Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'mózg' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 419 wyników

  1. Sen to ważny, ale nadal nie do końca poznany stan. Naukowcom z 2 Instytutów Maxa Plancka oraz berlińskiego szpitala Charité po raz pierwszy udało się sprawdzić, co dzieje się w naszym mózgu, gdy śnimy o czymś konkretnym. Skorzystali przy tym z pomocy osób, które śnią świadomie, tzn. wiedzą, że śnią i potrafią pokierować treścią marzeń sennych. Badacze ustalili, że aktywność dotycząca śnienia o pewnym ruchu odpowiadała aktywności występującej podczas wykonywania tego ruchu na jawie. Naukowcy mogli więc wyznaczyć za pomocą EEG początek fazy REM, w czasie której pojawiają się marzenia senne, i czekać na początek świadomego śnienia. Zauważyli, że rozświetlający się w czasie wykonywania ruchu region kory czuciowo-ruchowej uaktywnia się także podczas śnienia o tym ruchu. Ścisła odpowiedniość aktywności mózgu w czasie świadomego śnienia oraz działań na jawie pokazuje, że zawartość marzeń sennych można mierzyć. Poza fMRI Niemcy wykorzystali także spektroskopię w bliskiej podczerwieni (ang. near-infrared spectroscopy, NIRS). Zaobserwowali wzmożoną aktywność obszaru odgrywającego ważną rolę w planowaniu ruchów. Nasze marzenia senne nie są zatem czymś w rodzaju onirycznego kina, w ramach którego biernie obserwujemy przebieg wydarzeń. Obejmują one aktywność rejonów odpowiadających zawartości snu - podsumowuje Michael Czisch z Instytutu Psychiatrii Maxa Plancka.
  2. Chroniąc się przed przejmującym chłodem arktycznych zim, renifery rozwinęły grubą okrywę włosową. Z jednej strony zapewnia im to doskonałą izolację przed chłodem i wiatrem, z drugiej jednak ogranicza możliwość chłodzenia podczas wysiłku. Chcąc sprawdzić, jak zwierzęta radzą sobie z tym problemem, biolodzy z Norwegii nauczyli je korzystać z bieżni. Dzięki temu odkryli, że stosują 3 strategie, w tym dwa rodzaje dyszenia. Sapanie z otwartym pyskiem pozwala przez pewien czas chłodzić mózg, później jednak włącza się selektywne oziębianie tego narządu. Arnoldus Blix i Lars Folkow z Uniwersytetu w Tromsø współpracowali z Larsem Walløe z Uniwersytetu w Oslo. Naukowcy ustalili, że renifery chłodzą się, wdychając duże ilości zimnego powietrza, a ciepło oddają, dysząc. Podczas eksperymentu panowie monitorowali temperaturę mózgu, tempo oddechu i przepływ krwi przez kilka głównych naczyń głowy. Nauczyli renifery, by kłusowały na bieżni z prędkością 9 km na godzinę w temperaturze od 10 do 30°C. Okazało się, że na początkowych etapach biegu tempo oddychania wzrastało z 7 do 260 oddechów na minutę. Wzrastał też napływ krwi do pyska. Wdychając zimne powietrze przez nos i odparowując wodę z błon śluzowych w zatokach (czyli dysząc z zamkniętym pyskiem), zwierzęta obniżały temperaturę krwi przed wysłaniem jej żyłą szyjną wewnętrzną do reszty organizmu, by schłodzić wytwarzające ciepło pracujące mięśnie. Po jakimś czasie renifery wystawiały mokry język. Język jest duży i dobrze unaczyniony. Nawilżanie sprzyja parowaniu, a więc rozpraszaniu ciepła - tłumaczy Blix. Strategia dyszenia jak pies sprawdzała się do momentu, kiedy temperatura mózgu rosła do krytycznych 39 stopni Celsjusza. Wtedy uruchamiany był wybiórczy mechanizm chłodzenia tego narządu: ostudzona żylna krew z nosa nie płynęła do ciała, ale prosto do głowy. Tam przemieszczała się siecią wymieniających ciepło naczyń, chłodząc krew tętniczą przeznaczoną dla mózgu. Blix przyznaje, że początkowo nie sądził, że 3. z opisanych strategii się sprawdzi. Tylko 2% pojemności oddechowej przechodzi [przecież] przez nos zwierzęcia dyszącego z otwartym pyskiem. By zmienić zdanie, wystarczyło obliczyć ilość powietrza wdychanego przez biegnącego renifera oraz uwzględnić niską temperaturę otoczenia. Szybko stało się jasne, że zwierzę aspiruje wystarczająco dużo chłodnego powietrza, aby skutecznie chłodzić mózg. Biolodzy zaobserwowali wcześniej podobną umiejętność u owiec i zastanawiali się, czy wszystkie kopytne potrafią selektywnie chłodzić swoje mózgi. Eksperymenty na reniferach uprawdopodobniają tę hipotezę.
  3. Dla wielu osób wygrana bywa sprawą życia i śmierci. Wydaje się, że mózg uważa podobnie, ponieważ przeznacza większość swoich zasobów na monitorowanie wyników gry, a to, jaki był ostateczny wynik, można odtworzyć na podstawie wzorców aktywności w różnych regionach. Przypomina to odtwarzanie obrazu na podstawie aktywności mózgu, o którym donosili ostatnio naukowcy. Akademicy z Uniwersytetu Yale wykazali, że nawet podczas tak prostej gry jak papier, kamień, nożyce angażuje się prawie cały mózg, nie tylko ośrodki nagrody. Nasz mózg działa w taki sposób, by maksymalizować szanse przeżycia i rozmnożenia się, dlatego nagroda powinna być istotna dla wszystkich funkcji poznawczych, a więc dla większości obszarów mózgu - tłumaczy dr Timothy Vickery. Dotąd w podręcznikach można było przeczytać, że wrażenia nagrody i kary są związane z jądrami podstawnymi, które tworzą połączenia z korą, pniem oraz wzgórzem. Wytwarzana przez tamtejsze neurony dopamina dociera m.in. do kory przedczołowej. Teoria ta została potwierdzona przez badania z wykorzystaniem funkcjonalnego rezonansu magnetycznego (fMRI), w ramach których wykazano wysoką aktywność systemu dopaminergicznego zarówno po prezentacji przerażającego, jak i nagradzającego bodźca. Vickery i prof. Marvin Chun uważają jednak, że wykorzystana metoda zafałszowała obraz sytuacji. Do analizy skanów uzyskanych w ramach rezonansu zastosowali więc metodę wielu wokseli (woksel to trójwymiarowy odpowiednik piksela). Panowie nie porównywali ogólnej siły sygnału z różnych rejonów mózgu w odpowiedzi na karę czy nagrodę, ale wzorce reakcji w odpowiedzi na dany bodziec. Okazało się, że wygraną i przegraną w kolejnych rundach papieru, kamienia i nożyc dało się rozpoznać we wzorcach aktywności niemal wszystkich analizowanych rejonów. Oznacza to, że jądra podstawne są, oczywiście, najważniejszą częścią układu nagrody, ale inne struktury mózgu mają również dostęp do danych dotyczących wyników.
