Skocz do zawartości
Forum Kopalni Wiedzy

Jarek Duda

Użytkownicy
  • Liczba zawartości

    1665
  • Rejestracja

  • Ostatnia wizyta

  • Wygrane w rankingu

    87

Zawartość dodana przez Jarek Duda

  1. Proces emisji fotonu optycznego ze wzbudzonego atomu to jego deekscytacja (nie jest natychmiastowy np. https://science.sciencemag.org/content/328/5986/1658 ). Możliwości jej stymulowania, ukierunkowania oznacza że nie zawsze jest spontaniczna - dlatego napisałem "zwykle". Zwiększamy jej prawdopodobieństwo warunkami - słowo "stymulowana" jest bardziej adekwatna niż "wymuszona" - które byłoby uprawnione gdybyśmy byli w stanie zwiększyć prawdopodobieństwo do 100%, co chyba technicznie jest bardzo trudne.
  2. Wzbudzone atomy zwykle deekscytują spontanicznie - emitując foton w praktycznie losowym kierunku, chyba że stymulujemy tą deekscytację w emisji wymuszonej. Dyskutowany artykuł wychodzi ze spontanicznej zamiast tego używając wnęki o odpowiednim kształcie, co też się robi w tzw. superrariadnce: https://en.wikipedia.org/wiki/Super_radiant_emission Np. poniższy diagram z https://www.iqclock.eu/about.html:
  3. ps. Powiązane: tzw. "quantum corrals" też często eliptyczne wnęki, np. https://arxiv.org/pdf/cond-mat/0211607 ... i odtwarzają też na "walking droplets"( http://dualwalkers.com/statistical.html ): https://www.nature.com/articles/s41567-017-0003-x
  4. Ciekawe, przypomina superradiance ( https://en.wikipedia.org/wiki/Superradiance ): deeksytacja stymulowana samą obecnością wnęk - rozszerzenie do eliptycznej wnęki. I podczas gdy spontaniczna emisja rzeczywiście ma praktycznie losowy kierunek, jeszcze jest stymulowana ( https://en.wikipedia.org/wiki/Stimulated_emission ) - obecnością innych fotonów, deekscytując w ich kierunku. Przyjmuje się że stymulowana zachodzi np. wewnątrz medium lasera - natomiast pytanie czy jest możliwa dla zewnętrznego celu (jak powyższe zastępując wnękę laserem) chyba pozostaje otwarte (? dalej organizuję test, przykładowe zastosowanie: two-way quantum computers - https://arxiv.org/pdf/2308.13522 )
  5. Może nie było w Kaku, ale dowolne operacje można przetworzyć na unitarne dodając bity pomocnicze: https://en.wikipedia.org/wiki/Quantum_logic_gate Pozdrawiam
  6. Kwantowych efektów dla np. defektów topologicznych w nadprzewodniku/superfluid, może nie było w popularnych programach z których uczył się kolega, ale poza tym jest to klasyka (niestety nie moja), np. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.094503 https://journals.aps.org/prb/pdf/10.1103/PhysRevB.56.14677 http://www.tau.ac.il/~yakir/yahp/yh33 ... też jeszcze raz: klasyczne to są przybliżenia, dokładniej fizykę opisują kwantowe wersje takich modeli (np. EM po drugiej kwantyzacji). Niech sobie pompy grzeją, ważne żeby operacje wewnątrz chipu były unitarne - na co teoretycznie pozwala zarówno elektromagnetyzm jak i superfluid (te same równania). Obliczenia kwantowe jak najbardziej pozwalają np. na bramkę controlled-OR co z NOT do 3SAT wystarczy. Alternatywna perspektywa to że wiemy że postBQP ( https://en.wikipedia.org/wiki/PostBQP ) zawiera NP - co robiłby 2WQC wymieniając postselekcję na fizyczne więzy.
  7. Mam kilka propozycji podstawowych testów w https://arxiv.org/pdf/2308.13522 , ale wymaga to współpracy z labem fotonicznych - szukam.
