Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' Uniwersytet Warszawski'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 7 results

  1. Fryderyk Chopin pisał w sposób zróżnicowany. Na kopertach zawsze kaligraficznie, do rodziny zwykle dużo mniej czytelnie, zdecydowanie drobniejszym pismem. Często robił dopiski na marginesach, nie podpisywał się pełnym imieniem i nazwiskiem. Jak zmieniał się charakter pisma kompozytora w czasie jego życia? Zakończono kryminalistyczne badania rękopisów Fryderyka Chopina ze zbiorów Muzeum F. Chopina w Warszawie. W projekcie brali udział eksperci Katedry Kryminalistyki Uniwersytetu Warszawskiego (UW), Polskiego Towarzystwa Kryminalistycznego (PTK) oraz samego Muzeum. Naukowcy badali, jak w trakcie życia kompozytora zmieniał się grafizm, czyli charakter jego pisma i jakie czynniki mogły mieć na to wpływ. Wzorzec graficzny Do tej pory nie prowadzono tak zaawansowanych badań pismoznawczych nad rękopisami kompozytora. Prawdopodobnie jest to największa na świecie kolekcja rękopisów Fryderyka Chopina, które pierwszy raz zostały zbadane w sposób kryminalistyczny. Przebadano wszystkie 143 dokumenty ze zbiorów warszawskiego Muzeum. Łącznie to 349 stron listów, notatek czy zapisków z kalendarzyków. Głównie listy do znajomych i rodziny, dedykacje muzyczne, ale również oficjalna korespondencja. Dzięki badaniom ekspertów kryminalistyki z UW, PTK i Muzeum powstały wzorce graficzne pisma ręcznego Fryderyka Chopina. Wcześniej ustalenie autentyczności dokumentów związanych z kompozytorem było trudne, ponieważ nie istniał katalog cech i właściwości graficznych charakterystycznych dla pisma F. Chopina. Profilowanie w kryminalistyce polega na opisaniu cech osoby poszukiwanej, np. potencjalnego sprawcy przestępstwa. My też przyjęliśmy takie założenie. Próbowaliśmy stworzyć coś w rodzaju profilu pisma ręcznego Fryderyka Chopina. Dowiedzieć się, czym się ono charakteryzuje. Wykonaliśmy badania dotyczące budowy liter czy sposobu ich wiązania, a także analizę sposobu kreślenia przez kompozytora własnych podpisów – mówi prof. Tadeusz Tomaszewski z Katedry Kryminalistyki UW, kierownik projektu. Jak pisał Chopin? Na obraz pisma, dynamikę pisania czy też inne właściwości pisma, np. konstrukcję liter, mógł mieć wpływ m.in. wiek, stan psychofizyczny, język, w jakim pisał kompozytor (pisał po polsku i po francusku) albo rodzaj rękopisu (list czy notatka). Istotny był też adresat. Czy Chopin pisał dla siebie, czy była to oficjalna korespondencja albo listy przeznaczone dla osób zaprzyjaźnionych lub rodziny – dodaje prof. Tomaszewski. Eksperci sprawdzali obraz pisma i cechy konstrukcyjne poszczególnych liter. Początkowo Chopin pisał tak, jak go nauczono. Korzystał z dostępnych wtedy wzorców kaligraficznych. Z badań kryminalistycznych wynika, że z biegiem lat w piśmie kompozytora następowały uproszczenia konstrukcji liter (choć sama budowa znaków graficznych co do zasady nie ulegała zmianie), w tym szczególnie widoczny jest zanik elementów ozdobnych i tzw. adiustacji początkowych i końcowych w majuskułach. W przypadku podpisów widać odchodzenie od podpisów rozwiniętych i czytelnych oraz częste stosowanie podpisów skróconych czy nawet nieczytelnych paraf – mówi prof. Tadeusz Tomaszewski. Podpis Chopina przybierał różne formy, czasem kompozytor stawiał same inicjały, czasem pisał jedynie nazwisko, a w korespondencji do przyjaciół podpisywał się np. "Twój stary" (w domyśle Twój stary przyjaciel). Ciekawe jest również to, że na żadnym z badanych