Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' SARS'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 10 results

  1. U osoby, która przed 17 laty chorowała na SARS znaleziono przeciwciała, które wydają się blokować koronawirusa SARS-CoV-2. Jeśli wstępne badania się potwierdzą, może to pomóc w walce z nowym patogenem. Głównymi autorami odkrycia są profesor David Veesler z Wydziału Medycyny University of Washington oraz Davide Corti z firmy Humabs Biomed SA, która należy do Vir Biotechnology. Obecnie w Vir Biotechnology trwają intensywne badania nad wspomnianym przeciwciałem, nazwanym S309, których celem ma być dopuszczenie go do testów klinicznych. Na razie, o czym dowiadujemy się z opublikowanego w Nature artykułu Cross-neutralization of SARS-CoV and SARS-CoV-2 by a human monoclonal antibody, wiadomo jedynie, że podczas testów laboratoryjnych S309 wiąże się z proteiną S koronawirusa i w ten sposób uniemożliwia mu zainfekowanie komórki. Wciąż musimy wykazać, że to przeciwciało chroni żywy organizm, czego jeszcze nie zrobiliśmy, mówi profesor Veesler. Wyjątkowość prac laboratorium Veeslera polega na tym, że nie pracuje ono na materiale od osób chorych na COVID-19, a na materiale od osoby, która była chora w 2003 roku. To pozwoliło nam na bardzo szybki postęp w porównaniu z innymi grupami naukowymi, wyjaśnia uczony. U badanego pacjenta w limfocytach pamięci, które powstają podczas zakażenia patogenem, znaleziono wiele przeciwciał monoklonalnych. Limfocyty pamięci zapamiętują patogen, z którym się już w przeszłości zetknęły i bronią organizmu przed powtórnym zarażeniem. Czasami taka pamięć działa przez całe życie. Fakt, że organizm zapamiętał SARS przez 17 lat daje nadzieję, że po zetknięciu się z nowym koronawirusem lub po zaszczepieniu, będziemy przez długi czas chronieni przed chorobą. Dzięki szczegółowym badaniom wiemy już, że S309 neutralizuje SARS-CoV-2 łącząc się z tym regionem proteiny S, który jest identyczny u patogenów z podrodzaju sarbecovirus, do którego należą koronawirusy SARS. W zidentyfikowania nowego przeciwciała brali też udział naukowcy z Instytutu Pasteura i Uniwersytetu w Lugano. « powrót do artykułu
  2. Ebola, Marburg, SARS, MERS i w końcu koronawirus 2019-nCoV to jedne z najgroźniejszych epidemii chorób zakaźnych, jakie w ostatnich dziesięcioleciach dotknęły ludzkości. Wszystkie one mają wspólny mianownik: nietoperze. To właśnie te ssaki są najprawdopodobniej nosicielami i naturalnym rezerwuarem tych wirusów w przyrodzie. Uczeni z Uniwersytetu Kalifornijskiego w Berkeley uważają, że to niezwykle gwałtowna reakcja układu immunologicznego nietoperzy powoduje, że wirusy szybciej się replikują, gdy więc zainfekują ssaka, którego układ odpornościowy nie działa tak gwałtownie jak u nietoperzy, mogą mu poważnie zaszkodzić. Niektóre gatunki nietoperzy, w tym te, o których wiemy, że są źródłem infekcji ludzi, mają układy odpornościowe wyspecjalizowane w zwalczaniu wirusów. Gdy więc zetkną się z wirusem, patogen jest gwałtownie atakowany i trzymany z dala od wnętrza komórek. To chroni nietoperze nawet przed gwałtowną infekcją, jednocześnie zaś powoduje, że wirusy muszą mnożyć się bardzo szybko, by zainfekować komórki nietoperza, zanim jego układ odpornościowy przystąpi do ataku. To czyni nietoperze wyjątkowym rezerwuarem szybko namnażających się i bardzo zaraźliwych wirusów. Same nietoperze są odporne na ich działanie, jeśli jednak wirusy przejdą na inny gatunek, którego układ immunologiczny nie działa tak szybko i gwałtownie, może wywołać poważne choroby i prowadzić do wysokiego odsetka zgonów. Niektóre gatunki nietoperzy są w stanie zorganizować silną odpowiedź immunologiczną i jednocześnie zrównoważyć ją z odpowiednią reakcją przeciwzapalną. Nasz układ odpornościowy, gdyby próbował równie mocno odpowiedzieć, doprowadziłby do ogólnoustrojowego zapalenia. Wydaje się, że nietoperze są wyjątkowe pod względem zdolności do unikania immunopatologii, mówi główna autorka najnowszych badań, doktor Cara Brook. Człowiek sam ściąga na siebie epidemie wirusów pochodzących od nietoperzy. Okazuje się bowiem, że gdy dochodzi do niszczenia habitatów nietoperzy, u zestresowanych zwierząt pojawia się więcej wirusów, które są uwalniane w ślinie, moczu i kale. Łatwiej więc dochodzi do transmisji wirusów na inne gatunki, w tym na ludzi. Większe zagrożenie środowiskowe dla nietoperzy zwiększa zagrożenie zoonozami, mówi Brooks, która bierze udział w finansowanym przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) programie monitorowania nietoperzy na Madagaskarze, w Bangladeszu, Ghanie i Australii. Celem programu Bat One Health jest zbadanie związku pomiędzy utratą habitatów przez nietoperze, a rozprzestrzenianiem się wirusów z nietoperzy na inne zwierzęta i ludzi. Musimy zdać sobie sprawę, że nietoperze są najprawdopodobniej wyjątkowe pod względem radzenia sobie z wirusami. Nie jest przypadkiem, że wiele z tych najgroźniejszych wirusów pochodzi od nietoperzy. Zwierzęta te nie są zbyt blisko z nami spokrewnione, więc można by się spodziewać, że nie będą gospodarzami dla wirusów zdolnych do zarażenia człowieka. Jednak nasze badania pokazują, w jaki sposób układ odpornościowy nietoperzy może napędzać zjadliwość wirusów powodując, że są one w stanie pokonać barierę międzygatunkową, dodaje ekolog chorób, profesor Mike Boots. Dlaczego jednak u nietoperzy wykształcił się tak wyjątkowy układ odpornościowy? Nietoperze są jedynymi latającymi ssakami. Podczas lotu tempo ich przemian metabolicznych jest 2-krotnie wyższe niż tempo metabolizmu biegnącego gryzonia podobnej wielkości. Ogólnie rzecz biorąc, intensywna aktywność fizyczna i szybszy metabolizm prowadzą do większego uszkodzenia tkanek, związanego z akumulacją szkodliwych molekuł, przede wszystkim wolnych rodników tlenu. Wydaje się, że u nietoperzy pojawił się efektywny mechanizm fizjologiczny pozwalający na sprawne pozbywanie się szkodliwych molekuł. Efektem ubocznym zaś było radzenie sobie ze wszelkimi molekułami powodującymi stany zapalne, w tym wirusami. To np. tłumaczy wyjątkową długość życia nietoperzy. Generalnie rzecz biorąc, mniejsze zwierzęta o szybszym metabolizmie żyją krócej niż zwierzęta większe o wolnym metabolizmie. Dzieje się tak prawdopodobnie dlatego, że szybszy metabolizm oznacza pojawianie się większej liczby wolnych rodników, które z czasem akumulują się w organizmie. Niektóre gatunki nietoperzy żyją nawet 40 lat, podczas gdy gryzonie ich wielkości – 2 lata. Jedną z niezwykłych zdolności nietoperzy jest błyskawiczne uwalnianie molekuły sygnałowej interferon alfa, która mobilizuje układ odpornościowy zanim jeszcze wirusy zainfekują komórki. Brook postanowiła sprawdzić, w jaki sposób tak szybko działający układ odpornościowy wpływa na ewolucję wirusów. Przeprowadziła więc eksperymenty na komórkach od dwóch gatunków nietoperzy i małpy. Jeden z tych gatunków, rudawiec nilowy, jest naturalnym rezerwuarem wirusa Marburg, który zabija nawet 100% zarażonych ludzi. W przypadku tego nietoperza przed uwolnieniem interferonu alfa musiało dojść do bezpośredniego ataku wirusa na komórkę. Nieco szybsza była odpowiedź immunologiczna w przypadku komórek rudawki żałobnej, która jest naturalnym rezerwuarem wirusa Hendra. Tutaj interferon alfa jest cały czas gotowy do działania. Natomiast w komórkach kotawca jasnonogiego, naczelnego zamieszkującego Zachodnią Afrykę, interferon alfa w ogóle się nie pojawił. Dramatyczne różnice zauważono, po zainfekowaniu komórek wirusami podobnymi do Eboli i Marburga. Komórki