Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Ludzkie ciało nie jest dostosowane do pobytu w przestrzeni kosmicznej. Dlatego zachowanie zdrowia i kondycji kosmonautów to jeden z priorytetów misji pozaziemskich. Wiemy, że długotrwały pobyt w stanie nieważkości prowadzi do utraty masy mięśniowej, osłabia kości, negatywnie wpływa na oczy. Nowe badania opublikowane na łamach JAMA Neurology sugerują, że poza ochronną powłoką ziemskiej atmosfery dochodzi też do uszkodzeń mózgu i przyspieszonej degeneracji komórek nerwowych.

Badania przeprowadzono na pięciu rosyjskich kosmonautach, którzy przebywali na Międzynarodowej Stacji Kosmicznej. Przed misją i po niej pobrano im próbki krwi, w których określono koncentrację białek specyficznych dla mózgu. Badania wykazały, że w czasie pobytu w przestrzeni kosmicznej dochodzi do niewielkich uszkodzeń mózgu, które mogą jednak mieć długofalowe niekorzystne skutki dla zdrowia. Badania takie mogą mieć poważne konsekwencje dla planowanych załogowych misji na Marsa.

Każdy z kosmonautów, a byli to mężczyźni, których średnia wieku wynosiła 49 lat, spędził w przestrzeni kosmicznej około pół roku. Na 20 dni przed startem pobrano od nich krew. Później badania powtórzono dzień, tydzień i trzy tygodnie po wylądowaniu. Henrik Zetterberg z Uniwersytetu w Göteborgu, Alexander Choukér z Uniwersytetu Ludwika Maksymiliana w Monachium oraz Glina Wassilijewa z Rosyjskiej Akademii Nauk określili poziom pięciu protein we krwi: lekkiego białka neurofilamentu (NfL), kwaśnego białka włókienkowego (GFAP), białka tau oraz amyloidu beta Aβ40 i Aβ42.

Poziom tych białek we krwi pozwala określić integralność komórek mózgowych. Na przykład podwyższony poziom NfL świadczy o uszkodzeniu aksonów, a poziom amyloidu beta jest wykorzystywany w diagnostyce chorób neurodegeneracyjnych.

Badania wykazały, że nawet 3 tygodnie po powrocie na Ziemię poziom NfL, GFAP oraz Aβ40 był u wszystkich znacznie podniesiony. Jednak spadał, gdyż największą koncentrację tych białek zarejestrowano tydzień po wylądowaniu. Zetterberg i Choukér informują, że z ich badań wynika, iż długoterminowy pobyt w przestrzeni kosmicznej wpływa na różne tkanki w mózgu.

Wydaje się, że problem dotyczy wszystkich tkanek odpowiednich dla badanych biomarkerów, mówi pomysłodawca badań, Peter zu Eulenburg z Göteborga.

Naukowcy przypuszczają, że przyczyną problemów jest zmiana dystrybucji płynów w czasie pobytu w przestrzeni kosmicznej oraz powrót sytuacji do normy po zakończeniu misji. Zwracają przy tym uwagę, że problemy dotykają kosmonautów przez całe tygodnie po powrocie, gdyż czas półrozpadu każdego z badanych biomarkerów jest znacznie krótszy niż trzy tygodnie. Utrzymywanie się wysokiego poziomu przez tak długi czas pokazuje, że problemy wciąż mają miejsce.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli potrzebne jest sztuczne ciążenie z wykorzystaniem siły odśrodkowej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tyle, że to też rodzi problemy, które są powodowane siłami Coriolisa i różnicą przypsieszenia odśrodkowego pomiędzy głową a nogami załogantów. Móżdżek odczuwa ciążenie, które nie jest skierowane prostopadle do podłoża.

O centryfudze możemy na obecną chwilę chyba zapomnieć. Także sztuczne ciążenie możemy wytworzyć  przez obrót całego statku, który przy zastsowaniu napędu chemicznego może mieć zwartą konstrukcje, a więc krótki promień obrotu. Ale z kolei będzie powolny, a więc sam lot będzie dłuższy. Z kolei użycie napędu jądrowego skróci czas lotu ale utrudni wytworzenie ciążenia. Przy użyciu atomu habitat mieszkalny będzie musiał być odseparowany od reaktora przestrzenią zapewnioną przez kratownice, co wydłuży zaś promień obrotu. 

