Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kosmiczną windę można zbudować z obecnie dostępnych materiałów

Rekomendowane odpowiedzi

Jednym z największych problemów eksploracji kosmosu jest olbrzymi koszt pokonania grawitacji Ziemi. Silniki rakietowe zużywają olbrzymie ilości paliwa na osiągnięcie odpowiedniego przyspieszenia, a samo paliwo tylko zwiększa masę, którą trzeba wynieść. Wskutek tego umieszczenie na orbicie każdego kilograma ładunku kosztuje dziesiątki tysięcy dolarów. Wyprawa w dalsze regiony to kolejne koszty. Dlatego też specjaliści od dawna zastanawiają się, w jaki sposób obniżyć te koszty.

Jeden z pomysłów zakłada zbudowanie kosmicznej windy, kabla rozciągającego się od Ziemi na orbitę, po której można by wysyłać ładunki. Olbrzymią zaletą takiego rozwiązania byłaby możliwość wykorzystania energii słonecznej, zatem nie trzeba by było wynosić paliwa.

Jest jednak pewien problem. Taki kabel musiałby być niezwykle wytrzymały. Zephyr Penoyre z University of Cambridge oraz Emily Sandford z Columbia University twierdzą, że już teraz istnieją komercyjnie dostępne materiały, z których taki kabel mógłby powstać. Trzeba jedynie zmienić sposób myślenia o budowie kosmicznej windy.

Rozważana przez licznych ekspertów winda kosmiczna rozciągałaby się od Ziemi po orbitę geosynchroniczną, która znajduje się około 36 000 kilometrów nad powierzchnią naszej planety. Kabel o takiej długości miałby olbrzymią masę. Żeby nie dopuścić do jego upadku, trzeba by umocować go na orbicie do podobnej masy, a tak skonstruowana winda byłaby utrzymywana przez działające na nią siły odśrodkowe.

Przez dziesięciolecia specjaliści prowadzili odpowiednie obliczenia i zawsze otrzymywali zniechęcające wyniki. Nie istnieje bowiem materiał wystarczająco wytrzymały, z którego można by taką windę zbudować.

Penoyre i Sandford zaproponowali więc inne rozwiązanie. Zamiast mocować kabel do Ziemi, należy umocować go do Księżyca i opuścić w kierunku Ziemi. Różnica tkwi w sile odśrodkowej. Rozważana dotychczas winda kosmiczna wykonywałaby jeden obrót wokół planety w ciągu doby. Jednak lina mocowana do Księżyca wykonywałaby obrót raz na miesiąc, zatem działałyby na niż mniejsze siły. Co więcej, siły te byłyby inaczej rozłożone. Lina rozciągnięta od Księżyca ku Ziemi przechodziłaby przez obszar, w którym oddziaływania grawitacyjne Ziemi i Księżyca się znoszą. Obszar ten, punkt Lagrange'a, jest kluczowym elementem nowej koncepcji kosmicznej windy. Poniżej niego grawitacja ciągnie linę ku Ziemi, powyżej, ku Księżycowi.

Penoyre i Sandford wykazali oczywiście, że nie istnieje materiał pozwalający na stworzenie liny rozciągającej się od Księżyca do Ziemi. Jednak kabel taki, by być użytecznym, nie musi być rozciągnięty na całą długość. Naukowcy wykazali, że z dostępnych obecnie polimerów węglowych można zbudować kabel rozciągający się od Księżyca po orbitę geosynchroniczną Ziemi. Tworzenie prototypowego kabla grubości rysika ołówka kosztowałoby miliardy dolarów. Nie jest to jednak coś, czego już teraz nie da się wykonać.

Dzięki rozciągnięciu umocowanej do Księżyca liny głęboko w studnię grawitacyjną Ziemi możemy zbudować stabilną użyteczną windę kosmiczną pozwalającą na swobodne przemieszczanie się pomiędzy sąsiedztwem Ziemi a powierzchnią Księżyca, mówią Penoyre i Sandford. Wyliczają, że dzięki takiemu rozwiązaniu obecne koszty osiągnięcia powierzchni Księżyca zmniejszyłyby się o około 70%. Co więcej taka winda ułatwiłaby eksplorację  okolic punktu Lagrange'a. To niezwykle interesujący region, gdyż zarówno grawitacja jak i jej gradient wynoszą w nim 0, dzięki czemu można tam bezpiecznie prowadzić różnego typu prace konstrukcyjne. Jeśli z Międzynarodowej Stacji Kosmicznej wypadnie jakieś narzędzie, będzie ono szybko przyspieszało. W punkcie Lagrange'a gradient grawitacji jest praktycznie pomijalny, takie narzędzie przez długi czas będzie znajdowało się blisko ręki, z której wypadło, zauważają naukowcy.