  4. Starsi ludzie z niższym stężeniem markerów witaminy B12 we krwi częściej mają atrofię mózgu oraz zaburzenia myślenia (Neurology). Naukowcy z Centrum Medycznego Rush University analizowali przypadki 121 starszych mieszkańców południa Chicago, którzy biorą udział w Chicago Health and Aging Project (CHAP). Studium to obejmuje 10 tys. osób powyżej 65. roku życia. Od wszystkich pobrano krew, by ocenić poziom witaminy B12 oraz markerów, które mogą świadczyć o jej niedoborach. Badani wzięli też udział w testach badających pamięć i inne funkcje poznawcze. Średnio 4,5 roku później seniorom wykonano rezonans magnetyczny. W ten sposób oceniano ogólną objętość mózgu oraz poszukiwano objawów uszkodzenia mózgu. Okazało się, że jeśli u danej osoby stwierdzano wysoki poziom czerech na pięć markerów niedoboru witaminy B12, osiągała ona gorsze wyniki w testach poznawczych i miała mniejszą objętość mózgu. Amerykanie ustalili, że każdemu wzrostowi poziomu homocysteiny (Hcy) o 1 mikromol na litr towarzyszył spadek wyniku w testach poznawczych rzędu 0,03 standardowej jednostki lub punktu. Nadmiar homocysteiny w organizmie (hiperhomocysteinemia) to wynik braku witaminy B12 w postaci metylokobalaminy. Witamina B12 jest ważnym koenzymem metylacji homocysteiny do metioniny; tutaj proces ulega zaburzeniu, stąd zbyt duże ilości Hcy. Co ważne, stężenie samej witaminy B12 we krwi nie było związane z zaburzeniami poznawczymi ani atrofią mózgu. Na deficyty wskazują więc wyłącznie stężenia markerów i na nich trzeba się koncentrować. Dr Christine C. Tangney podkreśla, że badania należy kontynuować i na razie jest zbyt wcześnie, aby twierdzić, że suplementacja lub zwiększenie zawartości witaminy B12 w diecie, np. w postaci drobiu, ryb, jajek, sera czy wątróbki, może zapobiec problemom poznawczym u starszych osób.
  5. Badacze z Uniwersytetu Południowej Kalifornii odkryli, że gdy patrzymy na jakiś obiekt, nasz mózg przetwarza jego wygląd, a jednocześnie odświeża informacje, jak to jest, gdy się tego dotyka. Związek między wzrokiem a dotykiem jest tak silny, że analizując dane pochodzące wyłącznie z części mózgu zawiadującej dotykiem, komputer mógł wskazać, na co człowiek patrzył. Wyniki dotyczących interakcji zmysłów i pamięci dociekań zespołu Hanny i Antonia Damasio ukazały się we wrześniowym numerze pisma Cerebral Cortex. Naukowcy poprosili grupę osób o obejrzenie 5 filmików wideo. Przedstawiały one dłonie dotykające różnych obiektów. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) zbadano obszar mózgu związany z przetwarzaniem wrażeń dotykowych. Gdy uzyskane w ten sposób dane przeanalizowano z wykorzystaniem specjalnego oprogramowania, tylko na tej podstawie komputer był w stanie wskazać, który z klipów był oglądany. Jak wyjaśnia główny autor opisywanego studium Kaspar Meyer, wyobrażając sobie dotyk zimnego metalu i ciepłego zwierzęcego futra, większość z nas dosłownie odczuwa te wrażenia za pomocą dotyku umysłu. To samo działo się z naszymi badanymi, kiedy pokazywaliśmy im nagrania wideo rąk dotykających przedmiotów. Nasze badania pokazują, że czucie dzięki dotykowi umysłu aktywuje te same rejony mózgu, co rzeczywisty dotyk. Dzieje się tak, gdyż mózg przechowuje wspomnienia wrażeń czuciowych i odtwarza je pod wpływem odpowiadającego im obrazu.
  6. Psycholodzy wzięli pod lupę nawykowe jedzenie i stwierdzili, że gdy mózg skojarzy jedzenie danego produktu, np. chipsów, z jakimś otoczeniem, np. kinem lub kanapą przed telewizorem, będzie podtrzymywać jedzenie tak długo, jak działają określone bodźce. Nieważne przy tym, czy produkt jest świeży i smaczny, czy kompletnie pozbawiony smaku. I tak zostanie zjedzony… David Neal przeprowadził eksperyment z miłośnikami X muzy. Przy wejściu na salę kinową dostawali oni opakowanie świeżego popcornu lub pudełko kukurydzy sprzed tygodnia. Okazało się, że osoby, które podczas seansów zwykle nie mają ze sobą popcornu, jadły dużo mniej starej kukurydzy, natomiast ci, którzy deklarowali, że kupują go właściwie zawsze, jedli tyle samo, bez względu na to, czy był świeży, czy mocno przeterminowany. Gdy wielokrotnie jemy dany pokarm w danym środowisku, nasz mózg zaczyna kojarzyć produkt z tym środowiskiem i podtrzymuje konsumpcję, dopóki są obecne wskazówki/bodźce typowe dla tego środowiska – wyjaśnia Neal. Wyniki badań zespołu z Uniwersytetu Południowej Kalifornii pozwalają wyjaśnić m.in. przejadanie czy jedzenie, gdy nie jesteśmy głodni lub nie lubimy danego dania. Ludzie sądzą, że jedzenie jest w dużej mierze aktywowane przez smak pokarmu. [To jednak nie do końca prawda, bo mimo że] nikt nie lubi zimnego, gąbczastego popcornu sprzed tygodnia, gdy utworzy się nawyk, przestajemy dbać o smak – dodaje prof. Wendy Wood. Podczas eksperymentów psycholodzy kontrolowali stopień odczuwanego przez badanych głodu, częstowali też popcornem grupę kontrolną, która oglądała filmy w pokoju konferencyjnym, a nie na sali kinowej. Pokój konferencyjny nie jest typowym miejscem oglądania filmów, dlatego tutaj smak prażonej kukurydzy miał znaczenie i nawet osoby sięgające w kinie nawykowo po popcorn jadły o wiele mniej zjełczałej przekąski niż świeżo uprażonych ziaren. Na tej podstawie widać, do jakiego stopnia wskazówki środowiskowe kierują szkodliwymi dla zdrowia zachowaniami. Czasami silna wola i dobre intencje nie wystarczą i trzeba oszukać mózg, modyfikując środowisko – podkreśla Neal. Jak? Okazuje się, że całkiem prosto, co zademonstrowano w 2. eksperymencie. W tym przypadku osoby wchodzące na seans proszono o używanie podczas jedzenie dominującej lub niedominującej ręki. Wykorzystanie niedominującej ręki wystarczyło do zaburzenia nawyku: ludzie jedli mniej stęchłego niż świeżego popcornu. Zabieg sprawdzał się nawet wśród badanych z silnymi nawykami.
  7. Najnowsze badania sugerują, że żywe w horrorach i mitach przekonanie, iż spożywanie młodej krwi odmładza nie jest całkiem pozbawione podstaw. A opublikowanego w Nature artykułu dowiadujemy się, że gdy młodym myszom podano krew starszych osobników, ich komórki mózgowe zachowywały się tak, jakby były starsze. Zauważono też efekt odwroty - „odmłodzenie" komórek mózgowych starszych myszy, którym podano krew młodszych zwierząt. To sugeruje, że pogarszanie się z wiekiem funkcjonowania mózgu może być częściowo spowodowane czynnikami związanymi z krwią. Naukowcy użyli par młodych i starych myszy, wykorzystując technikę parabiozy, podczas której chirurgicznie zszywa się zwierzęta tak, by rozwinęły wspólny układ krwionośny. Po pięciu tygodniach od zszycia myszy zauważono uderzające skutki dla młodego i starego mózgu. U młodszych myszy doszło do zmniejszenia produkcji nowych neuronów, zwiększenia liczby stanów zapalnych w mózgu oraz mniejszej aktywności synaps. U starszych osobników zaobserwowano wzrost liczby nowych neuronów, mniej zapaleń i większą aktywność synaps. Naukowcy postanowili też sprawdzić, czy wpływa to na zachowanie myszy. W osobnym badaniu wstrzyknęli młodym myszom plazmę pozyskaną od starych osobników i vice versa. Okazało się, że młode straciły zdolność do wykonywania niektórych zadań związanych z uczeniem się i zapamiętywaniem, a u starych zdolności te uległy poprawie. Jako, że komórki krwi obcej myszy nie mogły dostać się do mózgu innego osobnika ze względu na istnienie bariery krew-mózg, naukowcy doszli do wniosku, iż za obserwowane efekty odpowiadają molekuły obecne w krwi. Porównując ponad 60 chemokin, białka wydzielane przez komórki, zidentyfikowali takie, które były odpowiedzialne za efekty występujące w starej krwi. Gdy podali jedną z nich - CCL11 - młodej myszy, doszło u niej do mniejszej produkcji neuronów, gorszego funkcjonowania pamięci i zmniejszenia możliwości uczenia się. Richard Ransohoff, dyrektor Neuroinflamation Research Center w Cleveland Clinic, który nie brał udziału w badaniach, mówi, że ich wyniki są niezwykle zaskagujące, gdyż sugerują, że na proces neurogenezy mogą mieć wpływ czynniki spoza mózgu. Rensohoff spekuluje, iż znaczenie może mieć fakt, komórki macierzyste dające początek nowym neuronom żyją w mikrośrodowisku, które jest bardzo mocno związane z naczyniami krwionośnymi.