Problem w tym, że podobno wyniki eksperymentów wskazują, że lepsze są krótsze pobyty w wirówkach wytwarzających 2-3 g i powrót w nieważkość niż stałe przebywanie w "sztucznym " 1 G.

Pod tym kątem robi się jednak  mało eksperymentów. Ciekawe eksperymenty na orbicie Ziemi, jak ISS Centrifuge (0,51 G na ISS) i Mars Gravitiy Biosatelllite (wirówka dla myszy - 0,3 G) nie zostały zrealizowane.  A pierwszy ekesperyment z wytworzeniem sztucznego ciążenia  przeprowadzono już podczas misji Gemini XI poprzez połączenie liną z Ageną. Wytworzono wówczas 0,00015 g, używając silników manewrowych. Ciekawostka, że apogeum misji to było aż 1369 km nad Ziemią. Dalej byli tylko astroanuci misji księżycowych. Rekord Conrada i Gordona jet do dzisiaj nie pobity (poza selenonautami).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jest jeszcze pomysł wykorzystania 2 ch Starshipow połączonych liną. Do karuzeli można się przyzwyczaić :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ja bym się przyjrzał diecie i nawykom które są w małej puszce na orbicie zupełnie inne niż na Ziemi. A jeśli mowa o Rosjanach to półroczna absencja alkoholowa też może być szokiem dla organizmu :D

Pewnie przyczyn jest wiele a nie tylko brak siły ciążenia

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
57 minutes ago, venator said:

Tyle, że to też rodzi problemy, które są powodowane siłami Coriolisa i różnicą przypsieszenia odśrodkowego pomiędzy głową a nogami załogantów. Móżdżek odczuwa ciążenie, które nie jest skierowane prostopadle do podłoża.

Jest minimalna średnica torusa po przekroczeniu której pojawią się problemy, ale są to problemy natury inżynieryjnej i do rozwiązania. Im większa średnica, tym konstrukcja wolniej może się obracaj, co nie będzie uciążliwe, a astronauci nie będą się potykać o własne nogi :)

Jeszcze znalazłem papier, gdzie w abstrakcie jest podane więcej wartości krótkoterminowych, długoterminowych, dla stałego personelu, gości po treningu, etc.

Quote

Since the NASA/Stanford space settlement studies of the 1970s the settlement design community has assumed that rotation rates must be no more than 1­2 rpm to avoid motion sickness. To achieve 1g, this rotation rate implies a settlement radius of approximately 225-­895 m, which is much larger than any existing satellite.

https://space.nss.org/wp-content/uploads/Space-Settlement-Population-Rotation-Tolerance-Globus.pdf

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Margines do wykorzystania nie jest wcale taki szeroki:

2019-04-zalogowe-statki-tabela-przyspies

Tabela z bardzo ciekawego artykułu o statkach międzyplanetarnych:

https://kosmonauta.net/2019/04/statki-miedzyplanetarne-modul-zalogowy-czesc-2/

Napisałem jednak, że

Godzinę temu, venator napisał:

Problem w tym, że podobno wyniki eksperymentów wskazują, że lepsze są krótsze pobyty w wirówkach wytwarzających 2-3 g i powrót w nieważkość niż stałe przebywanie w "sztucznym " 1 G.

Jeśli tak jest i chcielibyśmy iśc tą drogą, to rodzi już spore problemy z wytworzeniem takiej siły w kosmosie, w dodatku na statku, któy sam ma się nie obracać. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
38 minut temu, venator napisał:

Jeśli tak jest i chcielibyśmy iśc tą drogą, to rodzi już spore problemy z wytworzeniem takiej siły w kosmosie, w dodatku na statku, któy sam ma się nie obracać. 

