Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'Zhiping Chen' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Rytm gamma, który powstaje m.in. w krytycznym dla uczenia się i zapamiętywania hipokampie, staje się silniejszy, gdy ciało szybciej się porusza, czyli np. podczas biegu. Prof. Mayank Mehta z Uniwersytetu Kalifornijskiego w Los Angeles zastosował specjalne mikroelektrody, które pozwalały na monitorowanie fal gamma. Okazało się, że rytm gamma stawał się silniejszy, gdy wzrastała prędkość biegu. Naukowcy mają nadzieję, że dzięki temu odkryciu uda się przybliżyć do zrozumienia funkcji mózgu niezbędnych do uczenia i nawigowania. Wyniki eksperymentu opisano w artykule, który ukazał się w piśmie PLoS ONE. Hipokamp szybko utrwala fakty związane z doświadczeniami. Podczas snu te czasowe wspomnienia ulegają konsolidacji i są przenoszone do innych części mózgu, gdzie będą przechowywane. Neurony w hipokampie utrwalają też dane związane z położeniem w przestrzeni. Amerykanie porównują mózg do orkiestry. Rytm gamma to grające stale skrzypce, naznaczone neuronalnymi impulsami podobnymi do uderzeń perkusji - opowiada Zhiping Chen. Sygnały mózgowe to połączenie wielu rytmów i impulsów neuronów z różnych rejonów. Wyzwaniem jest odniesienie języka mózgu do zachowania. Prawa biofizyczne rządzące pojedynczym neuronem są dość dobrze znane. Nie wiemy natomiast, jak miliardy neuronów ze sobą oddziałują i tworzą umysł - dodaje Mehta. Chen podkreśla, że hipokamp jest niezbędny dla nawigowania w przestrzeni. Komórki hipokampa kodują informacje o pozycji, jednak nie wystarczy wiedzieć, gdzie jesteśmy, trzeba jeszcze mieć świadomość, jak szybko idziemy. Doszliśmy więc do wniosku, że dane nt. prędkości koduje odrębny sygnał mózgowy - wyjaśnia Chen. Podczas eksperymentu mierzono sygnały setek mysich neuronów. Do mikroelektrod podłączono przewody 20-krotnie cieńsze od ludzkiego włosa. W ciągu dnia zespół zdobywał w ten sposób prawie 100 gigabajtów danych. Analiza doprowadziła do nieoczekiwanych wniosków. Okazało się bowiem, że występujący podczas uczenia rytm gamma nasilał się, gdy gryzonie zaczynały się szybciej poruszać. Co prawda rzadko natrafia się na tak klarowny związek, jednak Mehta zaznacza, że jest za wcześnie, by twierdzić, że aktywność fizyczna może wpłynąć na proces uczenia. Badania Kalifornijczyków potwierdziły za to ostatnie przypuszczenia naukowców, że fale gamma (skądinąd najszybsze z fal mózgowych) dzielą się na szybkie i wolniejsze sygnały powstające w oddzielnych częściach mózgu. Ku naszemu zaskoczeniu w miarę wzrostu prędkości sygnały stawały się coraz bardziej różne [wyodrębnione] - wyjawia Mehta. W ramach studium Mehta i Chen współpracowali ze specjalistami z Florydzkiego Instytutu Maxa Plancka oraz Instytutu Badań Medycznych Maxa Plancka w Heidelbergu.
×
×
  • Dodaj nową pozycję...