  8. Naukowcy z Centrum Choroby Alzheimera i Zaburzeń Pamięci Rhode Island Hospital odkryli związek między zażywaniem suplementów z tłuszczami rybimi a funkcjonowaniem poznawczym i budową mózgu. Poleganie na dobrodziejstwach natury wiązało się z lepszą pamięcią i mniej zaawansowaną atrofią mózgu. Zespół Lori Daiello analizował dane uzyskane w ramach studium Alzheimer's Disease Neuroimaging Initiative (ADNI). Jego autorzy przez ponad 3 lata śledzili losy 3 grup starszych dorosłych: 1) prawidłowo funkcjonujących pod względem poznawczym, 2) z łagodnymi zaburzeniami poznawczymi (ang. mild cognitive impairment, MCI) oraz 3) z chorobą Alzheimera. Okresowo wszystkich poddawano testom pamięciowym i badano rezonansem magnetycznym. ADNI objęło 819 osób, z których 117 wspominało o regularnym zażywaniu suplementów z rybimi tłuszczami przed i po rozpoczęciu studium. Amerykanie porównywali funkcjonowanie poznawcze i stopień atrofii mózgu u zwolenników suplementów i u badanych, którzy nigdy po nie nie sięgali. Tak jak się spodziewano, zwolennicy suplementów lepiej funkcjonowali poznawczo, ale związek pozostawał istotny statystycznie wyłącznie u starszych ludzi z pierwszej grupy, niewyposażonych w wersję genu stanowiącą czynnik ryzyka alzheimeryzmu (apoE4; jedna kopia allelu ε4 czterokrotnie zwiększa ryzyko alzheimeryzmu, a dwie aż 12-krotnie, w porównaniu do posiadaczy innych wersji genu apolipoproteiny E.). Co ciekawe, zespół Daiello wpadł na trop oczywistego związku między zażywaniem tranu a objętością mózgu. Tutaj także spostrzeżenie odnosiło się jednak wyłącznie do osób apoE4-negatywnych. […] Natrafiliśmy na istotny związek między suplementacją tłuszczami rybimi a średnią objętością mózgu w dwóch obszarach krytycznych dla pamięci i myślenia: korze i hipokampie [u osób stale sięgających po suplementy były one większe]. Dla odmiany układ komorowy mózgu pozostawał u nich mniejszy.
  9. W laboratoriach IBM-a powstały eksperymentalne układy scalone, których budowa i funkcje mają być wzorowane na budowie i pracy mózgu. Układy neurosynaptyczne odwzorowują procesy zachodzące pomiędzy neuronami i synapsami. Systemy zbudowane w oparciu o takie układy, zwane komputerami poznawczymi, nie będą programowane w tradycyjny sposób. W założeniu mają się one uczyć na podstawie doświadczeń, odnajdować powiązania pomiędzy elementami, tworzyć hipotezy i wyciągać wnioski. Budowa takich komputerów i układów to część programu SyNAPSE, którego celem jest stworzenie systemu, który nie tylko analizuje dane napływające jednocześnie z wielu czujników, ale potrafi też zmieniać układ połączeń. Nasza inicjatywa ma na celu wyjście poza obowiązujący od ponad pół wieku paradygmat von Neumanna, który określa sposób tworzenia architektury komputerów. W przyszłości od komputerów będziemy wymagali coraz więcej rzeczy, których nie da się efektywnie uzyskać za pomocą tradycyjnej architektury. Tego typu układy to kolejny bardzo ważny krok w ewolucji komputerów od kalkulatorów po systemy uczące się. To początek nowej generacji komputerów i ich zastosowania w nauce czy biznesie - mówi Dharmendra Modha, odpowiedzialny za projekt z ramienia IBM Research. Prototypowe układy IBM-a nie zawierają żadnych elementów biologicznych. Głównym materiałem użytym do ich budowy jest krzem. Mimo to w ich obwodach zawarto „rdzeń neurosynaptyczny" zawierający zintegrowaną pamięć (odpowiednich zreplikowanych synaps), układ obliczeniowy (zreplikowane neurony) oraz układ komunikacyjny (zreplikowane aksony). Obecnie IBM posiada dwa tego typu układy scalone. Oba wykonano w 45-nanometrowej technologii SOI-CMOS. „Rdzenie synaptyczne" zawierają 256 neuronów. W jednym z układów umieszczono 262 144 programowalne synapsy, w drugim 65 536 uczących się synaps. Pierwsze udane eksperymenty pokazały, że systemy radzą sobie z nawigacją, systemami wizyjnymi, rozpoznawaniem wzorców, klasyfikowaniem oraz kojarzeniem elementów. Celem IBM-a jest stworzenie systemu układów scalonych, które będą korzystały z 10 miliardów neuronów, setek trylionów synaps, będą zajmowały mniej niż 2 decymetry sześcienne przestrzeni i zużywały około 1 kilowata mocy. W przyszłości taki system wyposażony w odpowiednie czujniki mógłby np. zostać wykorzystany w sklepie, gdzie na podstawie wyglądu, zapachu i temperatury odróżniłby zepsute lub zanieczyszczone towary od dobrych. Wyobraźmy sobie sygnalizację świetlną, która na podstawie obrazu, dźwięku i zapachu rozpozna zagrożenie i tak pokieruje ruchem na skrzyżowaniu, by uniknąć wypadku - mów Modha.
  10. Niemieccy inżynierowie wykorzystali sygnały z mózgu kierowcy do uruchomiania hamulców samochodu. Okazało się, że dzięki temu udaje się znacznie skrócić drogę hamowania, a tym samym uniknąć wielu wypadków. Za pomocą EEG wykazano, że urządzenie jest w stanie wykryć sygnały świadczące o tym, iż kierowca chce hamować na 130 milisekund przed jego reakcją. Przy prędkości 100 km/h oznacza to skrócenie drogi hamowania o 3,66 metra. Oprócz EEG wykorzystano też urządzenie EMG, wykrywające aktywność elektryczną mięśni. Pozwala ono stwierdzić, że np. mięśnie nogi przygotowują się do działania, jeszcze zanim sama kończyna się poruszy. W czasie badań prowadzonych na symulatorze 18 ochotników prowadziło wirtualny samochód. Ich zadaniem było utrzymanie się w odległości około 20 metrów za poprzedzającym pojazdem, jadącym z prędkością 100 km/h po krętej drodze, na której znajdowały się inne samochody. W przypadkowo wybieranych momentach samochód poprzedzający nagle hamował. Reakcję badanych sprawdzano zbierając dane z EEG i EMG i porównywano z czasem rzeczywistego naciśnięcia na pedał hamulca oraz z reakcją całego prowadzonego przez nich samochodu. Dzięki EEG uczeni dowiedzieli się, które części mózgu najsilniej reagują na potrzebę zatrzymania pojazdu i mogli dzięki temu dostosować cały system. Uwzględniając wszelkie zmienne uczeni wyliczyli, że średni czas reakcji systemu korzystającego z EEG i EMG jest o 130 milisekund krótszy w porównaniu z innymi systemami unikania kolizji.