kotawca jasnonogiego zostały błyskawicznie zajęte i zabite przez wirusy. Tymczasem komórki nietoperzy, dzięki szybkiemu wysłaniu sygnału ostrzegawczego przez interferon, uchroniły się przed infekcją. Jednak część wirusów przetrwała i infekcja ciągle się tliła. Może się tak tlić przez całe życie nietoperza. Naukowcy stworzyli też model komputerowy, by bliżej przyjrzeć się temu mechanizmowi. Model ten sugeruje, że posiadanie silnego systemu z interferonem w roli głównej pomaga wirusowi przetrwać w nosicielu. Gdy mamy silnie reagujący układ odpornościowy, chroni on nasze komórki, więc wirus może przyspieszyć tempo replikacji, nie czyniąc krzywdy komórkom. Jednak gdy taki wirus trafi na człowieka, który nie ma tak działającego układu odpornościowego, może spowodować poważne problemy, wujaśnia Brook. Uczona zauważa, że wiele z wirusów, którymi rezerwuarami są nietoperze, przechodzi na ludzi za pośrednictwem innych zwierząt. SARS-em ludzie zarazili się od cywet, MERS-em od wielbłądów, Ebola zaraża nas poprzez goryle i szympansy, Nipah przez świnie, Hendra przez konie, a Marburg przez kotawce. Wszystkie te wirusy są wysoce śmiertelne dla ludzi. « powrót do artykułu
  3. Gdy informowaliśmy o rozpoczętych przez WHO ogólnoświatowych testach 4 najbardziej obiecujących leków na COVID-19, wspomnieliśmy, że największy potencjał kliniczny może mieć Remdesivir. Teraz jeden ze współtwórców Remdesiviru, profesor Ralph Baric, który od 35 lat bada wirusy RNA, informuje o stworzeniu jeszcze jednego obiecującego środka – EIDD-2801. Dotychczas badania in vivo EIDD-2801 przeprowadzono na myszach zarażonych SARS-CoV i MERS-CoV. Zarówno w przypadku myszy, którym podano EIDD-2801 przed zarażaniem, jak i u tych, którym lek podano po zarażeniu, nowy związek doprowadził do polepszenia funkcjonowania płuc, zmniejszenia liczby wirusów w wymazie oraz zmniejszył spadek wagi ciała. Przeprowadzono również badania laboratoryjne z użyciem komórek ludzkich płuc. Okazało się, że EIDD-2801 znacznie zmniejsza możliwości replikacji wirusów MERS-CoV, SARS-CoV oraz SARS-CoV-2. Nie zauważono przy tym negatywnego oddziaływania leku na komórki. Naukowcy jednak na tym nie poprzestali. Postanowili sprawdzić, jak nowy środek wpływa na występujące obecnie u nietoperzy koronawirusy SHC014, HKU3 oraz HKU5. Te koronawirusy nie zarażają obecnie ludzi. SHC014 jest jednak blisko związany z SARS-COV i może namnażać się w komórkach ludzkich płuc, ma więc potencjał do wywołania zakażeń u ludzi. Bardziej odległy od SARS jest szczep HKU3, a HKU5 lest podobny do MERS. Przeprowadzone testy in vitro wykazały, że EIDD-2801 działa również na te trzy szczepy koronawirusów. Jeśli więc w przyszłości znowu wybuchnie epidemia spowodowana wirusem podobnym do SARS lub MERS, nowy środek ma potencjał do jej zwalczania. Co więcej, okazało się, że nowy środek może być skuteczny przeciwko koronawirusom, które zmutują i nabędą oporności na Remdesivir. Profesor Baric i jego współpracownicy to ludzie, do których słów powinniśmy przywiązywać zdecydowanie większą uwagę. Już w 2015 roku donosili oni na łamach Nature Medicine o podobnych do SARS koronawirusach, które mają potencjał zarażania ludzi. Rok później opisywali badania nad jednym z takich wirusów. Teraz zespół Barica wraz z firmą Ridgeback Biotherapeutics oraz niedochodowa organizacją Drug Innovations at Emory (DRIVE) z Emory University, pracują nad rozpoczęciem testów EIDD-2801 na ludziach. Ze szczegółami najnowszych badań można zapoznać się na łamach bioRxiv [PDF]. « powrót do artykułu
