Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kosmiczną windę można zbudować z obecnie dostępnych materiałów

Recommended Posts

Jednym z największych problemów eksploracji kosmosu jest olbrzymi koszt pokonania grawitacji Ziemi. Silniki rakietowe zużywają olbrzymie ilości paliwa na osiągnięcie odpowiedniego przyspieszenia, a samo paliwo tylko zwiększa masę, którą trzeba wynieść. Wskutek tego umieszczenie na orbicie każdego kilograma ładunku kosztuje dziesiątki tysięcy dolarów. Wyprawa w dalsze regiony to kolejne koszty. Dlatego też specjaliści od dawna zastanawiają się, w jaki sposób obniżyć te koszty.

Jeden z pomysłów zakłada zbudowanie kosmicznej windy, kabla rozciągającego się od Ziemi na orbitę, po której można by wysyłać ładunki. Olbrzymią zaletą takiego rozwiązania byłaby możliwość wykorzystania energii słonecznej, zatem nie trzeba by było wynosić paliwa.

Jest jednak pewien problem. Taki kabel musiałby być niezwykle wytrzymały. Zephyr Penoyre z University of Cambridge oraz Emily Sandford z Columbia University twierdzą, że już teraz istnieją komercyjnie dostępne materiały, z których taki kabel mógłby powstać. Trzeba jedynie zmienić sposób myślenia o budowie kosmicznej windy.

Rozważana przez licznych ekspertów winda kosmiczna rozciągałaby się od Ziemi po orbitę geosynchroniczną, która znajduje się około 36 000 kilometrów nad powierzchnią naszej planety. Kabel o takiej długości miałby olbrzymią masę. Żeby nie dopuścić do jego upadku, trzeba by umocować go na orbicie do podobnej masy, a tak skonstruowana winda byłaby utrzymywana przez działające na nią siły odśrodkowe.

Przez dziesięciolecia specjaliści prowadzili odpowiednie obliczenia i zawsze otrzymywali zniechęcające wyniki. Nie istnieje bowiem materiał wystarczająco wytrzymały, z którego można by taką windę zbudować.

Penoyre i Sandford zaproponowali więc inne rozwiązanie. Zamiast mocować kabel do Ziemi, należy umocować go do Księżyca i opuścić w kierunku Ziemi. Różnica tkwi w sile odśrodkowej. Rozważana dotychczas winda kosmiczna wykonywałaby jeden obrót wokół planety w ciągu doby. Jednak lina mocowana do Księżyca wykonywałaby obrót raz na miesiąc, zatem działałyby na niż mniejsze siły. Co więcej, siły te byłyby inaczej rozłożone. Lina rozciągnięta od Księżyca ku Ziemi przechodziłaby przez obszar, w którym oddziaływania grawitacyjne Ziemi i Księżyca się znoszą. Obszar ten, punkt Lagrange'a, jest kluczowym elementem nowej koncepcji kosmicznej windy. Poniżej niego grawitacja ciągnie linę ku Ziemi, powyżej, ku Księżycowi.

Penoyre i Sandford wykazali oczywiście, że nie istnieje materiał pozwalający na stworzenie liny rozciągającej się od Księżyca do Ziemi. Jednak kabel taki, by być użytecznym, nie musi być rozciągnięty na całą długość. Naukowcy wykazali, że z dostępnych obecnie polimerów węglowych można zbudować kabel rozciągający się od Księżyca po orbitę geosynchroniczną Ziemi. Tworzenie prototypowego kabla grubości rysika ołówka kosztowałoby miliardy dolarów. Nie jest to jednak coś, czego już teraz nie da się wykonać.

Dzięki rozciągnięciu umocowanej do Księżyca liny głęboko w studnię grawitacyjną Ziemi możemy zbudować stabilną użyteczną windę kosmiczną pozwalającą na swobodne przemieszczanie się pomiędzy sąsiedztwem Ziemi a powierzchnią Księżyca, mówią Penoyre i Sandford. Wyliczają, że dzięki takiemu rozwiązaniu obecne koszty osiągnięcia powierzchni Księżyca zmniejszyłyby się o około 70%. Co więcej taka winda ułatwiłaby eksplorację  okolic punktu Lagrange'a. To niezwykle interesujący region, gdyż zarówno grawitacja jak i jej gradient wynoszą w nim 0, dzięki czemu można tam bezpiecznie prowadzić różnego typu prace konstrukcyjne. Jeśli z Międzynarodowej Stacji Kosmicznej wypadnie jakieś narzędzie, będzie ono szybko przyspieszało. W punkcie Lagrange'a gradient grawitacji jest praktycznie pomijalny, takie narzędzie przez długi czas będzie znajdowało się blisko ręki, z której wypadło, zauważają naukowcy.