Wydaje się że pomysł na dwie kapsuły połączone liną/kratą powinien się dać zrealizować. Potrzeba energii na rozpędzenie, potem jedynie uzupełnia się pęd tracony przez masę białka wędrującą wzdłuż mostu. Nic, czego by średnio zaawansowana automatyka nie umiała dopilnować - połączenie mogłoby być giętkie czyli lekka lina. Martwi wytrzymałość materiałów w temperaturach pustki kosmicznej, 1g jest 1g i na końcach będzie wisiało parę kilo.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dokładnie, układ taki można porównać do mostu wiszącego. Więc to nie jest nic z czym nie poradzą sobie inżynierowie w przyszłości albo duża, aczkolwiek skończona liczba studentów astro-inżynierii. Jest to obecnie skomplikowane zadanie głównie dlatego, że wystrzeliwujemy pojazdy o delikatnej konstrukcji jak puste puszki po piwie :)

Wydaje mi się, że odporność na rozciąganie rośnie wraz ze spadkiem temperatury. W okolicy 1 AU od Słońca na stronie nasłonecznionej jest ze 120 stopni C.

main-qimg-b751cd09d32bfdf65fa8c41b305200

https://www.quora.com/Why-does-tensile-strength-decrease-with-increasing-temperature-and-increase-with-decreasing-temperature

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jedynym problem jaki pozostaje to po co właściwie wysyłać kosmo/Astro/taiko-nautów na orbitę.
Roboty robią się tak sprytne, że bez problemu poradzą sobie z wszystkimi "taktycznymi" problemami a decyzje strategiczne i tak można wysyłać z Ziemi.
 

W dniu 6.11.2021 o 17:07, cyjanobakteria napisał:

Wydaje mi się, że odporność na rozciąganie rośnie wraz ze spadkiem temperatury.

Prosty wniosek - pancerze czołgów trzeba chłodzić kriogenicznie ;)
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 hour ago, peceed said:

Prosty wniosek - pancerze czołgów trzeba chłodzić kriogenicznie ;)

Lepszy pancerz reaktywny z antymaterii, schłodzonej, nie wstrząśniętej i nie zmieszanej :)

 

1 hour ago, peceed said:

Jedynym problem jaki pozostaje to po co właściwie wysyłać kosmo/Astro/taiko-nautów na orbitę.

Słuszna uwaga, ale jest na wątku grono zwolenników misji załogowych. Za 2 tygodnie rusza NASA DART i myślę, że jest to kolejna zmarnowana okazja na udaną eksplorację załogową Układu Słonecznego :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie, to nie jest naiwna wiara zwolenników załogowych misji, zacytuje zresztą sam  sam siebie z innego wątku:

Cytat

 

1. Najważniejsza. Tylko załogowa misja na Marsa oraz oczywiście czasowy lub stały pobyt na tej planecie da nam odpowiedź co do technologicznych wymagań stałej obecności człowieka w przestrzeni pozaziemskiej. I przybliży nam odpowiedź na pytanie egzystencjalne - o to czy mamy szanse na rozwój  ludzkiej cywilizacji w kierunku kształtowania naszego gatunku jako międzyplanetarnego, a w dalekiej przyszłości - międzygwiezdnego. Kiedyś musi być ten pierwszy krok.

2. Przyspieszenie oraz rozwój tych technologii, które przy rozwoju tylko misji robotycznych, nie będą miały na to większej szansy. Np. wg. raportu The Science and Technology Policy Institute’s (STPI’s) z 2019 r. , powstałego na zlecenie NASA, a mającego dać odpowiedź na pytanie czy załogowe lądowanie na Marsie jest możliwe w 2033 r., jedną z najwiekszych trudności jest sprawność systemów podtrzymania życia. To także motywacja do pracy nad bardziej wydajnymi napędami, źródłami zasilania czy też inżynierią materiałową. Przy misjach automatycznych nie będzie  na to presji. 

3.Uzyskanie kompetencji miękkich.  Nic tak nie działa na wyobraźnie przyszłych inżynierów i astronautów, jak człowiek w kosmosie. 

Ps. STPI oceniła koszt misji załogowej na Marsa w 2039 r. na 87 mld dolarów wg. cen z 2017 r., ale w przypadku rozwoju technologii księżycowych np.Gateway, już tylko na 45 mld dolarów. 

 

45 mld dolarów to nie są w skali wydatków USA specjalnie duże pieniądze. 

 

Godzinę temu, Astro napisał:

jako pytanie pomocnicze: ile problemów za tę kasę można rozwiązać tu, na Ziemi, ile Istnień ludzkich można ocalić?