Dodatkową zaletą punktu Lagrange'a jest fakt, że w regionie tym znajduje się bardzo mało śmieci pozostawionych przez człowieka oraz innych obiektów, mogących stanowić zagrożenie dla pracujących tam ludzi oraz wznoszonych konstrukcji.

Z tych właśnie powodów Penoyre i Sandford uważają, że dostęp do punktu Lagrange'a jest główną zaletą proponowanej przez nich windy kosmicznej. Możliwość założenia obozu w punkcie Lagrange'a to, naszym zdaniem, najważniejszy i najbardziej obiecujący element wczesnego użycia proponowanej przez nas windy kosmicznej. Taki obóz pozwoliłby na budowanie i konserwację nowej generacji sprzętu kosmicznego, czy to teleskopów, akceleratorów cząstek, wykrywaczy fal grawitacyjnych, generatorów energii, wiwariów czy platform startowych dla podboju dalszych regionów Układu Słonecznego.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Orbita geostacjonarna jest 42 tys. km od środka Ziemi (a nie nad powierzchnią), zaś punkt libracyjny L1 jest niestabilny. Stabilne są punkty L4 i L5, gdzie gromadzą się trojańczycy.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo ciekawa koncepcja... ciekawe jak wyglądałaby sprawa drugiego końca tej liny. Do jakiej wysokości nad Ziemią wyliczyli tę linę?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Największy problem to wyniesienie ładunku 100 km nad powierzchnię Ziemi. O ile dobrze pamiętam, to ponad 90% masy paliwa rakietowego jest zużywane na pokonanie tego pierwszego odcinka. Potem już jakoś idzie. Winda przymocowana do Ziemi rozwiązuje ten problem definitywnie. Jak ten problem rozwiąże winda przymocowana do Księżyca? Nie bardzo rozumiem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 18.09.2019 o 09:47, Oberon napisał:

Największy problem to wyniesienie ładunku 100 km nad powierzchnię Ziemi.

A przypadkiem nie jest to problemem przyśpieszanie do konkretnej prędkości kosmicznej? Jakby było jak mówisz, to różnica między ładownością na LEO i GTO byłaby niewielka, a jest często 3 albo i 4x.

np. Falcon Heavy
(expended)   LEO: 63,800     GTO: 15,000[47]–26,700   16,800 to TMI

https://en.wikipedia.org/wiki/Comparison_of_orbital_launch_systems

Mając "sznurek" o który możesz się zaczepić żeby nie spaść możesz tak na prawdę tylko "podskoczyć" z Ziemi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
53 minuty temu, radar napisał:

A przypadkiem nie jest to problemem przyśpieszanie do konkretnej prędkości kosmicznej?

Prędkość jest znacząca w spadku swobodnym. Bierzesz zamach w sensie wymach i rzucasz kamieniem - jak daleko zaleci zależy od prędkości. Wspinając się po linie masz do pokonania jedynie ciążenie. Da się zajechać na Księżyc na rowerze, musi tylko istnieć odpowiednia lina. Wystarczy parę N ponad to co waży ładunek.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No tak, ale na Ziemi tej liny nie mamy (na razie za trudno), więc musimy startować. Pytanie jaka energia jest potrzebna z LEO do Księżyca i ile można zaoszczędzić mając "windę księżycową"?

Drugie pytanie, czy żeby wystartować z Ziemi, osiągnąć wysokość ~400km i zaczepić sie na linie potrzebujemy tyle samo energii co wystartować, przekroczyć I prędkość kosmiczną i pozostać na orbicie 400km? Chyba dużo mniej?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Oberon, rakiety nie lecą pionowo prosto w górę. Samo dotarcie do 100km nie jest wystarczające aby wprowadzić ładunek na orbitę i nie na to jest zużywana lwia część paliwa. Satelita musi mieć odpowiednią prędkość do utrzymania się.
  