  8. Slajd podałem z kwantowymi efektami m.in. dla solitonów w nadprzewodniku - w które wyglądało że kolega nie wierzy. Szukając "superfluid pump" wyskakuje kilka podejść. Bramki kwantowe są znane dla wielu bardzo różnych technologii komputerów kwantowych (slajd na górze strony), dla cieczy gdzieś mi się obiło np. dobór kształtu przepływu żeby realizować bramki - to że kolega nie widział w jakich popularnych materiałach nie znaczy jeszcze że nie istnieje ... a tym bardziej że nie będzie istniało w przyszłości - na twierdzenia o niemożliwości trzeba konkretne argumenty fizyczno/matematyczne, gadanie nie wystarczy. Podstawowe praktyczne podejście które proponuję jest dla fotonicznych - użycie dokładnie takiego samego impulsu ciśnienia jak wpływającego na stan początkowy, tylko ujemnego ciśnienia - matematyka/fizyka na to pozwala i mówi że powinno pozwolić symetrycznie wpływać na stan końcowy.
  9. Klasyczne to są przybliżenia, dla pełnego opisu rzeczywistości trzeba finalnie przejść do kwantowych opisów, też dla nadciekłych/nadprzewodników ... i to nie mój pomysł żeby robić mechaniczne qubity m.in. na superfluid. Inny przykład mam dla fotonicznych: używających impulsu dodatniego ciśnienia radiacyjnego żeby wpłynąć na stan początkowy - w diagramie wyżej robimy dokładnie to samo z perspektywy symetrii CPT, czyli wpływając na stan początkowy CPT(photonic chip), który jest stanem końcowym dla photonic chip (bez CPT) ... działając dokładnie takim samym impulsem tylko ujemnego ciśnienia. Ale kręcimy się w kółko - nie wierzę że doczekam się konkretnego kontrargumentu, więc pozdrawiam
  10. Elektromagnetyzm czy superfluid idealnie ma ewolucję hiperboliczną, wave-like, odwracalną, unitarną - brak wzrostu entropii np. w drodze dyfuzji ... te same równania. Do tego w QC dochodzi state preparation - np. impuls dodatniego ciśnienia radiacyjne dla fotonicznych, analogiczny impuls ciśnienia mógłby robić za state preparation w komputerze na superfluid - proponowany np. w https://www.nature.com/articles/s41534-021-00393-3 "We show that highly confined superfluid films are extremely nonlinear mechanical resonators, offering the prospect to realize a mechanical qubit". Ujemny impuls ciśnienia z pompy po prostu ciągnie, a nie "działa w przeszłości" - jak w optical pulling np. poniżej z https://www.semanticscholar.org/paper/Microdroplet-oscillations-during-optical-pulling-Ellingsen/b3d4e9ac17370604b83ca88c451f50d5711543ef
  11. Bzdura - fotoniczne używają impulsu lasera jako state preparation (jak poniżej z https://www.nature.com/articles/s41467-019-11489-y ), taki impuls mógłby popchnąć np.solar sail, czyli jest to impuls dodatniego ciśnienia radiacyjnego - wpływa tylko na stan początkowo, ja proponuję dodać identyczny impuls z drugiej strony tylko ujemnego. No i znowu bzdura - dopiero odpisałem w poście powyżej - mówimy o nadciekłej, podstaw sobie lepkość=0 do Naviera-Stokesa i znika człon dyfuzyjny. Proszę spokojnie - przemyśl, doczytaj sobie, potem odpisuj.
  12. Jakiego wzrostu entropii??? W jaki sposób druga zasada termodynamiki niby zabrania podłączyć aktywną pompę??? Nie perpetum mobile - ta pompa potrzebuje dostarczenia energii. A używając nadciekłej czy elektromagnetyzmu, nie ma lepkości, ewolucja jest odwracalna, nie ma wzrostu entropii. W Navier-Stokes lepkość tutaj masz w tau ( https://en.wikipedia.org/wiki/Navier–Stokes_equations ) do wyrazu dyfuzyjnego - znika dla nadciekłych, zostaje tylko to co w elektromagnetyzmie. Jeszcze raz tabelki której podałem (tym razem w nadciekłej nu=0) - z https://www.semanticscholar.org/paper/The-electromagnetic-hydrodynamic-analogy%3A-an-to-and-Buker/d812e931801dab63765e5877cd0edacc8c4a06c9 i https://www.researchgate.net/publication/284166762_The_analogy_between_electromagnetism_and_hydrodynamics Jeszcze raz - gdzie jest różnica między tymi równaniami że podłączyć do pompy niby można tylko w jednym z nich?