  4. Proteina produkowana przez ludzki układ odpornościowy może powstrzymywać koronawirusy, w tym i ten odpowiedzialny za obecną epidemię COVID-19. Do takich wniosków doszedł międzynarodowy zespół naukowy, który zauważył, że proteina LY6E znacznie ogranicza zdolność koronawirusa do rozpoczęcia infekcji. Odkrycie może prowadzić do opracowania nowego leku. W trakcie badań naukowcy zauważyli, że myszy, które pozbawiono genu Ly6e, stały się niezwykle podatne na infekcje zwykle bezpiecznymi dla nich dawkami koronawirusa. Ten silny inhibitor działa na wszystkie koronawirusy, które testowaliśmy, w tym na koronawirusy, które spowodowały epidemie SARS z 2003 roku, MERS z 2012 oraz na obecny SARS-CoV-2, mówi jeden z autorów badań, profesor John Schoggins z UT Southwestern Medical Center. Obecne badania to efekt wieloletniej pracy Schogginsa, który w przeszłości zauważył, że gen LY6E przyczynia się do... zwiększenia zaraźliwości wirusa grypy. W 2017 roku, gdy Schoggins pracował już na UT Southwestern, jego laboratorium odwiedziła Stephanie Pfaender ze Szwajcarii, która pracuje w laboratorium Volkera Thiela, jednego z czołowych ekspertów od koronawirusów. Przyjechała, by wykorzystać dostępne w USA techniki do poszukiwania genów, które mogłyby powstrzymywać infekcje koronawirusem. Tak doszło do obecnego odkrycia. Zauważyliśy, że LY6E działa na koronawirusy odwrotnie, niż na grypę. Powstrzymuje infekcję, zamiast ją wspomagać. Zaintrygowało to nas i natychmiast przystąpiliśmy do pracy, gdyż już mieliśmy przygotowany zwierzęcy model LY6E, na którym mogliśmy prowadzić badania, mówi Schoggins. Prace zajęły niemal 2 lata. Niemal w tym samym czasie, gdy wybuchła epidemia COVID-19 naukowcy stwierdzili, że LY6E powstrzymuje wiele różnych koronawirusów. Właściwości LY6E testowano na komórkach nerek naczelnych, które są często używane do badań nad koronawirusami. Naukowcy zauważyli, że LY6E zapobiega wnikaniu koronawirusów do komórek. Gdy mu się to nie uda, nie może zainfekować organizmu. Jako, że akurat wybuchła obecna epidemia, Volker Thiel zdobył próbki ludzkiego SARS-CoV-2 i skonfrontował go z LY6E. Okazało się, że i ten koronawirus jest powstrzymywany przez proteinę. W tym samym czasie na UT Southwestern prowadzono badania nad modelem mysim infekowanym koronawirusem. W ich wyniku stwierdzono, że gdy u myszy brakuje Ly6e jej komórki odpornościowe nie radzą sobie z infekcją, a ich liczba dastycznie spada. To tylko pogarsza sytuację. Schoggins podkreśla, że koronawirus użyty w modelu mysim jest znacząco różny od SARS-CoV-2. Na przykład nie atakuje on układu oddechowego, a wątrobę, powodując żółtaczkę. Ponadto zwykle nie zabija. Chyba, że myszy zostają pozbawione Ly6e, wówczas infekcja jest dla nich śmiertelna. Pomimo tych różnic, model mysi jest powszechnie akceptowanym modelem służącym do zrozumienia sposobu replikacji i odpowiedzi immunologicznej na infekcje. Nasze badania pokazują, jak działa niezwykle ważny gen antywirusowy. Jako, że LY6E w sposób naturalny występuje w ludzkim organizmie, mamy nadzieję, że nasze odkrycie przyczyni się do powstania środka do zwalczania infekcji koronawirusami, mówi Schoggins. Naukowcy przypominają, że podobna strategia leczenia jest z powodzeniem wykorzystywana w walce z HIV. Ze szczegółami badań można zapoznać się na łamach bioRxiv. « powrót do artykułu
  5. Badacze z Uniwersytetu Harvarda i Instytutu Zdrowia Układu Oddechowego w Kantonie będą wspólnie pracowali nad terapiami mającymi na celu zapobiegać istniejącym oraz przyszłym infekcjom. Badania zostaną sfinansowane przez chińskiego giganta na rynku nieruchomości China Evergrande Group, który przekazał na ten cel 115 milionów dolarów. Główne zadania, jakie będą stały przed współpracującymi zespołami, będą: opracowanie szybko działających, bardziej dokładnych testów diagnostycznych, które będzie można wykorzystać w punktach podstawowej opieki medycznej; zrozumienie odpowiedzi układu odpornościowego oraz interakcji pomiędzy patogenem a jego