A ile problemów rozwiązano dzięki załogowym lotom w kosmos? Spuścizna programu Apollo choćby w zakresie medycyny, jest ogromna: urządzenia VAD (wspomaganie serca), termometry na podczerwień, implanty ślimakowe uszu , operacje oczu metodą LASIK , ratunkowe  koce termiczne typu NRC, nie mówiąc o tym, że w latach 60-tych 60% układów scalonych było kupowane przez NASA, dając potężny impuls do rozwoju branży.

Tutaj zresztą więcej:

https://en.wikipedia.org/wiki/NASA_spinoff_technologies

Znaczna część tych technologii jest związana z programem Gemini-Apollo. Była duża kasa i parcie polityczne, był i rozwój. 

Dlaczego więc nowy, tak wielkoskalowy program ma nie przynieść kolejnego skoku technologicznego?

A jak załogowy Mars może bezpośrednio przełożyć się na to ratowanie istnień ludzkich? Chćby przez to, ze NASA już teraz stawia na rozówj telemetrii medycznej. Weźmy taki pulsoksymetr. Jeszcze parę lat temu urządzenie znane głównie medykom i co bardziej świadomym chorym na przewlekłe choroby układu oddechowego, dziś dzieki COVID zrobiło powszechną karierę. Dzięki metodzie wczesnej diagnozy, uratował zapewne  życie gromnej rzeszy ludzi. NASA pracuje teraz nad pulsoksymetrem zapewniającym telemetrie, o wysokiej jakości i trwałości przekazu, a przede wszystkim precyzji pomiaru. Jak można wywnioskować z tego artykułu:

https://www.wired.com/story/pulse-oximeters-equity/

nowoczesne pulsoksymetry nie spełniają często podstawowych wymagań FDA. Jak się okazuje dzieki załogowym lotom kosmicznym, już blisko 50 lat temu firma HP we współpracy z NASA opracowała pulsoksymetr pod pewnymi względami znacznie lepszy  niż obecne komercyjne. Bo NASA, w programach załogowych, stawia wysoką poprzeczkę. I to jest dobry prognostyk dla silnego impulsu rozowjowego. 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 9.11.2021 o 04:30, Astro napisał:

Co do szacowania kosztów misji, to przypomnę tylko historię czegoś, co doskonale ogarniamy, czyli np. JWST. Z początkowego bodaj 0,5 mld zrobiło się chyba 10. No i trochę to trwało, a mówimy o wyniesieniu "jakiegoś lustra" tylko. ;)

Czemu akurat TEN  przykład? Przecież przyczyny takie stanu rzeczy mają swój kontekst historyczny, którym była min. dewiza ówczesnego administratora NASA, Daniela Goldwina - "szybciej, lepiej, taniej". Okazało się po czasie, że lepiej nie da się pogodzić z szybciej, a tym bardziej z taniej. Bo było to oparte na "nadziei". Jeszcze w 1984 r. szacowano koszt NGST na 4 mld, ale później zaczęto wierzyć w szybki postęp w tanim wynoszeniu ładunków w kosmos. 

Ale takie niedoszacowanie  to raczej normalka dla takich bezprecedensowych, niezwykle zaawansowanych programów. W 1972 r. koszty Hubble'a szacowano na 300 mln dolarów (1 mld w cenach z 2007 r.) Koszt wyniósł ostatecznie 4 mld. Było warto?

W dniu 9.11.2021 o 04:30, Astro napisał:

Poważniej - to przy obecnej technologii nie mamy, i nie jest to kwestia jakichkolwiek mniejszych czy większych "kroków". To zwyczajnie przepaść do przeskoczenia i nie widać tu żadnego światełka w tunelu.

Zgodzę się jak najbardziej w kwestii podróży międzygwiezdnych, ale Mars jest w technicznym zasięgu.  Nie ma żadnych fundamentalnych przeszkód technologicznych aby tam nie polecieć i zostać, przynajmniej w ograniczonym zakresie. 

