowych procesorów na zlecenie AMD. Jak dowiedzieli się dziennikarze serwisu Taiwan Economic News, pierwsze CPU wykonane w technologii 40 nm wyjadą z TSMC w drugim kwartale przyszłego roku. Dotychczas spodziewano się, że AMD pójdzie w ślady Intela i zaprezentuje procesory wykonane w procesie 45 nanometrów. Jak widzimy, najprawdopodobniej będzie inaczej. Analitycy rynkowi od pewnego czasu spodziewali się, że TSMC otrzyma większe zamówienia od AMD, gdyż główny konkurent Intela ma zamiar coraz bardziej polegać na zewnętrznych producentach procesorów. Tymczasem Intel nie spoczywa na laurach i zapowiada, że w przyszłym roku rozpocznie sprzedaż procesorów wykonanych w technologii 32 nanometrów.
  18. Intel, Samsung i TSMC nawiązały współpracę, której celem jest rozpoczęcie w 2012 roku produkcji układów scalonych z wykorzystaniem 450-milimetrowych plastrów krzemowych. Przejście na większe plastry pozwala obniżyć koszty produkcji i zaoferować klientom bardziej atrakcyjne ceny. Powierzchnia 450-milimetrowego plastra jest ponaddwukrotnie większa, niż wykorzystywanych obecnie plastrów 300-milimetrowych. To obniża cenę na pojedynczy układ, pozwala też zaoszczędzić wodę, energię oraz inne zasoby potrzebne do produkcji kości. Coraz większe plastry są wykorzystywane średnio co 10 lat. W 1991 roku rozpoczęto produkcję układów na 200-milimetrowych plastrach, a w 2001 przemysł półprzewodnikowy zaczął wykorzystywać plastry o średnicy 300 milimetrów.
  19. Firma Taiwan Semiconductor Manufacturing (TSMC) poinformowała, że już w drugim kwartale bieżącego roku rozpocznie produkcję układów scalonych w technologii 40 nanometrów. To kolejny etap miniaturyzacji układów scalonych, który coraz bardziej przybliża nas do przewidywanej granicy możliwości fizycznych dalszej miniaturyzacji krzemowych kości. Obecnie olbrzymia większość chipów jest wykonywana w technologii 90 nm. Intel masowo produkuje 45-nanometrowe procesory i stworzył też układ SRAM w technologii 32 nanometrów. W przyszłym roku mają powstać pierwsze intelowskie 32-nanometrowe CPU, a kolejnym krokiem będzie rozpoczęcie wytwarzania 23-nanometrowych układów w roku 2011. Decyzja TSMC o wdrożeniu kolejnego etapu procesu produkcyjnego oznacza, że firmy, które nie posiadają własnych fabryk lub też z jakichś powodów nie są w stanie wdrożyć w nich 40-nanometrowego procesu technologicznego, w ciągu najbliższych miesięcy będą mogły zamawiać 40-nanometrowe układy w TSMC.
  20. TSMC (Taiwan Semiconductor Manufacturing Company) i Nvidia ogłosiły, że powstały już pierwsze w pełni działające próbki procesora graficznego z wbudowaną pamięcią DRAM. Szczegółów GPU nie ujawniono, jednak sam fakt jego wyprodukowania wskazuje na rosnące zainteresowanie technologią eDRAM. Z oświadczenia obu firm wiadomo jedynie, że pamięć została wykonana w technologii 65 nanometrów. Technologia eDRAM pozwala na upakowanie w kości większej ilości pamięci, niż stosowana powszechnie SRAM. Idzie za tym możliwość wykonania większej liczby operacji w tym samym czasie czy dodanie do kości dodatkowych funkcji. Pojedyncza komórka pamięci eDRAM produkowana przez TSMC jest czterokrotnie mniejsza niż komórka SRAM. Nvidia od stycznia szuka specjalistów, którzy potrafią zaprojektować pamięci eDRAM dla procesorów graficznych. Obecnie nie wiadomo, kiedy GPU z tego typu pamięcią trafią na rynek.
  21. Taiwan Semiconductor Manufacturing Co. (TSMC) planuje zaoferować swoim klientom w drugim kwartale 2007 roku możliwość produkcji układów w technologii 55 nanometrów - podał serwis X-bit laboratories. Uruchomienie produkcji w nowym procesie wyróżni ofertę TSMC wśród innych producentów układów, a także pozwoli na produkcję nowych typów układów scalonych. Obecnie nie wiadomo, czy 55-nanometrowy proces jest pochodną procesu 64 nanometrów, czy też jest to zupełnie nowa technologia. Jak podała agencja CENS (China Economic News Service), TSMC obecnie produkuje plastry krzemowe w technologii 80 nm - są to głównie chipsety i układy graficzne dla ATI Technologies i Nvidii. Technologia 65 nanometrów ma zostać wprowadzona w przyszłym kwartale. Mimo że ATI i Nvidia chcą w przyszłości tworzyć swe produkty w technologii 65 nm, żadna z firm nie wspominała o procesie 55 nanometrów.
×
×
  • Create New...