Radar. wydaje mi się, że to jest wariant "sky hook". Jeden koniec liny jest zamocowany na Księżycu z czasem obiegu 27 dni, a drugi koniec wisi na wysokości załóżmy 100 km nad powierzchnią Ziemi z czasem obiegu 90 minut. Dolny koniec będzie mógł poruszać się znacznie wolniej niż standardowe 7.8 km/s i mimo to pozostanie na orbicie. Nie czuję się na siłach na konkretne wyliczania, które pewnie są podane w opracowaniu, ale to musi być wartość z przedziału 1 km/s - 7.8 km/s. Poprawcie mnie, jeżeli się mylę. Autorzy napisali o zmniejszeniu kosztów wynoszenia na Księżyc o 70%.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, radar napisał:

Pytanie jaka energia jest potrzebna z LEO do Księżyca i ile można zaoszczędzić mając "windę księżycową"?

piszą: Wyliczają, że dzięki takiemu rozwiązaniu obecne koszty osiągnięcia powierzchni Księżyca zmniejszyłyby się o około 70%

Dotarcie na czterysetny kilometr będzie kosztowało energetycznie zawsze tyle samo. Problemem jest ogarnięcie kosztów stałych: zużycie jednorazówek, tarcie, itp. No i nie wiem co jest tańsze: kosmicznie droga winda czy tani jak barszcz sok z dinozaurów, ale w kosmicznych ilościach :D  No i nie wiem po co nam ta powierzchnia Księżyca... Dopiero co oderwaliśmy się Ziemi i już od razu płacimy daninę studni grawitacyjnej Księżyca? Ale to mniejszy problem zakładając, że mamy windę księżycową.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 minuty temu, Jajcenty napisał:

No i nie wiem po co nam ta powierzchnia Księżyca...

No jak po co? Baza. Paliwo. Tlen. Brak atmosfery (tarcia), a studnia grawitacyjna dużo mniejsza. No i ciemna strona "wolna" od zakłóceń z Ziemi, brak atmosfery to też czyste "niebo" do obserwacji (choćby do detekcji NEO czy szukania Ziemi2).

Po drodzie orbita geo, L1. Pomysł moim zdaniem jest wart conajmniej szczegółowej analizy.

Edytowane przez radar

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Baza na Księżycu nie jest konieczna do eksploatacji Układu Słonecznego, ale w długim terminie Księżyc stanie się kompleksem przemysłowym. Powierzchnia Księżyca jest prawie wielkości Azji, więc żal nie skorzystać. To dodatkowy kontynent pełen zasobów mineralnych takich jak żelazo, aluminium, tytan, tlen, hel-3 i inne. Ze względu na brak oceanów i atmosfery jak i niższą grawitację, z powierzchni Księżyca można wystrzeliwać ładunek przy pomocy "Pendolino na sterydach" - nie wiem jaka jest polska nazwa, z angielskiego "mass driver" ;-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 godzinę temu, radar napisał:

No jak po co? Baza. Paliwo. Tlen. Brak atmosfery (tarcia), a studnia grawitacyjna dużo mniejsza. No i ciemna strona "wolna" od zakłóceń z Ziemi, brak atmosfery to też czyste "niebo" do obserwacji (choćby do detekcji NEO czy szukania Ziemi2).

Z czego chcesz pędzić to paliwo? Na technologię robienia prądu z  3He jeszcze sobie poczekamy i nie wiadmo czy kiedykolwiek powstanie.  Pozostałe zalety ma stacja orbitalna po ciemnej stronie bez wad grawitacji. Jedyna zaleta to ochrona przed promieniowaniem, o ile wkopiemy się  w grunt no bo ten brak atmosfery...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, Jajcenty napisał:

No i nie wiem co jest tańsze: kosmicznie droga winda czy tani jak barszcz sok z dinozaurów, ale w kosmicznych ilościach :D  

W przypadku windy jest duży koszt jednorazowy wybudowania, potem przypuszczalnie sporo tańszy koszt transportu ładunku na/z Księżyc, bo w rakiecie ilość paliwa rośnie szybciej niż liniowo względem prędkości, którą chcemy osiągnąć (potrzeba extra paliwa na rozpędzanie/wyhamowywanie paliwa, które będzie używane później), w windzie wykonujemy pracę chyba tylko na zmianę energii potencjalnej (energię kinetyczną ruchu obrotowego dookoła Ziemi ładunek dostaje kosztem energii kinetycznej Księżyca - tak mi się wydaje, nie widzę powodów, żeby miało być inaczej) przy czym silnik byłby na powierzchni Księżyca, a więc odpadają koszty transportu paliwa.