dokumentów kompozytor nie podpisał się pełnym imieniem i nazwiskiem. Podejrzany dokument Biegli pismoznawcy posługują się zwykle lupą i mikroskopem, przeprowadzają badania optyczne i fizykooptyczne. Do oceny nietypowych dokumentów lub właściwości związanych z podłożem bądź środkiem kryjącym (tutaj był to inkaust lub ołówek) potrzebują jednak bardziej zaawansowanego sprzętu. Podczas badań technicznych, dzięki którym można było ustalić, czy dokumenty są kopiami, czy zawierają jakieś retusze, oznaki usuwania lub nadpisywania, znaleziono jeden materiał zawierający dziwne ślady. Żeby go zbadać, przetransportowaliśmy do Muzeum specjalistyczny sprzęt kryminalistyczny (m.in. najwyższej klasy urządzenie zwane wideospektrokomparatorem), gdyż ze względów bezpieczeństwa i ochrony samych dokumentów nie można było takich badań przeprowadzić w laboratorium. Wspomniany "podejrzany" dokument zawierał cechy dziwne, wyskrobanie pewnych elementów, powielenie linii czy ich retusz. Wskazuje to na wysokie prawdopodobieństwo dokonywania poprawek pierwotnego zapisu i podpisu przez inną osobę niż sam kompozytor – wyjaśnia profesor. Być może w przyszłości możliwe będzie kontynuowanie badań nad tym rękopisem za pomocą zaawansowanej aparatury naukowej, która znajduje się w Centrum Nauk Biologiczno-Chemicznych UW. Chcielibyśmy również, przy pomocy Narodowego Instytutu Fryderyka Chopina i za jego zgodą, wydać publikację naukową dotyczącą przeprowadzonych badań – zapowiada kierownik projektu. « powrót do artykułu
  2. Dr Przemysław Mróz z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego został laureatem 1. edycji Nagrody im. Franka Wilczka. Kapituła nagrodziła go za scharakteryzowanie populacji planet swobodnych w Drodze Mlecznej i odkrycie najbardziej wiarygodnych kandydatów na małomasywne planety swobodne. To jedno z największych osiągnięć polskiej astronomii w ostatnich latach. Nagroda im. Franka Wilczka została ustanowiona w lutym 2019 roku. Jest fundowana przez Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ oraz Fundację Kościuszkowską. Przyznawana jest co 2 lata młodym polskim naukowcom, którzy dokonali znaczącego odkrycia w fizyce, astronomii lub w dziedzinach im zbliżonych. Jeśli osoba nominowana do nagrody uzyskała stopień naukowy doktora, to zgłoszenie jej kandydatury nie może nastąpić później niż 7 lat od daty jego nadania. Nagroda - w wysokości 12 tys. dolarów amerykańskich - przyznawana jest indywidualnie. Nie dopuszcza się zatem nominacji grupy badaczy oraz jednostek naukowych lub badawczych. Wiedza astronomiczna dotycząca planet swobodnych uległa ogromnemu pogłębieniu dzięki badaniom prowadzonym w ostatnich latach przez dr. Przemysława Mroza. Badacz z UW przeprowadził wszechstronną analizę tzw. zjawisk mikrosoczewkowania grawitacyjnego, której głównym celem było znalezienie zjawisk o bardzo krótkich skalach czasowych (charakterystycznych dla obiektów małomasywnych) i wyznaczenie na ich podstawie częstości występowania w Galaktyce planet swobodnych. Oprócz analizy globalnej populacji planet swobodnych dr Przemysław Mróz poszukiwał najbardziej wiarygodnych przypadków indywidualnych detekcji tych planet. W tym celu badał wybrane zjawiska mikrosoczewkowania, w których gwiazda soczewkowana była gwiazdą olbrzymem i w których można było się spodziewać dodatkowych efektów w krzywej blasku mikrosoczewkowania, umożliwiających precyzyjniejsze oszacowanie masy obiektu. Idea zaproponowana przez laureata okazała się niezwykle skuteczna. Udało mu się znaleźć i scharakteryzować 