  11. Naukowcom z Uniwersytetu Alaskańskiego w Fairbanks udało się opanować sztukę wprowadzania susła arktycznego w stan hibernacji na żądanie (Journal of Neuroscience). U hibernujących zwierząt znacznie spada tętno i przepływ krwi, przypominają więc ludzi z nagłym zatrzymaniem krążenia, tyle że u nich nie ma mowy o ewentualnych uszkodzeniach mózgu. Kelly Drew podkreśla, że zrozumienie neuroochronnych właściwości hibernacji być może pozwoli opracować lek czy terapię, które ocalą życie wielu osób po udarze lub zawale serca. U hibernujących zwierząt występuje torpor, czyli stan kontrolowanego obniżenia temperatury przez zwierzęta stałocieplne. Towarzyszy mu spowolnienie pracy serca i tempa przebiegu innych procesów fizjologicznych. Zużycie tlenu zmniejsza się do 1% zwykłej spoczynkowej przemiany materii. Susły arktyczne, tak jak inne zwierzęta i ludzie, wytwarzają adenozynę, która pełni wiele różnych ról, m.in. działa jako neuroprzekaźnik hamujący w ośrodkowym układzie nerwowym. Kiedy suseł zaczyna hibernować, a my stajemy się senni, dzieje się tak, gdyż adenozyna wiąże się z odpowiednimi receptorami – wyjaśnia Tulasi Jinka, główny autor badań. Biolog dodaje, że cząsteczka kofeiny jest na tyle podobna do adenozyny, że może się także wiązać z jej receptorami w mózgu, skutecznie hamując lub nawet odwracając skutki senności. Zaplanowaliśmy eksperyment, w ramach którego niehibernującym susłom arktycznym podawano substancję stymulującą receptory adenozynowe w mózgu. Spodziewaliśmy się, że wywoła ona hibernację. Podaliśmy też związek przypominający kofeinę, który miał pobudzić hibernujące zwierzęta – wyjaśnia Drew. Susły testowano 3 razy w ciągu jednego roku: 1) latem, kiedy nie hibernują, 2) na początku okresu hibernacyjnego oraz 3) w środku sezonu hibernacyjnego. Jeśli zwierzęta wprowadzały się przed badaniem w torpor, Jinka wszystkie budził, by sprawdzić, czy badana substancja wprowadzi je ponownie w stan hibernacji. By potwierdzić, że na wyniki nie wpływają jego oczekiwania, w identyczny sposób podawał zwierzętom placebo. Próby były ślepe, ponieważ nie wiedział, który roztwór jest który. Torpor wywołano u wszystkich 6 obudzonych w środku sezonu hibernacyjnego susłów, ale tylko u 2 z 6 w grupie z wczesnego okresu hibernacyjnego i u żadnego w czasie lata. Substancja kofeinopodobna odwracała torpor u wszystkich hibernujących susłów. Wykazaliśmy po raz pierwszy, że aktywacja receptorów adenozynowych wystarczy, by w sezonie hibernacyjnym wywołać torpor u susłów arktycznych – podsumowuje Jinka. Na razie Amerykanie nie wiedzą, jak pora roku zwiększa wrażliwość receptorów na adenozynę. Planowane są eksperymenty z adenozyną na szczurach, które pod względem genetycznym bardziej przypominają ludzi.
  12. Cztery amerykańskie uniwersytety podzielą się grantem w wysokości 1,2 miliona dolarów, który przeznaczony jest na stworzenie interfejsu pozwalającego na kontrolę protez za pomocą mózgu. Naukowcy z Rice University zbudują sztuczną dłoń sterowaną za pomocą elektrod przyczepionych do głowy. Dane EEG zostaną w czasie rzeczywistym połączone z informacjami o przepływie krwi i poziomie tlenu w płacie czołowym. Będzie to możliwe dzięki działającej w bliskiej podczerwieni technologii opracowanej na Drexler University. Sztuczna ręka będzie zawierała czujniki zbierające informacje z palców i dłoni, a dane będą przesyłane użytkownikowi za pomocą wibrujących części protezy, które w punkcie styku z ciałem pacjenta będą dawały sygnały, informujące np. o konieczności zmiany siły uchwytu. Trzecią z uczelni biorących udział w projekcie jest University of Maryland, gdzie powstała technologia EEG pozwalająca na przesuwanie kursora po ekranie za pomocą myśli. Chcemy połączyć te wszystkie technologie - nieinwazyjne dekodowanie neuronalne, bezpośrednią kontrolę za pomocą mózgu oraz system dotykowych informacji zwrotknych - mówi Marcia O'Malley, jedna z głównych badaczy na Rice University. Z trzema wspomnianymi uczelniami będzie współpracował też University of Michigan. W perspektywie długoterminowej mogą powstać protezy o takich samych możliwościach jak prawdziwe kończyny - dodaje O'Malley. To niejedyny w USA program mający na celu stworzenie zaawansowanych protez. W ubiegłym roku DARPA przyznała Uniwersytetowi Johnsa Hopkinsa grant w wysokości 34,5 miliona dolarów. Pieniądze zostaną przeznaczone na stworzenie interfejsu pozwalającego na sterowanie za pomocą mózgu sztucznym ramieniem o 22 stopniach swobody.
  13. Ostatnie eksperymenty na szczurach wykazały, że wystąpienie tzw. fali śmierci – wolnej fali o dużej amplitudzie – wcale nie musi wskazywać na śmierć neuronów mózgu i nie oznacza, że procesy, które zaszły, są nieodwracalne. Zespół Michela van Puttena z Universiteit Twente dekapitował gryzonie. Minutę później pojawiało się trwające ok. 5-15 s wyładowanie (PLoS ONE). Naukowcy zaprezentowali model obliczeniowy pojedynczego neuronu, a także wewnątrz- i zewnątrzkomórkowego stężenia jonów. Obserwowana fala była powodowana przez oscylacje potencjału błonowego. Występują one po ustaniu działania pomp sodowo-potasowych, co prowadzi do nadmiaru zewnątrzkomórkowego potasu. Oscylacje można opisać za pomocą równań Hodgkina-Huxleya dla kanałów sodowych oraz potasowych. W połączeniu z działaniem filtra górnoprzepustowego, który tłumi część widma sygnału powyżej swojej częstotliwości odcięcia (jego rola polega na usunięciu z sygnału EEG zakłóceń z sieci zasilającej/urządzeń zewnętrznych oraz powstałych na granicy skóra-elektroda-elektrolit), nagła depolaryzacja błony daje w elektroencefalogramie zapis w postaci fali śmierci. W rzeczywistości ta fala nie wskazuje na śmierć ani neuronów, ani jednostki. Parę miesięcy przed van Puttenem Anton Coenen z Radboud Universiteit Nijmegen i jego zespół zastanawiali się, czy odbieranie życia szczurom laboratoryjnym przez dekapitację jest etyczne, czy nie: czy zwierzęta szybko tracą przytomność, czy też cierpią. Akademicy pozbawiali głowy przytomne i znieczulone zwierzęta i w tym czasie wykonywali im EEG. U obu grup szczurów zapis EEG stawał się płaski po ok. 17 s od dekapitacji. Aktywność mózgu zmieniała się w ten sposób, że w ciągu 3,7 s gryzonie musiały najprawdopodobniej tracić przytomność. Minutę po zabiegu pojawiała się fala śmierci, którą Holendrzy uznali za przejaw ostatecznego zaniku potencjału błonowego i nieodwracalnej śmierci mózgu. W badaniach van Puttena także wystąpiła fala śmierci, ale neurolog nie zgodził się z interpretacją poprzedników. Wg niego, fala śmierci nie jest jeszcze punktem, od którego nie ma odwrotu. Nawet po fali śmierci komórki nerwowe mogą, przynajmniej teoretycznie, przyjść do siebie, jeśli przywrócone zostaną dostawy tlenu i glukozy. Ekipa van Puttena powołała się w tym miejscu m.in. na badania z 2002 r., które dowiodły, że neurony z obszarów podkorowych, pobrane od osoby uznanej kilka godzin wcześniej za zmarłą, żyją w laboratoryjnych hodowlach tkankowych przez wiele tygodni (artykuł Verwera, Dubelaara i innych ukazał się w piśmie Journal of Cellular and Molecular Medicine), a także na raport z pisma Stroke z 1981 r., którego autorzy zaobserwowali u szczurów powrót aktywności elektrycznej neuronów po 10-min niedokrwieniu.