W dniu 12.09.2019 o 13:19, KopalniaWiedzy.pl napisał:

Wskutek tego umieszczenie na orbicie każdego kilograma ładunku kosztuje dziesiątki tysięcy dolarów.

Czyli cena porównywalna co do rzędu wielkości z ceną złota (200 tys. PLN za kilogram czyli jakieś 50 tys dolarów): https://www.mennicaskarbowa.pl/product-pol-35-Sztabka-Zlota-1kg.html?gclid=EAIaIQobChMIgIjj5_jz5AIVWqqaCh1jIgMHEAAYASAAEgKnBfD_BwE. Tak że, co tu gadać, korci, bezdyskusyjnie, zeby znaleźć jakieś oszczędności;) Można próbować wytwarzać paliwo z wody na Księżycu, można wystrzeliwać ładunki jakąś armatą "armatą elektromagnetyczną", jak pisze @cyjanobakteria to już by było coś, gdyby się udało skonstruować;) Wszystko przynajmniej warte rozpoznania;)

Albo np. wyposażać statki kosmiczne w lustra, na powierzchni Ziemi, Księżyca, Marsa umieścić lasery i... napęd fotonowy (to na dzień dzisiejszy SF) 

Edytowane przez darekp

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
51 minut temu, darekp napisał:

przy czym silnik byłby na powierzchni Księżyca

Nie, nie wciągamy liny, tylko "wagonik" po niej jedzie, a że jedzie wykorzystując energię Słońca to faktycznie paliwo odpada.

Generalnie tlen/wodór z wody. Takie zapasy są cenne, a i z 3He

pewnie by opracowali jakby była taka biznesowa potrzeba.

1 godzinę temu, Jajcenty napisał:

Pozostałe zalety ma stacja orbitalna po ciemnej stronie bez wad grawitacji

No nie, bo mając windę do Księżyca grawitacja (w sensie zużytego paliwa) Cię nie interesuje (energia słoneczna).

Zobaczcie, że "tani" transport odbywałby się w obydwu kierunkach. Wynoszenie dużych, ale pustych rakiet na LEO, tankowanie z Księżyca i jazda. Albo wyciągnięcie ich najpierw w okolice L1 i wtedy tankowanie, zapasy i heja na Marsa. Dlatego nie zgadzam się z:

1 godzinę temu, cyjanobakteria napisał:

Baza na Księżycu nie jest konieczna do eksploatacji Układu Słonecznego,

Baza może i nie, ale zapasy z niego i ta winda mogłaby bardzo mocno pomóc, zwłaszcza przy "kolonizacji" Marsa.

EDIT:

Swoją drogą, czy tak długa, i mająca swoją masę, lina, na końcu której chcemy przyczepiać tak około 50 ton, nie wpłynie na środek ciężkości/orbitę Księżyca? Albo na L1?

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No, ale Jacenty porównuje dotarcie na 400 km i dotarcie do Księżyca. Obie startują i ubywa paliwa. Nie mniej jednak oczywiście nie będzie to energetycznie to samo.

 

A propos windy "księżycowe", jakbyśmy już byli tak blisko jak 300-400 km nad Ziemią, to może jednak spuścić ją do końca i mamy połączenie bezpośrednie? ;)

Oczywiście plus kompensacja zmian odległości , odpowiednia infrastruktura w koło Ziemi na powierzchni, etc, ale to chyba nawet mniej SF niż ten napęd fotonowy :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 minutę temu, Astro napisał:

Se ne da. Całkowicie różne prędkości kątowe końcówki liny z Księżyca i gleby ziemskiej. Znaczy się da, ale nie będzie to zbyt długie czasowo połączenie.

Nie czytasz i nie używasz wyobraźni :)

Napisałem wyraźnie

11 minut temu, radar napisał:

odpowiednia infrastruktura w koło Ziemi na powierzchni

co oznacza ruchomy punkt zaczepienia. Jak np. linia kolejowa po "linii zenitu Księżyca" w koło globu :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale tu jeszcze dochodzi kwestia wytrzymałości liny. Lina dochodząca do powierzchni Ziemi (czy gdzieś blisko powierzchni) musiałaby być o wiele wytrzymalsza. Dlatego autorzy projektu oryginalnie pociągnęli ją z Księżyca do orbity geosynchronicznej (na wys. kilkudziesięciu tysięcy km).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nic nie pomijam. Jakby ktoś czytał wątek od początku to byłoby jasne, że wiem o tym. Zresztą wątek windy kosmicznej nie pierwszy raz jest tutaj.