Dodatkową zaletą punktu Lagrange'a jest fakt, że w regionie tym znajduje się bardzo mało śmieci pozostawionych przez człowieka oraz innych obiektów, mogących stanowić zagrożenie dla pracujących tam ludzi oraz wznoszonych konstrukcji.

Z tych właśnie powodów Penoyre i Sandford uważają, że dostęp do punktu Lagrange'a jest główną zaletą proponowanej przez nich windy kosmicznej. Możliwość założenia obozu w punkcie Lagrange'a to, naszym zdaniem, najważniejszy i najbardziej obiecujący element wczesnego użycia proponowanej przez nas windy kosmicznej. Taki obóz pozwoliłby na budowanie i konserwację nowej generacji sprzętu kosmicznego, czy to teleskopów, akceleratorów cząstek, wykrywaczy fal grawitacyjnych, generatorów energii, wiwariów czy platform startowych dla podboju dalszych regionów Układu Słonecznego.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Orbita geostacjonarna jest 42 tys. km od środka Ziemi (a nie nad powierzchnią), zaś punkt libracyjny L1 jest niestabilny. Stabilne są punkty L4 i L5, gdzie gromadzą się trojańczycy.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Bardzo ciekawa koncepcja... ciekawe jak wyglądałaby sprawa drugiego końca tej liny. Do jakiej wysokości nad Ziemią wyliczyli tę linę?