  14. Czemu ludziom łatwiej przeklinać w języku będącym ich drugim językiem? Dlaczego łatwiej kogoś urazić, używając przekleństwa niż eufemizmu? Psycholodzy z Uniwersytetu w Bristolu uważają, że przyczyną są różnice dotyczące warunkowania, a ogólniej rzecz ujmując – relatywizm lingwistyczny, czyli sposób, w jaki język kształtuje myślenie. Brytyjczycy poprosili badanych o odczytanie na głos przekleństw, eufemizmów tych słów oraz wyrazów neutralnych. W tym czasie mierzono ich reakcję skórno-galwaniczną. Okazało się, że reakcja autonomicznego układu nerwowego na przekleństwa była większa niż na pozostałe dwie kategorie słów, co wskazuje, że wymawiając je, ludzie odczuwają większy stres. Utrzymujemy, że wyrazy tabu generują mocniejszą odpowiedź emocjonalną po części w wyniku warunkowania językowego, które powoduje, że dźwięk słów tabu zaczyna się bezpośrednio łączyć z centrami emocjonalnymi mózgu. Z tego powodu przekleństwa mogą wywoływać silne uczucia nawet wtedy, gdy były wymawiane bez zamiaru obrażenia kogokolwiek – wyjaśnia prof. Jeffrey Bowers. Eufemizmy (takie jak słowo na "k"), sprytne anagramy (np. kruwa) i słowa tabu poznane na późniejszych etapach życia (np. w czasie nauki drugiego języka) nie są do tego stopnia powiązane z emocjami przez warunkowanie klasyczne i wskutek tego nie wywołują aż tak silnej reakcji emocjonalnej. Akademicy z Bristolu odnoszą swoje ustalenia do teorii relatywizmu lingwistycznego. Głosi ona, że ludzie unikają myślenia lub rozmów na pewne tematy, by uniknąć wymawiania słów tabu. Nie chodzi więc o unikanie tematu, ale raczej słów, którymi trzeba by się posłużyć, rozwijając go.
  15. Im dalej od równika, tym ludzie mają większe oczy i mózgi. Naukowcy z Uniwersytetu Oksfordzkiego tłumaczą, że ma to związek nie tyle z inteligencją, co z powiększeniem rejonów wzrokowych, które pozwalają sobie poradzić z mniejszą ilością światła w krajach z zachmurzonym niebem i dłuższymi zimami (Biology Letters). Brytyjczycy mierzyli oczodoły oraz objętość mózgu dla 55 czaszek z kolekcji muzealnych (najstarsze pochodziły z XIX wieku). Czaszki reprezentowały 12 populacji z całego świata: Anglii, Australii, Wysp Kanaryjskich, Chin, Francji, Indii, Kenii, Mikronezji, Skandynawii, Somalii, Ugandy i USA. Później akademicy zestawiali wymiary gałek ocznych i mózgu z szerokością geograficzną centralnego punktu w kraju ich pochodzenia. Okazało się, że i jedno, i drugie bezpośrednio zależało od oddalenia od równika. Największe były mózgoczaszki Skandynawów, a najmniejsze Mikronezyjczyków. W miarę oddalania od równika zmniejsza się ilość dostępnego światła, dlatego ludzie musieli wytwarzać w toku ewolucji coraz większe oczy. Mózgi również musiały stać się większe, by poradzić sobie z dodatkowymi danymi wzrokowymi. Większy mózg nie oznacza, że ludzie z większych szerokości geograficznych są mądrzejsi. Oznacza to jedynie, że potrzebują większych mózgów, by dobrze widzieć w okolicach, gdzie żyją – tłumaczy antropolog Eiluned Pearce. Ponieważ ludzie mieszkają na dużych szerokościach geograficznych Europy i Azji od zaledwie kilkudziesięciu tysięcy lat, wydaje się, że ich systemy wzrokowe zaskakująco szybko przystosowały się do zachmurzonego nieba […] i długich zim w tych okolicach – dodaje współautor badań prof. Robin Dunbar. Ostrość wzroku w warunkach oświetlenia dziennego jest stała na wszystkich szerokościach geograficznych, co zasugerowało naukowcom, że gdy ludzie opanowywali nowe rejony globu, system przetwarzania wzrokowego przystosowywał się do różnych warunków oświetleniowych właśnie w opisany wyżej sposób. Próbując zrozumieć zaobserwowane zjawiska, akademicy wzięli też pod uwagę wyjaśnienia alternatywne dla kompensacji gorszego oświetlenia wzrostem wielkości oczu i mózgu. Powołali się na efekt filogenetyczny (czyli ewolucyjne powiązania między różnymi liniami rozwojowymi ludzi), fakt, że osoby żyjące na większych szerokościach geograficznych są w ogóle większe, a także na możliwość, że powiększenie objętości oczodołu ma związek z niskimi temperaturami (tłuszcz musi pełnić rolę izolacji dla gałki ocznej).
  16. Szympansy, które są najbliższymi krewnymi człowieka, nie doświadczają podczas starzenia zmniejszania się objętości mózgu. Artykuł naukowców z Uniwersytetu Jerzego Waszyngtona pt. "Różnice w starzeniu kory mózgowej między ludźmi a szympansami" ukazał się w piśmie Proceedings of the National Academy of Sciences. Chociaż inne zwierzęta doświadczają pewnego pogorszenia funkcjonowania poznawczego i atrofii mózgu podczas starzenia, wydaje się, że ludzkie starzenie jest naznaczone radykalniejszą degeneracją – podkreśla dr Chet Sherwood. Amerykanie posłużyli się rezonansem magnetycznym, by określić objętość całego mózgu i kilku struktur wewnętrznych. Badali 99 mózgów szympansów w wieku od 10 do 51 lat. Dane porównano z wynikami 87 ludzi w wieku od 22 do 88 lat. Zmierzono grubość istoty szarej kory nowej oraz znajdującej się pod nią istoty białej, szczególną uwagę zwracając na istotę szarą i białą płatów czołowych. Zbadano też odpowiadający za pamięć i orientację przestrzenną hipokamp. U ludzi odnotowano zmniejszanie się w ciągu życia objętości wszystkich struktur mózgowych, podobne zjawisko nie występowało jednak u szympansów (tutaj nie stwierdzono znaczących zmian związanych z wiekiem). Co ważne, skutki starzenia u ludzi były ewidentne wyłącznie po przekroczeniu maksymalnego wieku szympansów. Na tej podstawie naukowcy stwierdzili, że kurczenie się mózgu to nowe ewolucyjnie zjawisko, które stanowi wynik wydłużonego życia. Zespół Sherwooda uważa, że choroba Alzheimera, na którą my, ludzie, wydajemy się szczególnie podatni, może być po części skutkiem silniej zaznaczonej atrofii mózgu, która jest widoczna bardziej niż u innych gatunków nawet podczas normalnego starzenia się. Unikalne dla ludzi jest połączenie wyjątkowo długiego życia i dużego mózgu. Choć z obu przystosowań wynikają, oczywiście, korzyści, wydaje się, że ceną, jaką nasz gatunek musi za to zapłacić, jest silniejszy spadek objętości mózgu u starszych osobników.