Wytrzymałość liny do czasu kiedy zaczną rozwijać ją od Księżyca na te 300k+ kilometrów pewnie się znacząco poprawi (materiałoznawstwo), no ale może nie.

Nie wiem o co Ci chodzi z tym odwijaniem :) Chyba dalej nie kumasz po co miała by być linia kolejowa (czy cokolwiekj w ten deseń).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przecież nie napisałem, że nie wydatek tylko, że SF :) Tym bardziej, że trzeba by zbudować takich ze dwie, plus rozjazdy, do tego współpraca globalna, no i o problemach inżynieryjnych nie wspomnę :)

Generalnie bardzie by się to przydało przy "ziemskiej" windzie kosmicznej, która normalnie by się nie poruszała :)

Wracając jednak do oryginalnego wątku, zirytowałem się, że sam na to nie wpadłem :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Uuu, ale Panowie, toż to lipa jest :)

Cytat
With current materials, it is feasible to build a cable extending to close to the height of geostationary orbit, allowing easy traversal and construction between the Earth and the Moon.

Do GEO? To słabo trochę...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
8 godzin temu, radar napisał:

Do GEO? To słabo trochę...

Ale że o co chodzi? Przecież to było wyraźnie w artykule napisane, że chcą wykorzystać 

W dniu 12.09.2019 o 13:19, KopalniaWiedzy.pl napisał:

już teraz (...) komercyjnie dostępne materiały, z których taki kabel mógłby powstać.

Dlatego właśnie to jest winda na Księżyc, bo winda z Ziem na orbitę wymagała by znacznie bardziej wytrzymałych materiałów (takich obecnie nie produkowanych przemysłowo). :)

Edytowane przez darekp

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, darekp napisał:

Ale że o co chodzi?

A o to, że w ferworze walki rozważaliśmy/łem LEO :)

Nie mniej jednak po przeczytaniu źródła stwierdzam, że trzeba by to jeszcze dokładniej policzyć.