Share this post


Link to post
Share on other sites

Największy problem to wyniesienie ładunku 100 km nad powierzchnię Ziemi. O ile dobrze pamiętam, to ponad 90% masy paliwa rakietowego jest zużywane na pokonanie tego pierwszego odcinka. Potem już jakoś idzie. Winda przymocowana do Ziemi rozwiązuje ten problem definitywnie. Jak ten problem rozwiąże winda przymocowana do Księżyca? Nie bardzo rozumiem.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Znamy 79 księżyców Jowisza, a teraz 5 z nich zyskało oficjalne nazwy. Wszyscy słyszeliśmy o Io, Europie, Kallisto i Ganimedesie, które szczególnie interesują naukowców. Jednak własne nazwy ma jeszcze 49 kolejnych księżyców, a 26 oczekuje na ich nadanie. Nazwy dla 5 z nich zostały właśnie oficjalnie zaakceptowane przez Międzynarodową Unię Astronomiczną.
      W lipcu 2018 roku Scott Sheppard i jego koledzy z Carnegie Institution for Science poinformowali, że odkryli 12 nieznanych wcześniej księżyców Jowisza. Po takim odkryciu księżyce zyskały nazwy numeryczne, a odkrywcom przysługuje prawo do nadania im nazw, które jednak muszą zostać zaakceptowane przez Międzynarodową Unię Astronomiczną.
      Dla każdej z planet istnieje lista warunków, jakie muszą spełniać nazwy ich księżyców. W przypadku Jowisza księżyce można nazywać pochodzącymi z mitologii greckiej i rzymskiej imionami kochanek lub potomków Jowisza/Zeusa. Poza tymi podstawowymi istnieje też wiele innych zasad, dotyczących np. maksymalnej długości nazwy czy ostatniej litery w nazwie, która zależy od kierunku orbity księżyca. Sheppard i jego zespół postanowili poprosić o pomoc opinię publiczną i pomiędzy lutym a kwietnie bieżącego roku zbierali propozycje i wybrali z nich te, które następnie przedstawili do akceptacji Międzynarodowej Unii Astronomicznej.
      Zgodnie z tymi zasadami księżyc S/2017 J4 nazywa się obecnie Pandia. To córka Zeusa i bogini Księżyca Seleny. Pandia jest boginią pełni księżyca i siostrą Ersy, która również zyskała właśnie swój księżyc. Imieniem Ersa został bowiem nazwany S/2018 J1. Ersa to bogini rosy porannej.
      Księżyc S/2003 J5 zyskał imię Ejrene. Ta córka Zeusa i Temidy jest boginią pokoju. Filofrozyna, wnuczka Zeusa, personifikacja cnoty orfickiej, otrzymała księżyc znany dotychczas jako S/2003 J15, a jej siostrze Eufeme przypadł w udziale S/2003 J3.
      Małe księżyce Jowisza, takie jak pięć wspomnianych, to najprawdopodobniej pozostałości po większych obiektach, które rozpadły się w wyniku zderzeń. Jeśli uda się odnaleźć je wszystkie, będzie możliwe odtworzenie oryginalnego układu księżyców Jowisza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy od dziesięcioleci spierają się o to, czy dochodzi do wymiany materiału pomiędzy jądrem Ziemi, a warstwami położonymi powyżej. Jądro jest niezwykle trudno badać, częściowo dlatego, że rozpoczyna się na głębokości 2900 kilometrów pod powierzchnią planety.
      Profesor Hanika Rizo z Carleton University, wykładowca na Queensland University of Technology David Murphy oraz profesor Denis Andrault z Universite Clermont Auvergne informują, że znaleźli dowody na wymianę materiału pomiędzy jądrem, a pozostałą częścią planety.
      Jądro wytwarza pole magnetyczne i chroni Ziemię przed szkodliwym promieniowaniem kosmicznym, umożliwiając istnienie życia. Jest najcieplejszym miejscem Ziemi, w którym temperatury przekraczają 5000 stopni Celsjusza. Prawdopodobnie odpowiada ono za 50% aktywności wulkanicznej naszej planety.
      Aktywność wulkaniczna to główny mechanizm, za pomocą którego Ziemia sie chłodzi. Zdaniem Rizo, Murphy'ego i Andraulta niektóre procesy wulkaniczne, np. te na Hawajach czy na Islandii, mogą brać swój początek w jądrze i transportować ciepło bezpośrednio z wnętrza planety. Twierdzą oni, że znaleźli dowód na to, iż do płaszcza ziemskiego trafia materiał z jądra.
      Odkrycia dokonano badając niewielkie zmiany w stosunku izotopów wolframu. Wiadomo, że jądro jest zbudowane głównie z żelaza i aluminium oraz z niewielkich ilości wolframu, platyny i złota rozpuszczonych w żelazno-aluminiowej mieszaninie. Wolfram ma wiele izotopów, w tym wolfram-182 i wolfram-184. Wiadomo też, że stosunek wolframu-182 do wolframu-184 jest w płaszczu znacznie wyższy niż w jądrze. Dzieje się tak dlatego, że hafn, który nie występuje w jądrze, posiada izotop hafn-182. Izotop ten występował w przeszłości w płaszczu, jednak obecnie już go nie ma, gdyż rozpadł się do wolframu-182. Właśnie dlatego stosunek wolframu-182 do wolframu-184 jest w płaszczu wyższy niż w jądrze.