  17. Ludzie kojarzą małe liczby z krótkimi odcinkami czasu, a duże z dłuższymi interwałami. Wg psychologów, sugeruje to, że oba systemy – numeryczny i czasowy – są w mózgu powiązane. Zespół Denise Wu z National Central University of Taiwan przeprowadził 2 eksperymenty. W pierwszym z nich ochotnicy siedzieli przed komputerem, na ekranie którego krócej niż przez sekundę wyświetlała się jakaś cyfra. Później pojawiało się słowo "TERAZ" i w tym momencie badani mieli naciskać guzik klawiatury tyle samo czasu, ile wg nich, wyświetlała się cyfra. Psycholodzy podkreślają, że związek między cyfrą a czasem był oczywisty: po ujrzeniu większej cyfry, np. 8, ludzie przytrzymywali klawisz dłużej niż po zobaczeniu mniejszej cyfry, np. 1. W drugim eksperymencie ludzie widzieli przez chwilę zieloną kropkę. W odpowiedzi mieli naciskać klawisz. Przyciskaniu towarzyszyło pojawienie się na ekranie liczby. Okazało się, że widząc niską liczbę, ochotnicy przytrzymywali guzik dłużej, a gdy widzieli liczbę wyższą, przytrzymywali klawisz krócej. Wu uważa, że pod wpływem mniejszej wartości badani sądzili, że nie przytrzymywali klawisza wystarczająco długo. Jesteśmy bardzo podekscytowani tymi odkryciami, ponieważ wpływ cyfr okazał się tak automatyczny i natychmiastowy. Wu podejrzewa, że czas i wielkość liczb mogą być przetwarzane przez te same neurony. Gdyby to była prawda, zamiast obszarów poświęconych poszczególnym miarom wykorzystywalibyśmy jeden odpowiedzialny za myślenie o rzędach wielkości. Wu zastanawia się też nad potencjalnym wpływem emocji, który ujawniałby, w jaki sposób poczucie czasu wiąże się z innymi funkcjami mózgu (nuda rozciąga czas, a dobra zabawa wydaje się przyspieszać jego upływ).
  18. Międzynarodowy zespół naukowców badał mózg człowieka doświadczającego zjawiska doliny niesamowitości. Ludziom, którzy oglądali nagrania wideo 1) androida Repliee Q2, który wzbudzał w nich odrazę/lęk, 2) człowieka oraz 3) robota wyglądającego jak robot, wykonywano funkcjonalny rezonans magnetyczny. Wyniki sugerują, że przyczyną nieprzyjemnych wrażeń w zetknięciu z androidem jest niezgodność pomiędzy wyglądem a ruchami. Ayse Pinar Saygin z Uniwersytetu Kalifornijskiego w San Diego postanowiła sprawdzić, czy układ postrzegania działania (ang. action perception system, APS) jest bardziej dostrojony do ludzkiego wyglądu czy ruchu. Zbadano 20 osób w wieku od 20 do 36 lat, które nie pracowały z robotami i nie wyjeżdżały do Japonii, gdzie częściej można spotkać roboty i gdzie cieszą się one większą akceptacją społeczną. Ze studium wykluczono też ludzi, którzy mieli przyjaciół lub rodzinę w Kraju Kwitnącej Wiśni. Ochotnikom pokazano 12 filmów z Repliee Q2, która wykonywała codzienne czynności: machała, sięgała po szklankę z wodą lub podnosiła kartkę ze stołu. Wyświetlano także filmy z osobą, na której wyglądzie wzorowano androida. Wykonywała ona te same czynności, co Repliee Q2, podobnie zresztą jak uproszczona wersja androida (pozbawiono ją wierzchniej warstwy, widać było przewody, metalowe łączenia itp.). Pojawiał się więc człowiek wyglądający i poruszający się jak człowiek, robot wyglądający jak człowiek, lecz wykonujący mechaniczne ruchy i robot wyglądający i działający jak robot. Na początku eksperymentu, jeszcze poza skanerem MRI, wolontariuszom pokazano po jednym filmie z każdego scenariusza i powiedziano, kto jest kim. Podczas oglądania androida w obu półkulach rozświetlała się część płata ciemieniowego, która łączy korę wzrokową przetwarzającą ruchy ciała z rejonem kory ruchowej zawierającym neurony lustrzane. Wg naukowców, mózg uaktywniał się, wykrywając niezgodność między ludzkim wyglądem a ruchem w stylu robota. Mózg nie wydaje się nastawiony na zwracanie szczególnej uwagi na sam biologiczny wygląd lub biologiczny ruch. Wydaje się za to, że sprawdza, czy zostają spełnione oczekiwania, czyli czy wygląd i ruch są odpowiednie. Gdy androidy staną się bardziej popularne, niewykluczone, że nasz mózg się do nich przyzwyczai i zestawienie biologiczny wygląd-mechaniczny ruch nie będzie traktowane jako niespójność. Saygin uważa, że badanie mózgowych reakcji potencjalnych odbiorców androida pozwoli w przyszłości zaoszczędzić pieniądze, które w innym razie wydano by na źle odbierane projekty. Obecnie trwają prace nad tańszym od rezonansu magnetycznego EEG. Podczas eksperymentów naukowcy postarają się wskazać istotne elementy zapisu aktywności elektrycznej (m.in. odpowiedniki zwiększonej aktywności płatów ciemieniowych).
  19. University of Manchester i ARM chcą połączyć milion procesorów ARM, by symulować działanie ludzkiego mózgu. Specjaliści mówią, że uda się w ten sposób przeprowadzić symulację 1% mózgu. Pracami nad komputerem SpiNNaker kieruje Steve Furber, znany projektant procesorów ARM i pracownik naukowy University of Manchester. Do budowy maszyny zostaną wykorzystane procesory, które będą w liczbie 18 zamykane w pojedynczej obudowie. „Taka paczka zapewnia mocy peceta w małej przestrzeni i przy wykorzystaniu jednego wata" - oświadczył uniwersytet. Maszyna będzie symulowała pracę mózgu przesyłając niewielkie ilości danych. Naukowcy chcą dzięki niej lepiej zrozumieć, jak działa mózg. Psycholodzy już stworzyli sieci neuronowe, które symulują stany patologiczne. Używają ich do testowania różnych terapii, sprawdzania, która jest najbardziej efektywna - mówi Furber. Obecnie wiarygodność takich sieci jest ograniczona ich mocą obliczeniową, mamy jednak nadzieję, że SpiNNaker znacząco ją zwiększy. Nie wiemy, jak działa mózg jako system przetwarzający informacje i musimy się tego dowiedzieć. Mamy nadzieję, że nasza maszyna przyczyni się do poszerzenia wiedzy - dodaje.