W dniu 9.11.2021 o 04:30, Astro napisał:

Rozwój napędów to nie jest dziedzina, w której gorący oddech przełożonego na karku inżyniera da jakikolwiek pozytywny efekt. Ta dziedzina jest nieustannie finansowana - owszem

Nieustannie finansowana? Gdzie i kiedy? Jeszcze kilka lat temu na rozwój nuklearno-termicznego silnika (NTP) NASA  przeznaczała...7 mln dolarów rocznie. :lol::lol::lol:

A to najbliższa realizacji technologia napędu innego niż chemiczny, do sensownej  eksploracji załogowej deep space. 

W budżetowych realiach na + zmieniło się to dopiero w czasie prezydentury Trumpa. Na efekty przyjdzie jednak poczekać

W dniu 9.11.2021 o 04:30, Astro napisał:

Kiedyś już o tym wspominałem - kolejne lądowanie człowieka na Księżycu niczego już nie przyniesie (z pewnością nie w takiej skali);  nie jest to już kroczenie w nieznane. Podobnie według mnie misja na Marsa.

Wydaje mi się @Astroże jednak sam  sobie zaprzeczasz. Z jednej strony piszesz:  Poważniej - to przy obecnej technologii nie mamy, i nie jest to kwestia jakichkolwiek mniejszych czy większych "kroków". To zwyczajnie przepaść do przeskoczenia i nie widać tu żadnego światełka w tunelu.

Z drugiej strony piszesz, że wg.  Ciebie nic lądowanie na Marsie nam nie przyniesie. A więc to  pokonanie  technologicznej i mentalnej przepaści (w udanym locie na Marsa i powrocie)  nic nie przyniesie, będzie bezowocne? Naprawdę?