3 planety swobodne, w tym bardzo małomasywną o masie ziemskiej. Patronem nagrody jest Frank Wilczek - wybitny amerykański fizyk polskiego pochodzenia, profesor fizyki w Massachusetts Institute of Technology. W 2004 roku z Hugh Davidem Politzerem i Davidem Grossem otrzymał Nagrodę Nobla z fizyki za opracowanie asymptomatycznej swobody w teorii silnych oddziaływań między cząstkami elementarnymi. W 2012 roku uhonorowany został tytułem doktora honoris causa Uniwersytetu Jagiellońskiego. Pierwszego laureata nagrody wyłoniła kapituła w składzie: prof. Frank Wilczek, prof. Katarzyna Chałasińska-Macukow (UW), prof. Stanisław Kistryn (UJ), prof. Maciej Lewenstein (ICFO w Barcelonie) i prof. Christopher Sachrajda (Uniwersytet w Southampton). W czerwcu Międzynarodowa Unia Astronomiczna (IAU) przyznała coroczne prestiżowe nagrody za najwybitniejsze na świecie prace doktorskie obronione w 2019 roku w dziedzinie astronomii. Dr Przemysław Mróz był jednym z laureatów. « powrót do artykułu
  3. Pod koniec maja w Ogrodzie Botanicznym Uniwersytetu Warszawskiego zakończyło się obsadzanie roślinami dywanu kwietnego, który w takim kształcie i miejscu funkcjonuje tu od 1870 roku. Jak napisano na profilu Ogrodu na Facebooku, ponieważ coraz częściej uprawiamy warzywa w mieście i sięgamy po sezonowe warzywa i zioła, po raz pierwszy w historii Ogrodu Botanicznego UW zdecydowano się obsadzić dywan warzywami. Rośnie tam [aż] 26 gatunków warzyw i ziół, np. kapusta głowiasta, jarmuż czy burak liściowy. Dotąd kwietnik był obsadzany roślinami o niskim pokroju, wyrównanym wzroście i kolorowych liściach (miały one dobrze znosić częste przycinanie), np. begoniami, irezynami, krąglatkami czy heliotropami. Kwiaty tych roślin zwykle są niepozorne i nie mają szczególnego znaczenia ozdobnego. W tym roku po raz pierwszy zamiast kwiatów posadzono warzywa i zioła. Poza popularnymi, np. marchewką, pietruszką czy bazylią, znajdziemy tu także rzadsze rośliny: kocanki włoskie, kosmos podwójnie pierzasty, hyzop lekarski czy laur szlachetny. Projekt dywanu powstał w grudniu 2019 r. Jego autorką jest Diana Zlochevska z SGGW. Hodowla rozpoczęła się w styczniu od wysiania nasion w szklarniach. Jak wspomnieliśmy wcześniej, sadzonki zostały przeniesione do gruntu pod koniec maja. Teraz można już zacząć zbiory. Tegorocznym wyborem nasadzeń nawiązujemy do historycznych ogrodów kuchennych (jardin potager), wywodzących się z ogrodów francuskiego renesansu i baroku, kiedy w celu zwiększenia piękna tych ogrodów poza warzywami dodatkowo obsadzono je kwiatami (jadalnymi i niejadalnymi), bylinami i krzewami. Był to celowy zabieg, tak by funkcja dostarczania żywności przeplatała się z estetyczną [...], a ogród cieszył oko przez cały sezon. Jak podkreśla Dorota Szubierajska, kuratorka działu roślin ozdobnych i rosarium OB UW, wzór dywanu i projekt autorstwa Diany Zlochevskiej sprawia, że nie jest to zwykły zagon z warzywami i ziołami, tylko niezwykle ozdobny kolorowy kwietnik, który w dodatku można będzie jeść. Od kilku dni wycinana i zjadana jest już sałata. W jej miejscu znajdzie się nowa nasada. Ponieważ zbiorów jest sporo, pracownicy planują zorganizować dożynki. Zwykle kwietniki dywanowe były likwidowane po pierwszych jesiennych przymrozkach, bo wtedy traciły swój walor ozdobny. Kiedy dywan warzyw dojrzeje, to po prostu wraz z ostatnimi gośćmi ogrodu go zjemy. Będzie to bardzo nietypowy sposób likwidacji kwietnika. Zazwyczaj wszystko znika w ciągu jednego dnia, lądując na kompoście. W tym roku będziemy się