No i koszt nieznany.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jeszcze do niedawna naukowcy potrafili określi miejsce pochodzenia jedynie 6% meteorytów znalezionych na Ziemi. Teraz naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS), Europejskiego Obserwatorium Południowego i czeskiego Uniwersytetu Karola wykazali, że 70% wszystkich znalezionych na naszej planecie meteorytów pochodzi z trzech młodych rodzin asteroid.
      Rodziny te to wyniki trzech zderzeń, do których doszło w głównym pasie asteroid 5,8, 7,5 oraz 40 milionów lat temu. Badacze określili też źródło innych meteorytów, dzięki czemu możemy teraz zidentyfikować miejsce pochodzenia ponad 90% skał, które z kosmosu spadły na Ziemię. Wyniki badań zostały opublikowane w trzech artykułach. Jeden ukazał się łamach Astronomy and Astrophysics, a dwa kolejne na łamach Nature.
      Wspomniane rodziny asteroid to – od najmłodszej do najstarszej – Karin, Koronis i Massalia. Wyróżnia się Massalia, która jest źródłem 37% meteorytów. Dotychczas na Ziemi odnaleziono podczas 700 000 okruchów z kosmosu. Jedynie 6% z nich zidentyfikowano jako achondryty pochodzące z Księżyca, Marsa lub Westy, jednego z największych asteroid głównego pasa. Źródło pozostałych 94%, z których większość do chondryty, pozostawało nieznane.
      Jak to jednak możliwe, że źródłem większości znalezionych meteorytów są młode rodziny asteroid? Autorzy badań wyjaśniają, że rodziny takie charakteryzują się dużą liczbą niewielkich fragmentów powstałych w wyniku niedawnych kolizji. Ta obfitość zwiększa prawdopodobieństwo kolejnych zderzeń, co w połączeniu z duża mobilnością tych szczątków, powoduje, że mogą zostać wyrzucone z głównego pasa asteroid, a część z nich poleci w kierunku Ziemi. Starsze rodziny asteroid nie są tak liczne. Przez wiele milionów lat mniejsze fragmenty, ale na tyle duże, że mogłyby spaść na Ziemię, zniknęły w wyniku kolejnych zderzeń i ucieczki z pasa asteroid.
      Określenie pochodzenia większości meteorytów było możliwe dzięki teleskopowym badaniom składu większości rodzin asteroid w głównym pasie oraz zaawansowanymi symulacjami komputerowymi, podczas których badano dynamikę tych rodzin.
      Autorzy badań określili też pochodzenie wielkich asteroid, takich jak Ryugu czy Bennu. Okazało się, że pochodzą one od tego samego przodka co rodzina asteroid Polana.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowa krzywa globalnych temperatur wskazuje, że w fanerozoiku średnie temperatury na Ziemi zmieniały się bardziej niż przypuszczano. Naukowcy z University of Arizona i Smithsonian Institution przeprowadzili badania, w ramach których zrekonstruowali temperatury w ciągu ostatnich 485 milionów lat. To okres, w którym życie na naszej planecie zróżnicowało się, podbiło lądy i przetrwało liczne okresy wymierania.
      Fanerozoik rozpoczyna się eksplozją kambryjską sprzed około 540 milionów lat i trwa do dzisiaj. Naukowcy w swoich badaniach ograniczyli się do 485 milionów lat, ze względu na niedostateczną ilość starszych danych geologicznych. Trudno jest znaleźć tak stare skały, w których zachował się zapis o panujących temperaturach. Nie mamy ich zbyt wielu nawet dla 485 milionów lat temu. To ogranicza nasze cofanie się w czasie, mówi profesor Jessica Tierney z Arizony.
      Uczeni wykorzystali asymilację danych, w trakcie której połączyli zapis geologiczny z modelami klimatycznymi. Badania pozwoliły im lepiej zrozumieć, czego możemy spodziewać się w przyszłości. Jeśli badasz ostatnich kilka milionów lat, to nie znajdziesz niczego, co może być analogią dla zjawisk, jakich spodziewamy się w roku 2100 czy 2500. Trzeba cofnąć się znacznie dalej, gdy Ziemia była naprawdę gorąca. Tylko tak możemy zrozumieć zmiany, jakie mogą zajść w przyszłości, wyjaśnia Scott Wing, kurator zbiorów paleobotaniki w Smithsonian National Museum of Natural History.
      Nowa krzywa temperatury pokazuje, że w tym czasie średnie temperatury na Ziemi zmieniały się w zakresie od 11,1 do 36,1 stopnia Celsjusza, a okresy wzrostu temperatur były najczęściej skorelowane ze zwiększoną emisją dwutlenku węgla do atmosfery. To jasno pokazuje, że dwutlenek węgla jest głównym czynnikiem kontrolującym temperatury na Ziemi. Gdy jest go mało, temperatury są niskie, gdy jest go dużo, na Ziemi jest gorąco, dodaje Tierney.
      Badania pokazały też, że obecnie średnia temperatura jest niższa niż średnia dla większości fanerozoiku. Jednocześnie jednak antropogeniczne emisje CO2 powodują znacznie szybszy wzrost temperatury niż w jakimkolwiek momencie z ostatnich 485 milionów lat. To stwarza duże zagrożenie dla wielu gatunków roślin i zwierząt. Niektóre okresy szybkich zmian klimatycznych wiązały się z masowym wymieraniem.