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wystarczy 5 dni nadmiernego spożywania batonów czekoladowych, chipsów i innego śmieciowego jedzenia, by doszło do zmian w aktywności mózgu. Niemieccy naukowcy wykazali, że krótkoterminowe spożywanie słodyczy i tłuszczów uruchamia mechanizm gromadzenia tłuszczu w wątrobie oraz zaburza reakcję mózgu na insulinę, a skutki tego utrzymują się po zaprzestaniu jedzenia wspomnianych pokarmów. Wzorce pracy mózgu po kilku dniach spożywania śmieciowego jedzenia są podobne do tych, widocznych u osób z otyłością. Nie można wykluczyć, że reakcja mózgu na insulinę pozwala mu zaadaptować się do krótkoterminowych zmian diety i ułatwia rozwój otyłości oraz innych chorób.
      Nie spodziewałam się, że skutki będą tak bardzo widoczne u zdrowych ludzi, mówi główna autorka badań, neurolog Stephanie Kullmann. Celem naukowców było zbadanie wpływu krótkoterminowego spożywania wysoce przetworzonych i kalorycznych produktów na reakcję mózgu na insulinę, zanim jeszcze zaczynamy przybierać na wadze.
      Do badań zaangażowano 29 zdrowych mężczyzn w wieku 19–27 lat, których BMI mieściło się w zakresie 19–25 kg/m2 (obecnie przygotowywane są analogiczne badania na kobietach). Podzielono ich na dwie grupy. To jednej, która miała spożywać wysokokaloryczną dietę, przypisano 18 osób. Pozostali stanowili grupę kontrolną. Grupa na diecie wysokokalorycznej miała dziennie spożywać dodatkowo 1500 kcal w postaci chipsów, batonów itp. Aktywność fizyczną ograniczono do 4000 kroków dziennie.
      Początkowo osoby przypisane do grupy spożywającej dodatkowe kalorie zareagowały na to entuzjastycznie. Jednak już w czwartym dniu eksperymentu jedzenie batonów czy chipsów było dla nich męczarnią. W efekcie spożyli oni średnio 1200 kcal dziennie więcej, a nie zakładane 1500 kcal. Mimo to okazało się, że znacząco z 1,55% (± 2,2%) do 2,54% (± 3,5%) zwiększyło się u nich otłuszczenie wątroby. Nie zauważono znaczących różnic w masie działa, zmiany wrażliwości na insulinę w innych tkankach niż mózgu czy wskaźnikach zapalnych.
      Po pięciu dniach u osób z grupy zjadającej słodkie i tłuste przekąski doszło do zmniejszenia czułości układu nagrody. Niekorzystne skutki śmieciowej diety utrzymywały się przez około tydzień po powrocie do diety prawidłowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      U astronautów przebywających na Międzynarodowej Stacji Kosmicznej (ISS) pojawiają się różne problemy zdrowotne, w tym wysypki czy problemy z układem odpornościowym. Na łamach pisma Cell ukazał się artykuł omawiający wyniki badań przeprowadzonych m.in. przez naukowców z NASA i Uniwersytetu Kalifornijskiego w San Diego. Po przebadaniu 803 próbek pobranych na ISS naukowcy doszli do wniosku, że środowisko na Stacji jest zbyt sterylne i to właśnie może być przyczyną wielu problemów zdrowotnych.
      Badacze stworzyli największą bazę danych opisującą środowisko mikrobiologiczne i chemiczne kosmicznego habitatu. Porównali te dane z tysiącami próbek z naturalnych i przekształconych przez człowieka środowisk, zarówno lasów deszczowych, jak i budynków, i stwierdzili, że pod względem mikrobiologicznym i chemicznym ISS reprezentuje środowisko skrajne. Różnorodność mikroorganizmów była nienaturalna i niska, na badanych powierzchniach zaś znajdowała się duża ilość środków dezynfekujących, co dodatnio korelowało z bioróżnorodnością.
      Naukowcy zauważyli, że zdecydowania większość mikroorganizmów występujących na Stacji, to mikroorganizmy żyjące na ludzkiej skórze. Brakowało organizmów ze środowiska naturalnego, które żyją na przykład w wodzie i glebie. Bioróżnorodność na ISS była znacznie mniejsza niż w większości środowisk na Ziemi. Współautor badań, mikrobiolog profesor Rob Knight, określił ją jako ekstremalnie niską. Zauważył przy tym, że niezwykle wysoki był za to odsetek mikroorganizmów związanych z czynnościami wykonywanymi przez człowieka. Tak małą bioróżnorodność można było porównać jedynie ze szpitalami i niektórymi zamkniętymi środowiskami przemysłowymi.
      Skądinąd wiadomo, że układ odpornościowy astronautów jest osłabiony i powrót do normy może zajmować kilka tygodni od wylądowania na Ziemi. Zdaniem profesora Knighta, przyczyną takiego stanu rzeczy może być właśnie mała bioróżnorodność mikroorganizmów na ISS.