      Uczeni postanowili więc zbadać stosunek izotopów wolframu, by przekonać się, czy na powierzchni występują skały zawierające taki skład wolframu, jaki odpowiada jądru. Problem w tym, że istnieje mniej niż 5 laboratoriów zdolnych do badania wolframu w ilościach nie przekraczających kilkudziesięciu części na miliard.
      Badania udało się jednak przeprowadzić. Wykazały one, że z czasem w płaszczu Ziemi doszło do znaczącej zmiany stosunku 182W/184W. W najstarszych skałach płaszcza stosunek ten jest znacznie wyższy niż w skałach młodych. Zespół badaczy uważa, że zmiana ta wskazuje, iż materiał z jądra przez długi czas trafiał do płaszcza ziemskiego. Co interesujące, na przestrzeni około 1,8 miliarda lat nie zauważono zmiany stosunku izotopów. To oznacza, że pomiędzy 4,3 a 2,7 miliarda lat temu do górnych warstw płaszcza materiał z jądra nie trafiał w ogóle lub trafiało go niewiele. Jednak 2,5 miliarda temu doszło do znaczącej zmiany stosunków izotopu wolframu w płaszczu. Uczeni uważają, że ma to związek z tektoniką płyt pod koniec archaiku.
      Jeśli materiał z jądra trafia do na powierzchnię, to oznacza, że materiał z powierzchni Ziemi musi trafiać głęboko do płaszcza. Proces subdukcji zabiera bogaty w tlen materiał w głąb planety. Eksperymenty zaś wykazały, że zwiększenie koncentracji tlenu na granicy płaszcza i jądra może spowodować, że wolfram oddzieli się od jądra i powędruje do płaszcza. Alternatywnie, proces zestalania wewnętrznej części jądro może prowadzić do zwiększenia koncentracji tlenu w części zewnętrznej. Jeśli uda się rozstrzygnąć, który z procesów zachodzi, będziemy mogli więcej powiedzieć o samym jądrze Ziemi.
      Jądro było w przeszłości całkowicie płynne. Z czasem stygło i jego wewnętrzna część skrystalizowała, stając się ciałem stałym. To właśnie obrót tej części jądra tworzy pole magnetyczne chroniące Ziemię przed promieniowaniem kosmicznym. Naukowcy chcieliby wiedzieć, jak przebiegał proces krystalizacji o określić jego ramy czasowe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pod największym kraterem uderzeniowym w Układzie Słonecznym, księżycowym basenem Biegun Południowy-Aitken, odkryto tajemniczą masę. Zdaniem naukowców z Baylor University może tam się znajdować metal z asteroidy, która uderzyła w Księżyc i utworzyła wspomniany basen.
      Wyobraźmy sobie złoże metalu pięciokrotnie większe niż Hawai'i [największa wyspa Hawajów – red.]. To mniej więcej masa, jaką odkryliśmy, mówi profesor Peter B. James. Sam krater ma kształt owalu, w najszerszym miejscu liczy sobie 2000 kilometrów i jest głęboki na kilkanaście kilometrów. Nie widać go z Ziemi, gdy znajduje się po drugiej stronie Srebrnego Globu.
      Gdy połączyliśmy dane dotyczące księżycowej topografii z danymi z satelity Lunar Reconnaissance Orbiter, odkryliśmy, że setki kilometrów pod basenem Biegun Południowy-Aitken znaujduje się niespodziewanie wielka masa. Jedno z możliwych wyjaśnień brzmi, że jest to metal z aasteroidy, która uderzyła w Księżyc, wyjaśnia James.
      Niezależnie od tego, co to za materiał i skąd pochodzi, jest to tak dużo, że powoduje obniżenie powierzchni Księżyca o niemal kilometr. Symulacje komputerowe wykazały, że możliwe jest uwięzienie w ten sposób materiału z asteroidy. Inna rozważana możliwość to koncentracja gęstych tlenków związana z ostatnią fazą krystalizacji księżycowego oceanu magmy.
      Basen Biegun Południowy-Aitken liczy sobie około 4 miliardów lat. Niewykluczone, że w przeszłości w Układzie Słonecznym istniały jeszcze większe kratery uderzeniowe, jednak obecnie  nie ma po nich żadnych śladów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wyniki badań zespołu dr Montserrat Boady z Dexeus Women's Health w Barcelonie sugerują, że w przestrzeń kosmiczną mogłyby być wysyłane całkowicie żeńskie załogi. Na wyposażeniu musiałyby się tylko znajdować pojemniki z zamrożonymi plemnikami. Dzięki temu dałoby się zaludniać pozaziemskie kolonie. Hiszpanka wspomina też o bankach spermy zlokalizowanych poza Niebieską Planetą.
      Rezultaty badań zaprezentowano na konferencji Europejskiego Towarzystwa Ludzkiej Reprodukcji w Wiedniu.
      Niektóre badania sugerowały znaczący spadek ruchliwości próbek świeżych ludzkich plemników. Nic jednak nie wspominano o możliwych oddziaływaniach różnic [warunków] grawitacyjnych na zamrożone ludzkie gamety, a przecież to w takim stanie można by je transportować z Ziemi w przestrzeń kosmiczną.