starać, aby wszystko wylądowało w naszych kuchniach i spiżarniach – mówi Szubierajska. Z ozdobnych rabat warzywnych słynie np. zamek w Villandry (Château de Villandry) z pięknymi ogrodami z epoki odrodzenia. Znajdują się tam liczne ogrody tematyczne z najbardziej znanym kuchennym (potager), w którym uprawia się warzywa w bardzo dekoracyjny sposób. Co miesiąc OB UW chce pokazywać na swoim profilu na FB, jak dywan się rozwija, a pani Dorota Szubierajska będzie inspirować do obsadzania ogrodów kwietnych warzywami. « powrót do artykułu
  4. Zespół naukowców Uniwersytetu Warszawskiego pod kierunkiem dr hab. Joanny Kowalskiej opublikował na łamach czasopisma Nucleic Acids Research artykuł opisujący syntezę i zastosowanie fluorowanych cząsteczek DNA do badań funkcji i właściwości kwasów nukleinowych z wykorzystaniem fluorowego magnetycznego rezonansu jądrowego. Publikacja ta została uznana przez recenzentów za Breakthrough Paper – artykuł przełomowy dla rozwoju nauki. Zespół naukowców z Wydziału Fizyki UW oraz Centrum Nowych Technologii UW, który tworzą: dr hab. Joanna Kowalska, dr Marcin Warmiński, prof. Jacek Jemielity oraz Marek Baranowski, opublikował na łamach prestiżowego czasopisma naukowego Nucleic Acids Research (NAR) wyniki eksperymentów dotyczące syntezy i charakterystyki oligonukleotydów znakowanych atomem fluoru na jednym z końców nici kwasu nukleinowego (DNA) oraz ich zastosowań w badaniach metodą fluorowego jądrowego rezonansu magnetycznego (19F NMR). Opisane związki stanowią nowy rodzaj sond molekularnych do prostego wykrywania różnych wariantów przestrzennych DNA (tzw. struktur drugorzędowych), takich jak fragmenty dwuniciowe (dupleksy), a także bardziej nietypowe struktury – tzw. struktury niekanoniczne (G-kwadrupleksy i i-motywy). Znakowane fluorem fragmenty DNA umożliwiają badanie tych struktur za pomocą wrażliwej na zmiany strukturalne metody, jaką jest spektroskopia 19F NMR. Publikacja badaczy Uniwersytetu Warszawskiego otrzymała od recenzentów czasopisma Nucleic Acids Research status Breakthrough Paper – artykułu przełomowego dla rozwoju nauki. Recenzenci docenili połączenie prostego i wydajnego podejścia syntetycznego, umożliwiającego otrzymanie fluorowanych cząsteczek DNA, z wykorzystaniem metody 19F NMR. Połączenie to zaowocowało opracowaniem metody badawczej o szerokim spektrum zastosowań: od śledzenia zmian strukturalnych dupleksów DNA do monitorowania oddziaływań pomiędzy kwasem nukleinowym, a białkami i małymi cząsteczkami. Rezultaty opisane w publikacji otwierają nowe możliwości w badaniach poznawczych kwasów nukleinowych, a także mogą znaleźć zastosowanie w odkrywaniu leków oddziałujących, poprzez specyficzne wiązanie, z określonymi sekwencjami lub strukturami przestrzennymi w DNA. Większość opracowywanych dotychczas leków działa poprzez oddziaływanie z białkami. Leki oddziałujące z DNA są natomiast mało selektywne, a przez to toksyczne. Opracowanie metod umożliwiających odkrywanie cząsteczek oddziałujących tylko z wybranymi sekwencjami DNA otwiera drogę do powstania leków charakteryzujących się znacznie mniejszą toksycznością – komentuje dr hab. Joanna Kowalska z Wydziału Fizyki UW, współautorka artykułu. Nucleic Acids Research to czasopismo naukowe, którego celem jest popularyzacja najwyższej jakości badań, których rezultaty oceniane są przez grono naukowców-recenzentów w zakresie biologii molekularnej i komórkowej. Status Breakthrough Paper otrzymują publikacje opisujące badania, które rozwiązują istniejący od dawna problem lub wskazują nowe możliwości i kierunki rozwoju nauki. « powrót do artykułu