  13. Nie wiem o jakim perpetum mobile kolega pisze??? Ja piszę o po prostu podłączeniu do pompy ... aktywnej: wymuszającej przepływ używając źródła energii. Nie ma problemu hydrodynamicznie, pytałem m.in. o matematyczną różnicę z elektromagnetyzmem (podając analogi równań i literaturę) - jaka różnica niby uniemożliwiałaby analogię podłączenia do pompy dla elektromagnetyzmu? Owszem praktycznie może to być bardzo trudne, ale jeszcze nie widziałem argumentu żeby to było teoretycznie niemożliwe ... a jeśli takiego nie ma, to raczej kwestia czasu kiedy zaczną budować two-way quantum computers dla przynajmniej jednej z wielu technologii komputerów kwantowych. Pozdrawiam
  14. Mówimy o podłączeniu do pompy, czy podobnie działającej baterii (może np. lasera pierścieniowego) - możesz to nazywać "kontrolowaniem z przyszłości", ale jest to mniej magiczna czynność - działanie zarówno dodatnim, jak i ujemnym ciśnieniem ... radiacyjne zachowuje się analogicznie, są dziesiątki realizacji optical pulling. Mechaniczne qubity zaczynają budować: https://phys.org/news/2023-06-mechanical-qubits.html Tutaj na superfluid: https://www.nature.com/articles/s41534-021-00393-3 "We show that highly confined superfluid films are extremely nonlinear mechanical resonators, offering the prospect to realize a mechanical qubit" Qubity tutaj to mody własne, kwestia realizacji bramek odwracalnych i jest komputer kwantowy - nie widzę fundamentalnych przeszkód żeby był w microfuidic chip - który wystarczy podłączyć do pompy i dostajemy two-way quantum computer. Na ten moment nie mówimy o praktyczności tylko teoretycznej możliwości ... a skoro teoretycznie "podłączenie do pompy" jest dozwolone, więc pewnie za kilka lat przejdzie w sferę praktycznych. No np. w tabelce którą podawałem wiele razy, tutaj są setki artykułów: https://scholar.google.pl/scholar?q=hydrodynamics+electrodynamics+analogy Skoro można podłączyć do pompy microfluidic chip, jaka różnica matematyczna niby przeszkodziłaby w zrobieniu czegoś analogicznego dla EM, fotonów? https://imgur.com/Cyivdrvhttps://imgur.com/Cyivdrvhttps://imgur.com/Cyivdrv Nawet zjawiska mechaniki kwantowej odtwarzają hydrodynamicznie (zebrane artykuły: https://www.dropbox.com/s/kxvvhj0cnl1iqxr/Couder.pdf ), czy np. tutaj jest hydrodynamiczny Casimir:
  15. Dalej zero konkretów tylko "nieznane więc się nie da" ... to może konkretne pytania, proszę o konkretne odpowiedzi. Dla elektroniki czy mikrofluidyki możemy je aktywnie kontrolować z obu stron: zarówno wpychać elektrony/ciecz do, jak i wyciągać z (połączając "+"/ujemne ciśnienie jak poniżej) - jest już pewnie z kilkanaście technologii komputerów kwantowych, dlaczego niby żadnej nie można by też tak symetrycznie kontrolować? Przykładowo są mechaniczne qubity, na superfluid - czy fizyka zabrania zbudować komputer kwantowy w postaci microfluidic chip na superfluid (bez lepkości - odwracalne)? Jeśli nie ma przeciwwskazań to co broniłoby przed podłączeniem go do pompy dla symetrycznej kontroli? Matematycznie superfluid to prawie to samo co elektromagnetyzm - czy fizyka pozwala zbudować komputer kwantowy na mikrofalach? Jeśli tak to znowu - dlaczego nie można by go podłączyć do elektromagnetycznego odpowiednika pompy - aktywnie wymuszającej przepływ w jednym kierunku? Następny krok to fotony - poniżej jest photonic chip dla którego state preparation to impuls lasera - wpływając na stan początkowy. Ale używając jednokierunkowego "ring laser", z perspektywy CPT robimy identyczny impuls w CPT(photonic chip) - wpływając na jego stan początkowy, który jest stanem końcowym w normalnej perspektywie. Gdzie jest błąd w tym rozumowaniu?