      Nic nie stoi na przeszkodzie, by zacząć się zastanawiać nad możliwością rozmnażania poza naszą planetą - dodaje Boada.
      Podczas eksperymentów Hiszpanie posłużyli się ejakulatem 10 zdrowych dawców. Niektóre próbki wystawiano na oddziaływanie mikrograwitacji w samolotach do akrobacji powietrznych. Loty paraboliczne z wykorzystaniem samolotu Mudry CAP 10 przeprowadzono w Aeroclub Barcelona-Sabadell of Spain. CAP 10 wykonywał serię 20 manewrów parabolicznych; na każdą parabolę przypadało ok. 8 s mikrograwitacji. Później próbki zbadano pod kątem stężenia plemników, ruchliwości, morfologii i fragmentacji DNA.
      Nie stwierdzono znaczących różnic między próbkami kontrolnymi i próbkami wystawianymi na działanie mikrograwitacji. Odnotowano 100% zgodność pod względem wskaźnika fragmentacji i żywotności oraz 90% zgodność pod względem stężenia i ruchliwości. Te niewielkie rozbieżności są zapewne związane z heterogenicznością próbek, a nie z ekspozycją na różne warunki grawitacyjne.
      Brak różnic w cechach zamrożonych plemników [...] pozwala myśleć o bezpiecznym transporcie męskich gamet w kosmos i o możliwości utworzenia ludzkich banków spermy poza Ziemią.
      Naukowcy dodają, że to na razie wstępne badania; należałoby je więc powtórzyć z większą liczbą próbek i dłuższym czasem ekspozycji.
      Najlepszą opcją byłoby przeprowadzenie eksperymentu z wykorzystaniem prawdziwego statku, ale coś takiego bardzo trudno zrealizować.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA ujawniła szczegóły programu Artemis (Artemida), w ramach którego człowiek ma wrócić na Księżyc. Nazwa programu wyraźnie nawiązuje do misji Apollo, w ramach którego ludzie po raz pierwszy stanęli na Srebrnym Globie. Artemida była siostrą Apollina.
      Jeszcze przed końcem bieżącego miesiąca NASA podpisze pierwszy kontrakt na dostawę sprzętu na Księżyc. Jeśli lądowniki księżycowe, rozwijane przez prywatne firmy, będą gotowe, to pierwszy ładunek sprzętu dla programu Artemis trafi na powierzchnię Księżyca jeszcze w bieżącym roku.
      W przyszłym roku ma odbyć się misja Artemis 1. Będzie to pierwszy wspólny start SLS (Space Launch System) i kapsuły Orion. Będzie to bezzałogowy próbny lot testowy. W jego ramach zostaną też wyniesione satelity typu CubeSat, które będą prowadziły eksperymenty naukowe i testy technologii. Na rok 2022 przewidziano Artemis 2 – pierwszy załogowy test Oriona i SLS. Po raz pierwszy od 50 lat ludzie polecą poza orbitę Księżyca.
      W tym samym roku ma zostać wystrzelony pierwszy element stacji Lunar Gateway. Wczoraj NASA poinformowała, że za stworzenie modułu odpowiedzialnego za zapewnienie energii, napędu oraz komunikacji będzie odpowiedzialna firma Maxar Technologies. Lunar Gateway to niewielka stacja kosmiczna, która zostanie umieszczona na orbicie Księżyca. Będzie ona spełniała rolę huba komunikacyjnego, laboratorium naukowego, tymczasowego miejsca zamieszkania oraz miejsca przechowywania łazików i innych robotów.
      Kolejnym elementem misji Artemis będzie umieszczenie w 2023 roku na Księżycu łazika. Jego zadaniem będzie lepsze zbadanie i zrozumienie pyłu księżycowego oraz zbadanie lodu pod kątem wykorzystania go do produkcji paliwa, tlenu i wody pitnej. W tym samym 2023 roku na orbitę Srebrnego Globu trafi drugi element stacji Gateway. Będzie to niewielki moduł mieszkalny. Pierwsi astronauci, którzy trafią na stację, przejdą z kapsuły Orion do tego modułu i tam przygotują się do lądowania na Biegunie Południowym Księżyca.
      W roku 2024 odbędzie się kilka misji, w ramach których w przestrzeń kosmiczną trafią poszczególne elementy Human Landing System. Zostaną one złożone na orbicie i zadokowane do Gateway. W tym samym roku odbędzie się załogowa misja Artemis 3. Astronauci, korzystając z SLS i Oriona, polecą na orbitę Księżyca i zadokują do stacji Gateway. Załoga sprawdzi stację oraz Human Landing System, a następnie uda się na Księżyc. Będzie to pierwsze od ponad 50 lat lądowanie człowieka na Księżycu.
      W latach 2025–2028 każdego roku będzie odbywała się kolejna misja załogowa. Astronauci biorący udział w Artemis 4 – Artemis 7 będą pracowali zarówno na stacji Gateway jak i na powierzchni satelity Ziemi. Stacja będzie ciągle rozbudowywana tak, by od roku 2028 możliwa była stała obecność i praca ludzi na stacji i Księżycu.
      W końcu, w oparciu o możliwości eksploracji Księżyca, w latach 30. ma odbyć się załogowa misja na Marsa.

      « powrót do artykułu
×
×
  • Create New...