  5. Doktoranci Wydziału Fizyki pod kierunkiem dr. hab. Wojciecha Wasilewskiego z Centrum Optycznych Technologii Kwantowych (QOT) skonstruowali i przetestowali optyczny teleskop czasowy zbierający sygnały przez rekordowo długi okres kilkudziesięciu mikrosekund. Teleskop czasowy jest szczególnym urządzeniem optycznym, które pozwala na jednoczesny odbiór i analizę wielu blisko leżących zakresów częstotliwości optycznych (kanałów). Skonstruowane urządzenie pozwala rozdzielać sygnały optyczne tak bliskie w częstotliwości jak stacje radiowe UKF FM (0,1MHz). Powstałe w innych grupach na świecie teleskopy czasowe uzyskują dotychczas rozdzielczość milion razy mniejszą i są dostosowane do szerokopasmowych sygnałów emitowanych przez urządzenia optyczne bazujące głównie na ciele stałym. Teleskop opracowany na Uniwersytecie Warszawskim operuje w zupełnie innym reżimie, co sprawia, że może on rejestrować sygnały emitowane przez systemy bazujące np. na gazach atomowych, pojedynczych jonach czy prężnie rozwijających się w ostatnich czasach układach opto-mechanicznych, co dotychczas było niemożliwe. Urządzenie to przekracza także tysiąckrotnie możliwości spektrometrów optycznych, które zazwyczaj nie pozwalają na jednoczesny odbiór więcej niż jednego kanału. Warto zauważyć, że uzyskanie tak dużej rozdzielczości z wykorzystaniem konwencjonalnych metod wymagałoby użycia ok. 1012 km światłowodu - to prawie tyle, ile obwód orbity Saturna. Tak doskonałe rezultaty uzyskano odpowiednio programując skonstruowaną przez twórców pamięć kwantową. Praca zaczęła się od analizy zasad działania wspólnych dla wielokanałowego radia i teleskopu optycznego, gdyż oba te urządzenia realizują transformatę Fouriera, chociaż w zupełnie innym zakresie częstotliwości. Wiele powszechnie dostępnych urządzeń pozwala obserwować spektrum muzyczne w trakcie odtwarzania piosenek, gdzie słupki obrazujące siłę poszczególnych zakresów fal akustycznych są obliczane przez komputer przy wykorzystaniu wspomnianej transformaty. Działa ona w obie strony – możemy rozłożyć dźwięk na tony składowe albo złożyć akord z poszczególnych tonów, imitując grę na fortepianie. Zademonstrowana w urządzeniu metoda uzyskiwania transformaty Fouriera sygnałów optycznych także jest odwracalna. Dzięki temu poszczególne odbierane kanały są zupełnie niezależne, co jest ważne w niektórych protokołach komunikacyjnych korzystających z wielu kanałów jednocześnie. Opracowany, unikalny schemat może zostać zastosowany jako odbiornik w protokołach przesyłania informacji kwantowej, czyli docelowo na przykład w kryptografii kwantowej, gdzie wykorzystanie wielu kanałów podnosi prędkość przesyłu. Innym potencjalnym zastosowaniem jest odbieranie danych z bardzo odległych satelitów nadających sygnały optyczne. Dzięki nadzwyczajnej charakterystyce opisywanego odbiornika, można by go także użyć do praktycznej realizacji niedawno zaproponowanych przez teoretyków nadzwyczaj wyrafinowanych schematów kodowania optycznego, co również mogłoby w sposób znaczący podnieść prędkość odbioru zakodowanej informacji. Praca powstała w grupie Laboratorium Pamięci Kwantowych przy udziale dwóch doktorantów, magistranta i jednego, niedawno wypromowanego doktora przy wsparciu kierownika laboratorium, na unikalnej w skali świata pamięci kwantowej, skonstruowanej całkowicie na Uniwersytecie Warszawskim. Dodatkowo zespołowi pomagają dwaj studenci elektroniki. Zgodna i wytężona praca całego zespołu obejmowała