      Naukowcy już planują kolejne badania, podczas których będą chcieli przeprowadzić jeszcze bardziej szczegółowe analizy, spróbują zidentyfikować potencjalne patogeny na ISS oraz określić wpływ bakteryjnych metabolitów ze Stacji na ludzkie zdrowie. Mają nadzieję, że ich badania przyczynią się do poprawy zdrowia ludzi, którzy na Ziemi żyją i pracują w podobnie sterylnych środowiskach.
      Jeśli chcemy, by życie rozwijało się poza Ziemią, nie możemy po prostu wziąć małego fragmentu drzewa życia, wystrzelić go w przestrzeń kosmiczną i mieć nadzieję, że to się uda. Musimy zastanowić się, jakie inne pożyteczne mikroorganizmy powinniśmy wysłać wraz z astronautami, by mógł rozwinąć się odpowiedni korzystny ekosystem, dodaje Rudolfo Salido z Uniwersytetu Kalifornijskiego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wikingowie żyjący na terenie dzisiejszej Szwecji cierpieli na poważne choroby jamy ustnej, szczęk, twarzy, infekcje zatok, uszu, osteoporozę i wiele innych przypadłości. Takie wnioski płyną z badań, podczas których naukowcy z Uniwersytetu w Göteborgu poddali czaszki wikingów badaniom za pomocą tomografu komputerowego. To dalsza część badań, które przeprowadzono przed rokiem, a podczas których przeanalizowano dużą liczbę zębów wikingów z Varnhem. Miejscowość ta znana jest przede wszystkim z nekropolii królów w z dynastii Erykidów (1155–1250), znaleziono tam też tysiące pochówków z wcześniejszych okresów.
      Uczeni z Göteborgu postanowili rozszerzyć swoje badania na całe czaszki. Datowane są one na X-XII wiek i należą do jednej z najwcześniejszych chrześcijańskich społeczności w Szwecji. Wyniki, opublikowane w British Dental Journal Open wskazują, że aż 12 z 15 zbadanych osób cierpiało na liczne choroby. Kości czaszki wykazują patologiczne zmiany, wskazujące na chroniczne infekcje i inne schorzenia. Chorzy mieli od 20 do 60 lat, więc problemy dotykały całej populacji. Na kościach widać ślady licznych schorzeń. Nie wiemy dokładnie, co to były za choroby, gdyż nie możemy zbadać tkanek miękkich, które się rozłożyły, mówi Carolina Bertilsson.
      Badania wiele mówią o dobrostanie populacji. Bez dostępu do antybiotyków i odpowiednich zabiegów medycznych ludzie ci cierpieli na długotrwałe stany zapalne, które wiązały się z ciągłym bólem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Otyłość wiąże się z większym ryzykiem cukrzycy, nadciśnienia czy miażdżycy. Jednak nie wszyscy otyli cierpią na te choroby. Około 25% otyłych jest zdrowych. Naukowcy nie od dzisiaj próbują się dowiedzieć, dlaczego tak się dzieje. Badacze z Federalnego Instytutu Technologii w Zurichu oraz Uniwersyteckiego Szpitala Klinicznego w Lipsku przeprowadzili kompleksowe badania, które dostarczają niezbędnych informacji potrzebnych do rozróżnienia otyłych zdrowych i chorych.
      Uczeni skupili się przede wszystkim na stworzeniu szczegółowego atlasu ciała zdrowych i chorych otyłych, uwzględniają w tym rozkład tkanki tłuszczowej oraz aktywność genów w jej komórkach. Nasze badania mogą zostać wykorzystane do szukania markerów komórkowych, które dostarczą informacji na temat ryzyka rozwoju chorób metabolicznych, mówi jeden ze współautorów badań, Adhideb Ghosh.
      Uczeni wykorzystali zbiór tkanek pobranych podczas biopsji osób otyłych. Tkanki, przechowywane w Leipzig Obesity Biobank, zostały pobrane przez naukowców z Uniwersytetu w Lipsku od pacjentów, którzy poddani byli planowanym zabiegom informacyjnym. Wraz z tkankami w banku przechowywane są szczegółowe informacje na temat stanu zdrowia dawców. Jako, że biobank gromadzi wyłącznie tkanki osób otyłych – zarówno zdrowych, jak i z chorobami metabolicznymi – można było wykonać odpowiednie porównania.
      Na próbkach 70 osób uczeni zbadali aktywność genów w komórkach dwóch rodzajów tkanki tłuszczowej – podskórnej i trzewnej. Panuje przekonanie, że głównym problemem jest tkanka trzewna, otaczająca organy wewnętrzne. Ta podskórna stanowi mniejszy problem.
      Bardzo ważnym elementem badań było sprawdzenie różnych komórek wchodzących w skład tkanki tłuszczowej. Nie tylko komórek tłuszczowych (adipocytów), ale też innych rodzajów komórek wchodzących w skład tej tkanki, takich jak komórki układu odpornościowego, komórki tworzące naczynia krwionośne czy niedojrzałe prekursorowe komórki adipocytów. W tkance trzewnej występują też komórki międzybłonka wyściełającego jamy ciała.