gospodarzem, w tym zidentyfikowanie biomarkerów pozwalających na monitorowanie przebiegu infekcji, postępów choroby oraz przewidzenie wystąpienia komplikacji i stanów krytycznych zagrażających życiu pacjenta. Uczeni będą pracowali też nad nowymi szczepionkami oraz opracowywali terapie przeciwwirusowe skracające czas choroby oraz pojawienie się objawów u osób zarażonych. Na czele grupy z Harvard Medical School stanie dziekan wydziału medycyny George Q. Daley. W jego grupie znajdą się zarówno specjaliści od badań podstawowych w medycynie, badań interdyscyplinarnych, specjaliści ds. madycyny klinicznej oraz eksperci z różnych szpitali, intytutów badawczych i firm biotechnologicznych. Pracami chińskiej grupy będzie kierował pulmonolog i epidemiolog doktor Zhong Nanshan, który w 2003 roku odkrył koronawirusa SARS i opisał kliniczny przebieg choroby. Doktor Nanshan stoi na czele Chinese 2019n-CoV Expert Taskforce odpowiedzialnej za walkę z infekcją SARS-CoV-2 i COVID-19 oraz członek Chińskiej Akademii Inżynierii. « powrót do artykułu
  6. Niektórzy eksperci od chorób zakaźnych ostrzegają, że może nie udać się opanować epidemii koronawirusa 2019-nCoV. Jeśli tak się stanie, może on zacząć krążyć wśród ludzi podobnie jak inne wirusy wywołujące choroby układu oddechowego. Im więcej się o nim dowiadujemy, tym bardziej prawdopodobne jest, że nie uda się go kontrolować, mówi doktor Allison McGeer z Toronto, która w 2003 roku zaraziła się SARS, a później pomagała Arabii Saudyjskiej z walce z epidemią MERS. Mamy do czynienia z nowym wirusem i musimy dowiedzieć się, czy jest on w stanie rozprzestrzenić się po całym świecie, dodaje uczona. Na razie nie wiemy też, jaki wpływ miałoby rozprzestrzenienie się tego wirusa i jego pozostanie w środowisku, jednak można przypuszczać, że stanowiłby on poważny kłopot dla systemów opieki zdrowotnej na świecie. Pomimo ogromnych wysiłków podjętych przez Chiny i inne państwa potrzebujemy planu na wypadek, gdyby wyeliminowanie wirusa się nie udało, dodaje Neil Ferguson, specjalista ds. epidemiologii chorób zakaźnych z Imperial College London. Przeprowadził on modelowanie epidemii i poinformował, że z niektórych modeli wynika, iż liczba osób zakażonych może wynosić od 30 do 200 tysięcy. W chwili pisania tej informacji wiemy o ponad 6000 potwierdzonych przypadków zachorowań. Tymczasem Fundacja Billa i Melindy Gatesów ogłosiła, że przeznacza 10 milionów dolarów na walkę z nowym wirusem. Połowa z tej kwoty trafi do Chin, drugą zaś połowę otrzyma African Center for Disease Control, by pomóc krajom Afryki w przygotowaniach do pojawienia się w nich nowego koronawirusa. Na razie brak jest potwierdzonych przypadków zachorowań na Czarnym Lądzie. Koronawirus 2019-nCoV rozprzestrzenia się znacznie szybciej niż SARS. W przypadku tej drugiej choroby bardzo istotny był fakt, że nie dochodziło do zarażeń między ludźmi póki osoba chora nie wykazywała objawów. Jednak w wypadku najnowszego koronawirusa, i innych chorób jak np. odra czy grypa, ludzie zarażają mimo, że nie wykazują objawów choroby. Dlatego też metody walki, które zadziałały w przypadku SARS, takie jak izolacja i kwarantanna, mogą być nieskuteczne obecnie, gdyż zarażać mogą osoby, o których nie wiadomo, że są chore. Na szczęście obecny wirus jest znacznie mniej śmiercionośny. Obecnie odsetek zgonów wynosi około 2%, podczas gdy w przypadku SARS było to niemal 10%. SARS pojawił się w 29 krajach na świecie. Od czasu, gdy w lipcu 2003 WHO ogłosiło koniec epidemii SARS wirus ten zainfekował jedynie cztery osoby w Chinach, a ostatni przypadek takiego zakażenia miał miejsce w styczniu 2004 roku. Koronawirus z Wuhan jest obecny już w 18 krajach, a liczba potwierdzonych przypadków zachorowań gwałtownie rośnie. « powrót do artykułu