rozbudowę układu optycznego, precyzyjną weryfikację współdziałania podzespołów w szeregu pomiarów testowych, opracowanie koncepcji nowego eksperymentu poprzez symulacje teoretyczne, dopasowanie parametrów do rzeczywistego eksperymentu, poszukiwanie reżimu, w którym nowy schemat działa jak najlepiej i na końcu ostateczne pomiary i wykreślenie otrzymanych wyników w syntetycznej formie, odpowiadającej modelom teoretycznych. Opracowany schemat nie jest podobny do żadnego znanego wcześniej, dzięki czemu wszyscy członkowie zespołu musieli wykazać się dużą kreatywnością, co pozwoliło na nabranie unikalnego, szerokiego doświadczenia w optyce kwantowej, elektronice, programowaniu i szeregu innych zagadnień. « powrót do artykułu
  6. Opublikowano tegoroczną Listę szanghajską, czyli ranking 1000 najlepszych światowych uczelni wyższych. Pierwszą dziesiątkę ponownie zdominowały uczelnie ze Stanów Zjednoczonych. Najlepszym uniwersytetem na świecie jest, po raz 17., Uniwersytet Harvarda. Za nim uplasował się Stanford University, a na trzecim miejscu znajdziemy brytyjski University of Cambridge. Pozostałe pozycje w pierwszej dziesiątce zajęły Massachusetts Institute of Technology (USA), Uniwersytet Kalifornijski w Berkeley (USA), Princeton University (USA), Uniwersytet Oksfordzki (Wielka Brytania), Columbia University (USA), California Institute of Technology (USA) oraz University of Chicago (USA). Najlepszą uczelnią w Europie kontynentalnej pozostaje Szwajcarski Federalny Instytut Technologiczny w Zurichu, który w bieżącym roku uplasował się na pozycji 19. Drugą najlepszą uczelnią w Europie kontynentalnej jest Uniwersytet w Kopenhadze (26. pozycja). Najlepsze uczelnie Azji to Uniwersytet Tokijski (25. miejsce) i Uniwersytet w Kioto (pozycja 32.). Najlepszą chińską uczelnią jest Uniwersytet Tsinghua sklasyfikowany na 43. miejscu. Wśród 50 najlepszych uczelni na świecie znajdziemy 31 szkół wyższych z USA, 6 uczelni z Wielkiej Brytanii, po 2 z Kanady, Japonii i Francji oraz po 1 z Danii, Szwajcarii, Szwecji, Australii, Chin, Niemiec i Holandii. Wśród 100 najlepszych uczelni po raz pierwszy pojawiły się Uniwersytet Shenzen (82. miejsce) oraz Uniwersytet Nowej Południowej Walii (pozycja 94.). Na liście 1000 uczelni znalazły się też polskie szkoły wyższe. Najlepszą z nich jest Uniwersytet Jagielloński sklasyfikowany w 4. setce, pomiędzy miejscami 301–400. Taka klasyfikacja wynika z faktu, że tylko pierwszych 100 miejsc jest dokładnie wymienionych. Później uczelnie są grupowane po 50 lub 100. Za drugą z najlepszych polskich uczelni został uznany Uniwersytet Warszawski, który trafił do 5. setki. W porównaniu z rokiem ubiegłym obie uczelnie zamieniły się miejscami. W 2018 roku to Uniwersytet Warszawski był w 4., a Jagielloński w 5. setce. Możemy też przyjrzeć się bliżej ocenom cząstkowym uczelni, by lepiej zrozumieć, dlaczego Uniwersytet Jagielloński w bieżącym roku awansował, a Uniwersytet Warszawski spadł w klasyfikacji. Jednym z elementów branych pod uwagę jest jakość nauczania rozumiana jako liczba absolwentów, którzy zdobyli Nagrodę Nobla lub Medal Fieldsa. Różne wagi są przykładane w zależności od okresu, w którym laureat nagrody otrzymał dyplom uczelni. Najbardziej punktowani byli ci laureaci nagród, którzy dyplom danej uczelni otrzymali po roku 2011. Im dawniej otrzymany dyplom, tym mniejsza liczba punktów za noblistę czy laureata Medalu Fieldsa. Jako, że w ostatnim czasie żaden z absolwentów UW czy UJ nie otrzymał żadnej z nagród, obu polskim uczelniom ujęto nieco