  16. Bardzo dobrze, zostaje potwierdzenie dla elektronów - jest ta słynna próba z 1967 Witteborn, Fairbank ( https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1049 ) ... i wyszło im że przyspieszenie grawitacyjne dla elektronu jest blisko zero ... ale okazało się że jest to wina grawitacyjnego gradientu ładunku w rurce użytej do ekranowania, co niweluje efekt. Ciekawe czy kiedyś się uda? Slajdy: https://indico.cern.ch/event/361413/contributions/1776296/attachments/1137816/1628821/WAG2015.pdf
  17. Wszędzie podkreślam że jest to rozszerzenie - state preparation pozwala wpłynąć na stan początkowy, więc dodajemy dodatkową operacją: to samo tylko na odwrót żeby wpłynąć na stan końcowy. Nie ma w tym nic dziwnego dla microfluidic chip: zamiast pasywnie obserwować z której rurki wypłynie, aktywnie ciągniemy z wybranej ujemnym ciśnieniem ... też dla obwodów elektrycznych - aktywnie polem elektrycznym kontrolujemy nie tylko skąd elektrony mają wypłynąć, ale i dokąd mają dopłynąć ... dlaczego miałoby to być niemożliwe dla innych technologii, np. na falach EM z dodatnim/ujemnym ciśnieniem radiacyjnym? Matematycznie działałoby jak postselekcja ... tylko przez narzucenie więzów fizycznych, zamiast wielokrotnego przeprowadzania.
  18. Przecież w artykule i talku, też tutaj, dyskutuję różne technologie używane obecnie w komputerach kwantowych - np. fotonic chip z https://www.nature.com/articles/s41467-019-11489-y - standardowo używa impuls lasera czyli dodatnie ciśnienie radiacyjne do state preparation, proponuję dodatkowo zastosować ujemne ciśnienie radiacyjne - np. umieszczając go w strumieniu lasera pierścieniowego. Trzeba się przyglądnąć różnym technologiom, szczególnie procesowi używanemu do state preparation - z pytaniem czy można zrealizować proces odwrotny (CPT analog): np. ciągnij-pchaj, ujemne-dodatnie ciśnienie, stymulowana emisja-absorpcja. Jeśli tak, to skoro jeden pozwala wpłynąć na stan początkowy, to drugi powinien pozwolić wpłynąć na stan końcowy.
  19. Są różne kwantyzacje, np. tutaj są zebrane z kwantyzacji orbit dla skaczących kropelek - nie mogą mieć dowolnego rzeczywistego promienia, ale są ze zbioru dyskretnego - ponieważ sprzężna fala "pilotująca" musi wejść w rezonans/falę stojącą (dla uniknięcia fluktuacji o nadmiarowej energii) - jak w rozwiązaniach stacjonarnych równania Schrodingera : http://dualwalkers.com/eigenstates.html Czy np. ładunku elektrycznego: że prawo Gaussa może zwrócić tylko całkowitą wielokrotność ładunku elektrycznego - co można dostać interpretując pole elektryczne jako krzywizna głębszego pola np. wektorów jednostkowych - wtedy prawo Gaussa liczy ilość "nawinięć sfery na sferę" - ładunek topologiczny, który jest liczbą całkowitą.