  7. W USA na nowo rozgorzał spór dotyczący badań, w ramach których wirusy są modyfikowane tak, by były bardziej niebezpieczne dla ludzi. Tym razem spór dotyczy tego, czy należy ujawniać szczegóły obrad specjalnego federalnego komitetu, który rozważa zyski i ryzyka z takich badań i decyduje o przyznaniu funduszy. W ciągu ostatnich 2 lat komitet ten zezwolił na prowadzenie 2 kontrowersyjnych badań nad ptasią grypą. Przedstawiciele Departamentu Zdrowia i Usług dla Ludności (HHS) oraz Narodowych Instytutów Zdrowia (NIH) mówią, że są otwarci na propozycje, szczególnie w obliczu epidemii koronawirusa z Wuhan. Jeśli polityka zatwierdzania takich badań musi zostać poprawiona, to ją poprawmy, mówi Christian Hassel. To kolejna odsłona dyskusji, która zaczęła się w 2011 roku, kiedy to poinformowano, że w ramach badań finansowanych przez NIH zmodyfikowano wirus ptasiej grypy tak, by zarażał fretki. Tego typu eksperymenty pozwalają naukowcom lepiej zrozumieć działanie wirusów, ale ich krytycy mówią, że jeśli taki wirus zostanie uwolniony z laboratorium, może spowodować pandemię. Wówczas, w 2011 roku, rząd USA – po raz pierwszy w historii – poprosił pisma Science i Nature o ocenzurowanie artykułów dotyczących badań nad wirusem. Obawiano się, że na podstawie artykułu terroryści byliby w stanie stworzyć łatwo rozprzestrzeniającą się formę wirusa. Ostatecznie jednak specjalny panel ekspertów WHO orzekł, że artykuły powinny ukazać się w oryginalnej formie. Z kolei w 2014 roku pracujący z USA japoński naukowiec potwierdził, że zmodyfikował wirusa świńskiej grypy tak, że może on pokonać układ odpornościowy człowieka. W tym samym roku dowiedzieliśmy się, że w jednym z laboratoriów CDC niezgodnie z procedurami dezaktywowano wąglika, a w magazynie NIH znaleziono nieprawidłowo przechowywane niebezpieczne substancje oraz wirusa ospy. Wtedy też w Stanach Zjednoczonych wprowadzono moratorium na badania z superniebezpiecznymi patogenami. Przerwano m.in. prowadzone badania nad koronawirusami SARS i MERS. Jednak w 2017 roku moratorium zniesiono. Obecny spór dotyczy przejrzystości procesu zatwierdzania funduszy dla tego typu badań. Zajmuje się tym National Science Advisory Board for Biosecurity (NSABB), w skład którego wchodzą specjaliści z wielu różnych dziedzin. Pojawiły się głosy, że należy m.in. ujawnić nazwiska członków NSABB. Jednak istnieją obawy, że upublicznienie nazwisk może narazić naukowców na różnego typu nieprzyjemności, zatem eksperci nie będą chcieli tam pracować. Thomas Inglesby, dyrektor w Center for Health Security na Uniwersytecie Johnsa Hopkinsa argumentuje, że ujawnienie nazwisk członków NSABB pozwoli sprawdzić, czy nie zachodzi tam konflikt interesów oraz czy mają oni odpowiednie kwalifikacje, by podejmować tak istotne decyzje. Ponadto, jak stwierdza Inglesby, proces powinien być publiczny, a przed przyznaniem środków na badania nad szczególnie niebezpiecznymi wirusami opinia publiczna powinna mieć prawo wypowiedzieć się, co o tym sądzi. Eksperci dodają, że tak potencjalnie ryzykowne badania powinny podlegać innym zasadom przyznawania funduszy niż standardowe. Na przykład cały proces powinien być bardziej jawny. Jeśli chcesz prowadzić takie badania, musisz coś poświęcić. A to dlatego, że jeśli taki patogen wydostanie się z laboratorium, to może on zaszkodzić ludziom znajdującym się tysiące kilometrów dalej, mówi epidemiolog Marc Lipsitch z Uniwersytetu Harvarda. Jednak, jak zauważają inni eksperci, taka zmiana dodatkowo wydłuży termin rozpoczęcia badań. Jeśli np. naukowcy chcieliby, w ramach poszukiwań szczepionki przeciwko koronawirusowi z Wuhan, zainfekować nim myszy, by wykorzystać je jako modele do poszukiwań szczepionki, musieliby dodatkowo czekać na zakończenie okresu publicznej dyskusji nad przyznaniem funduszy, co opóźniłoby badania. Przedstawiciele NIH zwrócili się do NSABB, by do wiosny bieżącego roku opracowano propozycję zmian na rzecz większej transparentności. « powrót do artykułu