  20. Mary Helen Immordino-Yang z Uniwersytetu Południowej Kalifornii uważa, że mózg symuluje wrażenia fizyczne, np. mrowienie na skórze, by wykorzystać moment silnego pobudzenia emocjonalnego do sprowokowania introspekcji i bardziej moralnych zachowań (Emotion Review). Pani psycholog zauważyła, że gdy ludziom opowiedziano historie mające wzbudzić współczucie lub podziw, czasem wspominali o powstających w odpowiedzi wrażeniach fizycznych. Były one na tyle realne, że dało się je wykryć podczas badania obrazowego mózgu. Amerykanka uważa, że fizyczne odczuwanie emocji w i na ciele może wywoływać introspekcję i promować prospołeczne decyzje skutkujące pomaganiem innym. Te emocje są fundamentalne dla moralności i społecznego uczenia. Immordino-Yang opisuje reakcję jednego z ochotników, który stwierdził, że wysłuchawszy historii chłopca altruistycznego wobec matki, czuł pod mostkiem balon lub coś podobnego, co ulegało spłaszczeniu, a następnie unosiło się i z niego uchodziło. Opisując swoje doznania, zrobił przerwę, zastanowił się nad własną relacją z rodzicami i zadeklarował, że będzie im okazywać więcej wdzięczności. Analogiczne reakcje o różnym stopniu nasilenia odnotowano u wszystkich badanych. W sumie zespół przeanalizował ok. 50 przypadków z Pekinu i Kalifornii. Za każdym razem naukowcy prezentowali jakąś wywołującą emocje prawdziwą historię, nagrywając zachowania wolontariuszy i wykonując skany mózgu, by monitorować reakcję fizjologiczną. Badania przeprowadzano w intymnych warunkach. Ochotnika proszono o opisanie uczuć i wrażeń związanych z zasłyszaną historią. Pani psycholog podkreśla, że przez stulecia poeci wspominali np. o motylach w brzuchu czy innych fizycznych odczuciach związanych z emocjami społecznymi, teraz zaś naukowcom udało się znaleźć dowód ich istnienia.
  21. Zanieczyszczone powietrze zagraża nie tylko układowi oddechowemu, ale i mózgowi. Badania na myszach wykazały, że długotrwały kontakt z zanieczyszczonym powietrzem prowadzi do zmian fizycznych w mózgu, a przez to do zaburzeń uczenia, pamięci oraz nastroju. Laura Fonken, doktorantka z Uniwersytetu Stanowego Ohio, opublikowała wyniki swoich badań w internetowym wydaniu pisma Molecular Psychiatry. Wcześniejsze studia zespołu z tej samej uczelni wykazały, że zawieszone w powietrzu drobne cząstki stałe wywołują w organizmie rozległy stan zapalny. Można je też powiązać z nadciśnieniem, cukrzycą i otyłością. W ramach najnowszego 10-miesięcznego studium przez 6 godzin dziennie pięć dni w tygodniu myszy wystawiano na oddziaływanie albo przefiltrowanego powietrza, albo powietrza zanieczyszczonego. Należy podkreślić, że 10 miesięcy to niemal połowa życia tych gryzoni. W zanieczyszczonym powietrzu znajdowały się drobne cząstki stałe (mieszanina naturalnego kurzu oraz zanieczyszczeń generowanych przez samochody i fabryki; drobne cząstki mają ok. 2,5 mikrometra średnicy). Stężenie cząstek stałych odpowiadało poziomowi stwierdzanemu na niektórych zanieczyszczonych obszarach miejskich. Po upływie 10 miesięcy naukowcy przeprowadzili na myszach szereg testów poznawczo-behawioralnych. Podczas badań pamięci i uczenia myszy umieszczano na środku jasno oświetlonej areny i dawano 2 min na odnalezienie otworu pozwalającego na ucieczkę do ciemnego pomieszczenia. Zwierzęta miały 5 dni na przetrenowanie tego zachowania. Okazało się, że gryzonie z grupy podtruwanej cząstkami stałymi miały o wiele więcej trudności z nauczeniem się, gdzie znajduje się wyjście ewakuacyjne. Na innym etapie badań wykazano, że myszy wystawione na oddziaływanie drobnych cząstek przejawiały więcej zachowań depresyjnych. W jednym z testów (nie powtórzyło się to jednak przy kolejnej próbie) wykazywały więcej symptomów lęku. By sprawdzić, jakie zmiany wywołują w mózgu cząstki stałe, Amerykanie zbadali hipokampa. Chcieliśmy się mu dokładnie przyjrzeć, ponieważ rejon ten jest związany z uczeniem, pamięcią i depresją – podkreśla Fonken. Okazało się, że występują spore różnice w wyglądzie hipokampów myszy z obu grup. Naukowcy skupili się szczególnie na dendrytach i ich kolcach, na których dochodzące do neuronów aksony tworzą połączenia. Akademicy stwierdzili, że myszy wdychające zanieczyszczone powietrze miały w pewnych regonach hipokampa dendryty z mniejszą liczbą kolców, poza tym dendryty były krótsze, a komórki nerwowe mniej skomplikowane pod względem budowy. Co ważne, wcześniejsze studia wykazały, że tego typu zmiany wiążą się z pogorszeniem pamięci i zdolności uczenia. U zwierząt wdychających zanieczyszczone powietrze w hipokampie wykryto zwiększoną aktywność cytokin prozapalnych. Podejrzewamy, że komunikat o systemowym zapaleniu wywołanym kontaktem z zanieczyszczonym powietrzem został przekazany ośrodkowemu układowi nerwowemu.
  22. Nawet podczas snu obszary słuchowe mózgu śpiącego niemowlęcia przetwarzają bodźce i odmiennie reagują na dźwięki wydawane przez ludzi oraz inne obiekty, a także na przejawy emocji o różnym znaku. Nasze badania sugerują, że niemowlęca kora skroniowa jest dużo bardziej dojrzała niż wcześniej wspominano. Na tak wczesnym etapie rozwoju rzadko widzi się wyspecjalizowane rejony - podkreśla dr Evelyne Mercure z Królewskiego College'u Londyńskiego. Brytyjczycy cieszą się, że ich najnowsze studium pozwoli lepiej zrozumieć wpływ środowiska społecznego na rozwój niemowląt, ale również odnieść rozwój do późniejszych zaburzeń komunikacji społecznej. Ludzki głos jest ważną wskazówką społeczną, co może wyjaśnić, czemu mózg tak wcześnie zaczyna go przetwarzać. To zjawisko reprezentuje pierwszy etap rozwoju kontaktu społecznego i nauki języka - uważa dr Anna Blasi. Zespół prof. Declana Murphy'ego posłużył się funkcjonalnym rezonansem magnetycznym, by sprawdzić, jak mózg śpiących dzieci reaguje na dźwięki. W eksperymencie wzięło udział 21 niemowląt w wieku od 3 do 7 miesięcy. Na początku naukowcy porównali reakcję mózgów na ludzkie niewerbalne wokalizacje, np. kaszel czy kichnięcia, oraz na inne znane dzieciom dźwięki, np. wydawane przez zabawki lub płynącą wodę. Okazało się, w zależności od typu bodźca (źródło ludzkie lub nieożywione) silniejsza reakcja występowała w innych rejonach mózgu dziecka; z podobnym zjawiskiem mamy do czynienia w przypadku mózgu dorosłego czuwającego człowieka. W kolejnym etapie analizowano odpowiedzi mózgu na przejawy pozytywnych oraz negatywnych uczuć (w tym śmiech i płacz) oraz dźwięki neutralne emocjonalnie. Mózgi dzieci reagowały podobnie na dźwięki neutralne i sugerujące radość (aktywacji ulegały m.in. zakręt skroniowy środkowy czy zakręt czołowy przyśrodkowy), ale w przypadku dźwięków świadczących o smutku (płaczu) dodatkowo występowało nasilone pobudzenie wyspy i zakrętu prostego. Murphy pociesza wszystkich rodziców, którym zdarzyło się np. kłócić przy śpiącym niemowlęciu. Wg naukowca, negatywne emocje nie muszą niekorzystnie wpływać na niemowlę; w takich okolicznościach mózg może przecież ćwiczyć swoje możliwości w zakresie różnicowania emocji. Czemu mózgi śpiących dzieci reagują na dźwięki z otoczenia? Murphy uważa, że regiony konieczne do przeżycia są wyspecjalizowane i aktywne już na bardzo wczesnym etapie rozwoju. W ich przypadku doświadczenie poporodowe nie jest już tak bardzo potrzebne. Studium brytyjskich akademików potwierdziło, że niemowlęta potrafią wyekstrahować z ludzkiej mowy drobne szczególiki. Co ciekawe, właściwie za każdym razem reagują jak dorośli czuwający ludzie. Obecnie zespół z Królewskiego College'u Londyńskiego prowadzi badania dotyczące mózgów dzieci, u których rodzeństwa zdiagnozowano autyzm.