      Uczeni z Lipska i Zurychu wykazali, że u osób z chorobami metabolicznymi mają miejsce znaczące zmiany funkcjonowania komórek tłuszczowej tkanki trzewnej. Zmiana ta dotyczy niemal każdego rodzaju komórek w tej tkance. Okazało się na przykład, że u chorych osób adipocyty tkanki trzewnej nie są w stanie spalać efektywnie tłuszczu i w związku z tym wytwarzają więcej molekuł sygnałowych układu immunologicznego. Substancje te uruchamiają odpowiedź immunologiczną tkance trzewnej otyłych ludzi. Możliwe, to właśnie powoduje rozwój chorób metabolicznych, mówi Isabel Reinisch.
      Badacze zauważyli też wyraźną różnice w liczbie i funkcjonowaniu komórek międzybłonka. U zdrowych otyłych komórki te stanowiły większy odsetek tkanki tłuszczowej i większą elastyczność funkcjonalną. Przede wszystkim mogły niejako przełączać się w tryb komórek macierzystych i zmieniać się w inne typy komórek, jak na przykład komórki adipocytów. To było zaskakujące. Zdolność w pełni zróżnicowanych komórek do zmiany w komórki macierzyste jest kojarzona przede wszystkim z nowotworami. Sądzimy, że taka elastyczność komórek międzybłonka, znajdujących się na krawędziach tkanki tłuszczowej, ułatwia bezproblemowy rozrost tkanki, mówi Reinisch.
      Badacze zauważyli też, że istnieją różnice w komórkach tkanek kobiet i mężczyzn. Pewien rodzaj komórek progenitorowych znaleziono tylko w trzewnej tkance tłuszczowej kobiet. Ich obecność może wyjaśniać różnice w rozwoju chorób metabolicznych u otyłych kobiet i mężczyzn.
      Naukowcy nie wiedzą, czy zaobserwowana zmiana aktywności genów w komórkach tkanki tłuszczowej osób chorych jest przyczyną czy skutkiem chorób metaboliczych. Uzyskane przez nich wyniki mogą być punktem wyjścia do zbadania tych kwestii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szwedzcy uczeni dokonali czegoś niezwykłego. Połączyli indywidualne komórki z organicznymi elektrodami. Ich osiągnięcie daje nadzieję, że w przyszłości będziemy w stanie bardzo precyzyjnie leczyć choroby neurologiczne. I nie tylko je.
      Mózg jest kontrolowany przez sygnały elektryczne, które są z kolei przekładane na substancje chemiczne służące do komunikacji między komórkami. Nie od dzisiaj wiemy, że mózg można stymulować za pomocą prądu elektrycznego. Jednak stosowane metody są bardzo nieprecyzyjne i wpływają na duże obszary mózgu. W zwiększeniu precyzji pomagają metalowe elektrody. Jednak ich mocowanie do mózgu stwarza ryzyko uszkodzenia tkanki, pojawienia się stanu zapalnego czy blizn. Rozwiązaniem mogą być miękkie polimerowe elektrody.
      Naszym celem jest połączenie układu biologicznego z elektrodami, używając przy tym organicznych polimerów przewodzących. Polimery są miękkie i wygodne w używaniu, mogą przekazywać zarówno sygnał elektryczny, jak i jony. Są więc lepszym materiałem niż konwencjonalne elektrody, mówi Chiara Musumeci z Uniwersytetu w Linköping.
      Uczona wraz z kolegami z Karolinska Institutet opracowała technikę mocowania organicznych elektrod do błon komórkowych pojedynczych komórek. Dotychczas udawało się to osiągnąć w przypadku genetycznie modyfikowanych komórek, zmienionych tak, by ich błony komórkowe łatwiej łączyły się z elektrodami. Szwedzi są pierwszymi, którzy wykonali takie połączenie z niezmodyfikowanymi komórkami, uzyskali ścisłe dopasowanie, a elektroda nie wpłynęła na funkcjonowanie komórek.
      Technika połączenia jest dwuetapowa. W pierwszym kroku wykorzystywana jest molekuła kotwicząca, za pomocą której tworzy się punkt zaczepienia do błony komórkowej. Na drugim końcu molekuły znajduje się struktura, do której mocowana jest następnie elektroda.
      Na kolejnym etapie badań naukowcy będą starali się opracować sposób na bardziej równomierne zaczepianie molekuły kotwiczącej, uzyskanie bardziej stabilnego połączenia oraz zbadanie, jak takie połączenie zachowuje się z upływem czasu. Przed nimi jeszcze sporo wyzwań. Naukowcy wciąż nie są w stanie z całą pewnością stwierdzić, że ich technika sprawdzi się w przypadku żywych tkanek. Na razie skupiają się nad uzyskaniem pewnego, stabilnego i bezpiecznego połączenia z komórką.
      Jeśli okaże się, że takie połączenia sprawdzają się w żywych organizmach, przyjdzie czas na badania, które dadzą odpowiedź na pytanie, w terapiach jakich chorób można będzie zastosować elektrody łączone z poszczególnymi komórkami.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...