  8. W Pekinie, Hongkongu i Makao odwołano publiczne obchody chińskiego Nowego Roku. Kwarantanną objęte są Wuhan, Huanggang i Ezhou. Nowym koronawirusem zaraziło się już niemal 600 osób, z czego 17 zmarło. Sytuacja zmienia się bardzo dynamicznie, a Światowa Organizacja Zdrowia zwołuje kolejne spotkanie, którego uczestnicy mają zdecydować, czy należy ogłosić zagrożenie epidemiologiczne dla całego świata. Tymczasem naukowcy przypuszczają, że do zarażenia ludzi nowym koronawirusem doszło na targu w Wuhanie. Wirus pochodzi prawdopodobnie od nietoperza, a na człowieka przeszedł za pośrednictwem jeszcze innego zwierzęcia. W ostatnim dniu ubiegłego roku, 31 grudnia, Światowa Organizacja Zdrowia otrzymała z Chin informację osobach chorujących w mieście Wuhan na zapalenie płuc spowodowane przez nieznanego wirusa. KopalniaWiedzy poinformowała o nowej chorobie już 2 stycznia. Tydzień później Chińczycy potwierdzili, że zachorowania są powodowane przez koronawirusa, który obecnie znany jest jako 2019-nCoV. Od tego czasu pojawiła się też poza Chinami. Jej pojedyncze przypadki potwierdzono w Japonii, Korei Południowej, Tajlandii i USA. Dzisiaj potwierdzenia nadeszły też z Wietnamu, Singapuru, Hongkongu i Arabii Saudyjskiej. Wiemy już, że wirus zmutował i przenosi się między ludźmi, nie tylko ze zwierząt na ludzi. Czym są koronawirusy? To duża rodzina wirusów wywołujących wiele różnych chorób od przeziębienia po MERS (Middle East Respiratory Syndrome) i SARS (Severe Acute Respiratory Syndrome). Rezerwuarem koronawirusów są zwierzęta. Czasem wirusy te mutują, przenoszą się ze zwierząt na ludzi, ulegają kolejnym zmianom i w końcu są zdolne do przenoszenia się pomiędzy ludźmi. W ostatnich latach mieliśmy do czynienia z dwiema epidemiami koronawirusów. Od kwietnia 2012 roku na MERS zachorowało około 2500 osób, z czego zmarło 858, a choroba pojawiła się w 27 krajach. Z kolei podczas epidemii SARS z 2003 roku zachorowało niemal 8100 osób, a zmarły 774. Obecnie wiemy, że SARS przeniósł się na ludzi z cywet, a MERS – z dromaderów. Głównym podejrzanym o zarażenie ludzi 2019-nCoV są węże. Znamy też wiele koronawirusów atakujących zwierzęta, ale nie ludzi. Objawy nowej choroby to trudności z oddychaniem, gorączka i kaszel. W poważniejszych przypadkach dochodzi do zapalenia płuc, ciężkich problemów z oddychaniem, uszkodzenia nerek a nawet śmierci. Kto jest narażony? Nowa choroba rozprzestrzenia się szybciej niż poprzednie epidemie. SARS potrzebował 2 miesięcy by zarazić 456 osób, tymczasem 2019-nCoV zaraził 571 osób w ciągu trzech tygodni. Na szczęście odsetek przypadków zgonów jest obecnie znacznie niższy niż w przypadku wcześniejszych epidemii i wynosi na razie poniżej 4%. MERS zabijał do 40%, a SARS do 50% zarażonych. Obecnie naukowcy próbują dopiero zrozumieć, gdzie rozprzestrzenia się 2019-nCoV i kto jest najbardziej narażony. Wiemy, że nowy wirus zabił ludzi w wieku 48–89 lat. Nie wiemy dokładnie, gdzie się oni zarazili, ani dlaczego właśnie u nich rozwinęły się tak ciężkie objawy. Wiemy natomiast, że w przypadku SARS i MERS do największej liczby zakażeń dochodziło w szpitalach, że najbardziej narażeni byli ludzie starsi i chorzy. Ponadto w przypadku poprzednich epidemii istnieli ludzie określeni jako „superroznosiciele”. « powrót do artykułu