  23. Gdy zeberki słyszą nowy zaśpiew, w ich mózgu rośnie lub spada stężenie mikroRNA - jednoniciowych cząsteczek RNA, które regulują ekspresję genów, a zatem i produkcję białek. Wg prof. Davida Claytona z University of Illinois, miRNA reprezentują nową klasę czynników regulujących, dostrajających reakcję mózgu na informacje społeczne. Zespół Claytona zauważył, że po usłyszeniu nieznanej pieśni w mózgu ptaków śpiewających zachodzą zmiany w ekspresji wielu mikroRNA. Dotąd żadne badania nie dostarczyły dowodów, że mikroRNA mogą się przyczyniać do sposobu, w jaki mózg reaguje na środowisko. Zaczęliśmy studium z pytaniem, czy zaobserwowane mikroRNA są odpowiedzią mózgu na pieśń. Odpowiedź brzmi, oczywiście - tak, są. Ważniejszym pytaniem, na które nie znamy jeszcze odpowiedzi, jest, na czym polega funkcja tych mikroRNA. Zespół z University of Illinois, Baylor College of Medicine i Uniwersytetu w Houston zidentyfikował mikroRNA, którego poziom wzrasta u samców i spada u samic po usłyszeniu nowego zaśpiewu. Gen dla tego mikroRNA znajduje się na chromosomie płciowym Z. Samce mają dwie kopie tego genu, a samice tylko jedną, co sugeruje, że płcie różnią się nawet pod względem bazowego stężenia tego mikroRNA. Zgodnie z moim stanem wiedzy, to pierwszy przykład odpowiedzi genowej różnej u samców i samic ptaków śpiewających - mówi Clayton. Ponieważ mikroRNA mogą oddziaływać na proces translacji łańcucha polipeptydowego białek na matrycy mRNA (wiążąc się z mRNA), Clayton dywaguje, że także mRNA dostrajają reakcję mózgu na ważne sygnały. Zauważyliśmy, że krótko po usłyszeniu pieśni niektóre mRNA nagle znikały. Na razie nie znamy mechanizmu tego zjawiska, ale to może być wynik działania mikroRNA.
  24. Rytm gamma, który powstaje m.in. w krytycznym dla uczenia się i zapamiętywania hipokampie, staje się silniejszy, gdy ciało szybciej się porusza, czyli np. podczas biegu. Prof. Mayank Mehta z Uniwersytetu Kalifornijskiego w Los Angeles zastosował specjalne mikroelektrody, które pozwalały na monitorowanie fal gamma. Okazało się, że rytm gamma stawał się silniejszy, gdy wzrastała prędkość biegu. Naukowcy mają nadzieję, że dzięki temu odkryciu uda się przybliżyć do zrozumienia funkcji mózgu niezbędnych do uczenia i nawigowania. Wyniki eksperymentu opisano w artykule, który ukazał się w piśmie PLoS ONE. Hipokamp szybko utrwala fakty związane z doświadczeniami. Podczas snu te czasowe wspomnienia ulegają konsolidacji i są przenoszone do innych części mózgu, gdzie będą przechowywane. Neurony w hipokampie utrwalają też dane związane z położeniem w przestrzeni. Amerykanie porównują mózg do orkiestry. Rytm gamma to grające stale skrzypce, naznaczone neuronalnymi impulsami podobnymi do uderzeń perkusji - opowiada Zhiping Chen. Sygnały mózgowe to połączenie wielu rytmów i impulsów neuronów z różnych rejonów. Wyzwaniem jest odniesienie języka mózgu do zachowania. Prawa biofizyczne rządzące pojedynczym neuronem są dość dobrze znane. Nie wiemy natomiast, jak miliardy neuronów ze sobą oddziałują i tworzą umysł - dodaje Mehta. Chen podkreśla, że hipokamp jest niezbędny dla nawigowania w przestrzeni. Komórki hipokampa kodują informacje o pozycji, jednak nie wystarczy wiedzieć, gdzie jesteśmy, trzeba jeszcze mieć świadomość, jak szybko idziemy. Doszliśmy więc do wniosku, że dane nt. prędkości koduje odrębny sygnał mózgowy - wyjaśnia Chen. Podczas eksperymentu mierzono sygnały setek mysich neuronów. Do mikroelektrod podłączono przewody 20-krotnie cieńsze od ludzkiego włosa. W ciągu dnia zespół zdobywał w ten sposób prawie 100 gigabajtów danych. Analiza doprowadziła do nieoczekiwanych wniosków. Okazało się bowiem, że występujący podczas uczenia rytm gamma nasilał się, gdy gryzonie zaczynały się szybciej poruszać. Co prawda rzadko natrafia się na tak klarowny związek, jednak Mehta zaznacza, że jest za wcześnie, by twierdzić, że aktywność fizyczna może wpłynąć na proces uczenia. Badania Kalifornijczyków potwierdziły za to ostatnie przypuszczenia naukowców, że fale gamma (skądinąd najszybsze z fal mózgowych) dzielą się na szybkie i wolniejsze sygnały powstające w oddzielnych częściach mózgu. Ku naszemu zaskoczeniu w miarę wzrostu prędkości sygnały stawały się coraz bardziej różne [wyodrębnione] - wyjawia Mehta. W ramach studium Mehta i Chen współpracowali ze specjalistami z Florydzkiego Instytutu Maxa Plancka oraz Instytutu Badań Medycznych Maxa Plancka w Heidelbergu.
  25. Dotąd zakładano, że procesem wydobywania wspomnień kierują bodźce zewnętrzne. Teraz okazało się, że może go utrudnić lub ułatwić poziom aktywności mózgu przed pojawieniem się elementów do zapamiętania. Zespół z Uniwersytetu Kalifornijskiego w Davis monitorował podczas testu pamięciowego oscylacje theta. Fale theta wiążą się aktywnym monitorowaniem czegoś przez mózg. Podczas eksperymentu badani zapamiętywali serię słów z kontekstem. Później mieli sobie przypomnieć, czy widzieli już dany wyraz, a jeśli tak, to w jakim kontekście. Okazało się, że gdy bezpośrednio przed próbą zapamiętania elementu w zapisie EEG występowało dużo fal theta, ochotnik uzyskiwał lepsze rezultaty. Prof. Charan Ranganath podkreśla, że wyniki uzyskane przez jego zespół przeczą założeniu, że mózg czeka, by zareagować na świat zewnętrzny. W rzeczywistości większa część tego narządu zajmuje się aktywnością wewnętrzną, która nie ma nic wspólnego ze światem zewnętrznym. Kiedy pojawia się bodziec, nakłada się na spontaniczne wzorce aktywności. Nie wiadomo, czy można świadomie wprowadzić się w stan sprzyjający późniejszemu przypominaniu. Obecnie trwają badania, które mają tę kwestię wyjaśnić.
×
×
  • Dodaj nową pozycję...