punktów w porównaniu z rokiem ubiegłym i tak liczba punktów przyznanych UW spadła z 15,2 do 13,7, a UJ zmniejszono punktację z 10,2 do 9,7. Kolejny element to jakość kadry naukowej również mierzona liczbą wykładowców posiadających Nagrodę Nobla lub Medal Fieldsa. W wyliczeniu punktacji ważne było, kiedy nagrodę przyznano. Im dawniej, tym mniej punktów. Tutaj obie nasze czołowe uczelnie otrzymały, podobnie jak w roku ubiegłym, po 0 punktów. Drugim z kryteriów pomiaru jakości kadry naukowej była liczba często cytowanych badaczy w minionym roku według Clarivate Analytics. Pod uwagę brano tylko głównych autorów badań. W ubiegłym roku UW otrzymał tutaj 9,6 punktu, w tym roku przyznano mu 0 punktów. UJ miał w ubiegłym roku w tej kategorii 0 punktów, w bieżącym zdobył 7,3 punktu. Punkty przyznawano też za artykuły opublikowane w Science oraz Nature w latach 2014–2018. Tutaj obie uczelnie poprawiły nieco swój wynik. Uniwersytet Warszawski zwiększył punktację z 11,5 do 11,6, a Uniwersytet Jagielloński z 5,4 do 6,2. Pod uwagę wzięto również artykuły ujęte w Science Citation Index-Expanded oraz Social Science Citation Index.  Również i tutaj widzimy zwiększenie stanu posiadania. Punktacja UW wzrosła z 32,6 do 33,8, a UJ z 37,9 do 38,8. Ostatnie kryterium to wydajność instytucji naukowej w przeliczeniu na ekwiwalent naukowca zatrudnionego na pełen etat. Ten wskaźnik spadł w przypadku UW z 18,3 do 17,9 punktu, a w przypadku UJ wzrósł z 19 do 19,6 punktu. Jeśli zaś chodzi o pozostałe polskie uczelnie, to Akademia Górniczo-Hutnicza znalazła się w 7. setce (utrzymała pozycję z roku ubiegłego), a Uniwersytet Adama Mickiewicza i Uniwersytet Medyczny w Warszawie zakwalifikowano pomiędzy miejscami 701 a 800. Obie uczelnie utrzymały pozycję. Setka 9. to Politechnika Warszawska (spadek z 8. setki w roku ubiegłym), a pomiędzy miejscem 901. a 1000. znajdziemy też Śląski Uniwersytet Medyczny (spadek z 9. setki), Uniwersytet Mikołaja Kopernika (utrzymał pozycję) i Politechnikę Wrocławską (utrzymała pozycję). Z zestawienia w bieżącym roku całkowicie wypadły Politechnika Łódzka, Uniwersytet Łódzki i Uniwersytet Wrocławski. Polskie szkolnictwo wyższe nadal ma się, delikatnie mówiąc, nie najlepiej. Naszą dumę, Uniwersytet Jagielloński, wyprzedziły uczelnie z USA, Wielkiej Brytanii, Szwajcarii, Kanady, Japonii, Danii, Francji, Szwecji, Australii, Chin, Niemiec, Holandii, Norwegii, Finlandii, Singapuru, Belgii, Izraela, Rosji, Arabii Saudyjskiej, Korei Południowej, Brazylii, Tajwanu, Włoch, Irlandii, Hiszpanii, Portugalii, Austrii, Czech, Meksyku, Argentyny i RPA. W rankingu krajów Polskę wyprzedza też Iran, którego najlepsza uczelnia została sklasyfikowana na równi z UJ, ale na liście znajdziemy 13 uczelni z tego kraju. « powrót do artykułu
  7. Badacze z Wydziału Fizyki Uniwersytetu Warszawskiego, przy użyciu technologii światłoczułych elastomerów, zademonstrowali mikrorobota naśladującego ruch ślimaka. 10-milimetrowej długości robot, napędzany i sterowany przy pomocy modulowanej wiązki lasera, potrafi poruszać się po płaskim podłożu, wspinać po pionowej ścianie i pełzać po szklanym suficie. W przyrodzie organizmy różnej wielkości – od mikroskopijnych nicieni, przez dżdżownice, po mięczaki – poruszają się w rozmaitych środowiskach dzięki przemieszczającym się deformacjom miękkiego ciała. W szczególności ślimaki używają śluzu – śliskiej, wodnistej wydzieliny – by poprawić kontakt między miękką nogą a podłożem. Taki sposób poruszania się ma kilka unikalnych cech: działa na różnych