  9. Dwadzieścia siedem osób zapadło w prowincji Hubei w Chinach na niezidentyfikowaną postać zapalenia płuc, co wywołało obawy przed kolejną epidemią SARS, czyli zespołu ciężkiej ostrej niewydolności oddechowej. Przypadki choroby odnotowywano od początku grudnia. Jak podkreśla Komisja Zdrowia Miasta Wuhan, wszyscy pacjenci są poddawani kwarantannie. Podjęto dochodzenie i odkażanie targu rybnego, na którym pracowała większość z nich. Wstępne wyniki testów laboratoryjnych pokazały, że to przypadki wirusowego zapalenia płuc. Plotki o SARS zostały zdementowane przez "Dziennik Ludowy". Siedem osób znajduje się w stanie krytycznym, stan 18 uznaje się za stabilny, a kolejne 2 zostaną niedługo wypisane ze szpitala. Jak na razie nie stwierdzono oczywistej transmisji z człowieka na człowieka; nie zaraził się np. nikt z personelu medycznego. Eksperci z Narodowej Komisji Zdrowia będą prowadzić dalsze testy, które jak wszyscy mają nadzieję, pozwolą wskazać przyczynę zapalenia płuc. Stosuje się podobne leczenie jak przy innych rodzajach wirusowego zapalenia płuc. Przedstawiciele Szpitala Centralnego w Wuhan, gdzie wg lokalnych mediów leczeni byli niektórzy pacjenci, nie chcieli komentować sprawy dla Agencji Reutera. Przypomnijmy, że pierwsze przypadki SARS odnotowano w listopadzie 2002 r., ale władze chińskie starały się to ukryć. Wdrożono blokadę informacyjną, a Światowa Organizacja Zdrowia (WHO) została powiadomiona dopiero w lutym 2003 r. Ułatwiło to rozwój i rozprzestrzenianie epidemii nie tylko w regionie, ale i po świecie; w jej wyniku zaraziło się ponad 8 tys., a zamarło ponad 770 osób. « powrót do artykułu
  10. Naukowcy z Hongkongu poinformowali, że prawdopodobnie dokonali przełomowego odkrycia, które może być niezwykle przydatne w walce z chorobami zakaźnymi. Odkryty przez nich związek chemiczny ma bowiem dużą zdolność do przerywania cyklu życiowego różnych wirusów. Uczeni poinformowali dziennikarzy, że jeśli wspomniany środek przejdzie testy kliniczne może być w przyszłości użyty do walki z wieloma chorobami powodowanymi przez wirusy, nawet przez takie, które dopiero się pojawią. W ostatnich latach mieliśmy do czynienia z epidemiami ptasiej grypy, MERS czy SARS, które pokazały, że potrzebne są leki działające szybciej niż szczepionki. W takich przypadkach przydałyby się leki działające na wiele patogenów. Tymczasem szczepionki działają zwykle przeciwko jednemu szczepowi i w czasie, gdy są one produkowane, patogen może zmutować, więc szczepionka nie zadziała. Naukowcy z Hongkongu przez dwa lata testowali na myszach związek o nazwie AM580. Okazało się, że blokuje on replikację wirusów H1N1, H5N1, H7N9 oraz wirusów wywołujących SARS, MERS, wirusa Zika oraz enterowirusa 71. To jest właśnie to, co nazywamy lekiem antywirusowym o szerokim działaniu. Zabija on wiele wirusów, mówi mikrobiolog Yuen Kwok-yung, który stał na czele grupy badawczej. To bardzo istotne we wczesnej kontroli epidemii. Naukowcy na całym świecie coraz częściej poszukują leków, które nie uderzają bezpośrednio w wirusa. Takie działanie może bowiem prowadzić do pojawienia się szczepów lekoopornych. Poszukiwane są leki, które zaburzają sposób korzystania przez wirusa z lipidów w komórkach, w których wirus się zagnieździł. Te badania to krok w bardzo ekscytującym kierunku, uznał Benjamin Neuman, wirusolog z Texas A&M University, który bada metody głodzenia wirusów. Wirusy są całkowicie zależne od zasobów obecnych u swoich gospodarzy i wiele badań wykazało, że metody polegające na przerwaniu napływu lipidów w zarażonej komórce są wysoce efektywne w blokowaniu wielu różnych wirusów, dodał Neuman. Naukowcy z Hongkongu przygotowują się do testów na świniach i naczelnych. Przewidują, że minie nawet osiem lat zanim rozpoczną testy kliniczne na ludziach. Złożyli też wniosek patentowy w USA. Pocieszający jest fakt, że związek pochodzący od AM580 jest już używany w Japonii do leczenia nowotworów. To rodzi nadzieję, że sam AM580 będzie odznaczał się niską toksycznością. « powrót do artykułu
×
×
  • Create New...