  20. Podawałem argumenty, są w artykule i talku, kontrargumentów dalej nie widzę ... tylko taki polski whac-a-mole. Co do "shut up and calculate", są super eksperymenty hydrodynamiczne, odtwarzające np. interferencję w statystyce trajektorii, tunelowanie, kwantyzację orbit - zebrane artykuły: http://dualwalkers.com/statistical.html Dobry talk John Bush (MIT):
  21. Jasne, OTW i QFT modelu standardowego to są nasze procedury obliczeniowe ... jednak o świetnej zgodności z eksperymentem, więc naturalnym założeniem jest że fizyką rzeczywiście rządzą tego typu równania. Oczywiście są alternatywy jak życie w matrix, fizyka jako obraz ludzkiego obserwatora ... jednak poza artykułami filozoficznymi, nie prowadzą one do modeli z lepszą zgodnością z rzeczywistością - jedyny prawdziwy benchmark modeli jaki mamy. Dalej kwestia nastawienia - ludzkość długo żyła zafiksowana np. na kreacjonizm, jednak prawdziwy rozwój nastąpił ze zmiany myślenia na ewolucjonizm - szukania modeli których często dalekie konsekwencje zgadzają się z empirią ... jak w fizyce QFT + OTW, żeby znaleźć unifikujący je finalny model potrzebne jest nastawienie - co jest hamowane odpowiednikiem kreacjonizmu: zamknięcie na "shut up and calculate", "nobody understands QM". QFT jako zespół Feynmanowski np. historii Wszechświata, wymaga warunków brzegowych z dwóch kierunków - np. Wielki Wybuch w przeszłości, Wielki Kolaps w przyszłości. Używając warunków brzegowych tylko w przeszłości, np. równanie Schrodingera jest lokalne, realistyczne - jego konsekwencje muszą spełniać nierówności Bella, a natura na to: bzdura. Jest wiele argumentów na to że zgodna z fizyką filozofia czasu to eternalism/block universe: https://en.wikipedia.org/wiki/Eternalism_(philosophy_of_time) Co do 2WQC, na arxiv przez miesiąc był "on hold", gdyby był bezsensu, znaleźli prawdziwy kontrargument, to odrzucają ... a widzę że też wrzucili na insipireHEP (daleko nie każdy): https://inspirehep.net/literature/2691482 Dyskutowałem w wielu miejscach - jest kilka silnych argumentów że powinno działać, nie tylko opartych na symetrii CPT: jak quantum super-microfluidic chip który wystarczyłoby podłączyć do pompy, ogólnie jest wiele bardzo różnych technologii komputerów kwantowych, dla niektórych może być realizowalne (to samo co state preparation tylko na odwrót) ... najbardziej kontrowersyjne jest dla fotonów, ale i prawdopodobnie najbardziej praktyczne ... Zamiast 100 podpisanych krytyków, wystarczyłby jeden merytoryczny kontrargument - ale takiego jeszcze nie widziałem, jedynie ogólną niechęć do nowości - która występuje z ludzkością od tysiącleci. Przez wakacje mało co się dzieje, ale liczę że uda się ruszyć testy po.
  22. Pisałem: minimalizacją działania lub zespołami Feynmanowskimi - pierwsze klasyczne: jedna historia minimalizująca działanie, drugie kwantowe: ich ważony zespół Feynmanowski. Podobnie jak w termodynamice: naiwnie układ jest w minimum energii, bardziej poprawnie jest w ich zespole Boltzmannowskim. W samym zespole Feynmanowskim nie ma miejsca na prawdopodobieństwa, za to jest symetria CPT: przeszłość i przyszłość zachowują się bardzo podobnie ... chyba że dodamy obserwatora, ale fizyka sobie radziła miliardy lat bez nich - chcąc zrozumieć fizykę, zamiast narzucać antropocentryczne filozofie, szukamy jej równań (np. model standardowy, OTW) i porównujemy ich dalekie konsekwencje z eksperymentem. Co do bardziej symetrycznych komputerów kwantowych (2WQC), budują już mechaniczne qubity (np. https://phys.org/news/2023-06-mechanical-qubits.html ), na nadciekłych cieczach (np. https://www.nature.com/articles/s41534-021-00393-3 ) - pewnie kwestia czasu kiedy zbudują (super-)microfluidic chip z mechanicznymi qubitami np. wibracji nadciekłego helu ... dla którego 2WQC to będzie po prostu podłączenie go do pompy żeby równocześnie pchać dodatnim ciśnieniem i ciągnąć ujemnym ... a skoro można dla jednej technologii, to może i dla innych ... historia rozwoju nauki to często nietypowe pomysły.