podłożach: drewnie, szkle, teflonie czy piasku i w różnych konfiguracjach, włączając w to pełzanie po suficie. W robotyce, prosty mechanizm pojedynczej nogi mógłby zapewnić odporność na warunki zewnętrzne i zużycie elementów oraz duży margines bezpieczeństwa dzięki ciągłemu kontaktowi z podłożem. Do tej pory zademonstrowano jedynie nieliczne roboty naśladujące pełzanie ślimaków w skali centymetrów, z napędem elektro-mechanicznym. Ciekłokrystaliczne elastomery (LCE) to inteligentne materiały, które mogą szybko, w odwracalny sposób zmieniać kształt, na przykład po oświetleniu. Dzięki odpowiedniemu uporządkowaniu (orientacji) cząsteczek elastomeru można programować deformację takiego elementu. Umożliwia to zdalne zasilanie i sterowanie mechanizmów wykonawczych i robotów przy pomocy światła. Wykorzystując technologię światłoczułych elastomerów badacze z Wydziału Fizyki Uniwersytetu Warszawskiego we współpracy z Wydziałem Matematyki Uniwersytetu w Suzhou w Chinach zbudowali pierwszego na świecie robota, który porusza się naśladując pełzanie ślimaka w naturalnej skali. Ruch robota generowany jest przez poruszające się deformacje miękkiego ciała, wywołane wiązką lasera i ich oddziaływanie z podłożem przez warstwę sztucznego śluzu. Oświetlany wiązką lasera 10-milimetrowy robot może wspinać się na pionową ścianę i pełzać po szklanym suficie z prędkością kilku milimetrów na minutę, wciąż około 50 razy wolniej niż ślimaki porównywalnej wielkości.  Mimo niewielkiej prędkości, konieczności ciągłego uzupełniania warstwy śluzu i niskiej sprawności energetycznej, nasz robot umożliwia nowe spojrzenie na mikro-mechanikę inteligentnych materiałów oraz badania nad poruszaniem się ślimaków i podobnych zwierząt – mówi Piotr Wasylczyk z Pracowni Nanostruktur Fotonicznych, który kierował projektem. W naszych badaniach biorą udział studenci już od pierwszych lat studiów na Wydziale Fizyki. Pierwszym autorem publikacji o robocie-ślimaku w Macromolecular Rapid Communications jest Mikołaj Rogóż, laureat Diamentowego Grantu, który właśnie kończy pracę magisterską na temat ciekłokrystalicznych elastomerów i zaczyna doktorat w naszej grupie. Badacze, którzy wcześniej zademonstrowali napędzanego światłem robota-gąsienicę naturalnej wielkości, wierzą, że nowe inteligentne materiały w połączeniu z nowatorskimi metodami wytwarzania miniaturowych elementów, pozwolą im konstruować kolejne mikro-roboty i napędy – obecnie pracują nad miniaturowym silnikiem i mikro-pęsetą sterowaną światłem. Badania nad miękkimi mikro-robotami i polimerowymi mechanizmami wykonawczymi finansowane są przez Narodowe Centrum Nauki w ramach projektu „Mechanizmy wykonawcze w mikro-skali na bazie foto-responsywnych polimerów” oraz przez Ministerstwo Nauki i Szkolnictwa Wyższego w ramach "Diamentowego Grantu" przyznanego M. Rogóżowi. Fizyka i astronomia na Uniwersytecie Warszawskim pojawiły się w 1816 roku w ramach ówczesnego Wydziału Filozofii. W roku 1825 powstało Obserwatorium Astronomiczne. Obecnie w skład Wydziału Fizyki UW wchodzą Instytuty: Fizyki Doświadczalnej, Fizyki Teoretycznej, Geofizyki, Katedra Metod Matematycznych oraz Obserwatorium Astronomiczne. Badania pokrywają niemal wszystkie dziedziny współczesnej fizyki, w skalach od kwantowej do kosmologicznej. Kadra naukowo-dydaktyczna Wydziału składa się z ponad 200 nauczycieli akademickich, wśród których jest 77 pracowników z tytułem profesora. Na Wydziale Fizyki UW studiuje ok. 1000 studentów i ponad 170 doktorantów. « powrót do artykułu
×
×
  • Create New...