  23. Nie mając pełnej wiedzy, potrzebujemy pracować na prawdopodobieństwach - w fizyce statystycznej zbudowanej na zasadzie maksymalizacji entropii ... ale też np. w praktycznej mechanice kwantowej: modelującej zwykle pojedynczy elektron, czyli potrzebując uwzględnić resztę wszechświata w sposób statystyczny. Ale to że my nie wiemy, nie znaczy że fizyka nie wie - żeby zrozumieć jak działa natura, trzeba wyjść z ograniczonej antropocentrycznej perspektywy i szukać podstawowych równań - porównując zgodność ich dalekich konsekwencji. Szukając fundamentalnego opisu zakładamy że fizyka wie (realizm): działające mechaniki lagranżowskie jak QFT, EM, OTW mają deterministyczne sformułowania, jak zasada minimalizacji działania czy zespoły Feynmanowskie. Takich modeli szukamy na podstawie zgodności z bardzo dalekimi konsekwencjami - np. astrofizyczno-kosmologicznymi, czy skomplikowanymi symulacjami Monte-Carlo dla kolejnych wyrazów lagranżianu modelu standardowego. Z jednej strony mamy model standardowy, z drugiej OTW ... ale są ze sobą sprzeczne - istnieją procesy w których obie strony są kluczowe, ale przez tą sprzeczność nie potrafimy ich spójnie modelować, czyli nie rozumiemy świata dookoła nas. ps. arxiv z tych ulepszonych bardziej symetrycznych komputerów kwantowych: https://arxiv.org/pdf/2308.13522 (talk: https://www.youtube.com/watch?v=pv95hvSdA3c )... ich klasa złożoności to chyba https://en.wikipedia.org/wiki/PostBQP
  24. Ogólnie obecny model standardowy (QFT) to jest szukanie niezgodności i łatanie ich kolejnymi fitowanymi poprawkami - jeśli potwierdzi się następna niezgodność, to pewnie dodadzą kolejne wyrazy ... ale oczywiście najlepiej byłoby mieć prostszy model z którego można by wyprowadzać taki szereg poprawek jak w Taylorze - tutaj właśnie nadzieja w modelach z cząstkami jako solitony topologiczne (wprowadzenie: https://community.wolfram.com/groups/-/m/t/2856493 ). Odnośnie unifikacji z grawitacją, GEM ( https://en.wikipedia.org/wiki/Gravitoelectromagnetism ) to drugi zestaw równań Maxwella, konieczny dla Lorentz invariance, potwierdzony w najważniejszym teście: Gravity Probe B ... względnie trywialny do unifikacji z pierwszy zestawem równań Maxwella (np. u mnie: EM z obrotów przestrzennych + GEM z boostów w SO(1,3) grupie Lorentza) i tutaj jeszcze nie ma problemu z nieskończonościami renormalizacji - więc może warto się cofnąć do GEM i przemyśleć kolejne kroki ... szczególnie że z OTW też są niezgodności prowadzące do rozwoju np. MOND: https://en.wikipedia.org/wiki/Modified_Newtonian_dynamics W każdym razie zgodność obu jest niezła i to jest czysta matematyka, formalizm lagranżowski ... i nic porównywalnego niematematycznego nie mamy - więc żeby zrozumieć fizykę, trzeba zaakceptować że jest rządzona tego typu matematyką ... i naprawiać niezgodności, może też upraszczać/unifikować. Obecny Lagrangian modelu standardowego: https://www.symmetrymagazine.org/article/the-deconstructed-standard-model-equation?language_content_entity=und ps. Dzisiaj się zaczyna otwarty online workshop solitonowy: https://www.math.nagoya-u.ac.jp/~hamanaka/soliton2023.html
  25. Działające fundamentalne opisy fizyki to np. QFT, EM, OTW - wszystkie 3 to formalizmy Lagranżowskie, czysta matematyka. Natomiast wymaganie obserwatora do zrozumienia fizyki to jakiś ekstremalny przejaw antropocentrycznej pychy ... fizyka sobie radziła i radzi bez nas.
×
×
  • Dodaj nową pozycję...