      Badacze zauważają, że ocieplenie klimatu może być też niebezpieczne dla ludzi. Nasz gatunek doświadczył w swojej historii zmian średnich temperatur o około 5 stopni Celsjusza. To niewiele, jak na 25-stopniową zmianę w ciągu ostatnich 485 milionów lat. Wyewoluowaliśmy w chłodnym okresie, który nie jest typowy dla większości geologicznej historii. Zmieniamy klimat w sposób, który wykracza poza to, czego doświadczyliśmy. Planeta była i może być cieplejsza, ale ludzie i zwierzęta nie zaadaptują się do tak szybkich zmian, dodaje Tierney.
      Projekt zbadania temperatur w fanerozoiku rozpoczął się w 2018 roku, gdy pracownicy Smithsonian National Museum postanowili zaprezentować zwiedzającym krzywą temperatur z całego eonu. Badacze wykorzystali pięć różnych chemicznych wskaźników temperatury zachowanych w skamieniałym materiale organicznym. Na ich podstawie oszacowali temperaturę w 150 000 krótkich okresach czasu. Jednocześnie współpracujący z nimi naukowcy z University of Bristol – na podstawie rozkładu kontynentów i składu atmosfery – stworzyli ponad 850 symulacji temperatur w badanym czasie. Następnie autorzy badań połączyli oba zestawy danych, tworząc najbardziej precyzyjną krzywą temperatur dla ostatnich 485 milionów lat.
      Dodatkową korzyścią z badań jest stwierdzenie, że czułość klimatu – czyli przewidywana zmiana średniej temperatury na Ziemi przy dwukrotnej zmianie stężenia CO2 – jest stała. Dwutlenek węgla i temperatury są nie tylko blisko powiązane, ale są powiązane w ten sam sposób przez 485 milionów lat. Nie zauważyliśmy, by czułość klimatu zmieniała się w zależności od tego, czy jest zimno czy gorąco, dodaje Tierney.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krążący wokół Jowisza Ganimedes to największy księżyc w Układzie Słonecznym. Jest większy od najmniejszej planety, Merkurego. Na Ganimedesie znajduje się też największa w zewnętrznych częściach Układu Słonecznego struktura uderzeniowa. Planetolog Naoyuki Hirata z Uniwersytetu w Kobe przeanalizował jej centralną część i doszedł do wniosku, że w Ganimedesa uderzyła asteroida 20-krotnie większa, niż ta, która zabiła dinozaury. W wyniku uderzenia oś księżyca uległa znaczącej zmianie.
      Ganimedes, podobnie jak Księżyc, znajduje się w obrocie synchronicznym względem swojej planety. To oznacza, że jest do niej zwrócony zawsze tą samą stroną. Na znacznej części jego powierzchni widoczne są ślady tworzące kręgi wokół konkretnego miejsca. W latach 80. naukowcy doszli do wniosku, że to dowód na dużą kolizję. Wiemy, że powstały one w wyniku uderzenia asteroidy przed 4 miliardami lat, ale nie byliśmy pewni, jak poważne było to zderzenie i jaki miało wpływ na księżyc, mówi Naoyjuki Hirata.
      Japoński uczony jako pierwszy zwrócił uwagę, że miejsce uderzenia wypada niemal idealnie na najdalszym od Jowisza południku Ganimedesa. Z badan Plutona przeprowadzonych przez sondę New Horizons wiemy, że uderzenie w tym miejscu doprowadziło do zmiany orientacji osi planety, więc tak samo mogło stać się w przypadku Ganimedesa. Hirata specjalizuje się w symulowaniu skutków uderzeń w księżyce i satelity, wiedział więc, jak przeprowadzić odpowiednie obliczenia.
      Na łamach Scientific Reports naukowiec poinformował, że asteroida, która uderzyła w Ganimedesa, miała prawdopodobnie średnicę około 300 kilometrów i utworzyła krater przejściowy o średnicy 1400–1600 kilometrów. Krater przejściowy to krater uderzeniowy istniejący przed powstaniem krateru właściwego, czyli misy wypełnionej materiałem powstałym po uderzeniu. Z przeprowadzonych obliczeń wynika, że tylko tak duża asteroida mogła przemieścić wystarczającą ilość masy, by doszło do przesunięcia osi Ganimedesa na jej obecną pozycję.
      Przypomnijmy, że 14 kwietnia ubiegłego roku wystartowała misja Juice (Jupiter Icy Moons Explorer) Europejskiej Agencji Kosmicznej. Ma ona zbadać trzy księżyce Jowisza: Kallisto, Europę i Ganimedesa. Na jej pokładzie znalazły się polskie urządzenia, wysięgniki firmy Astronika, na których zamontowano sondy do pomiarów plazmy. Wszystkie trzy księżyce posiadają zamarznięte oceany. To najbardziej prawdopodobne miejsca występowania pozaziemskiego życia w Układzie Słonecznym. W lipcu 2031 roku Juice ma wejść na orbitę Jowisza, a w grudniu 2034 roku znajdzie się na orbicie Ganimedesa i będzie badała ten księżyc do września 2035 roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po dziesięcioleciach udało się odkryć ambipolarne (dwukierunkowe) pole elektryczne Ziemi. To słabe pole elektryczne naszej planety, które jest tak podstawową jej cechą jak grawitacja czy pola magnetyczne. Hipoteza o istnieniu takiego pola pojawiła się ponad 60 lat temu i od tamtego czasu poszukiwano tego pola. Jest ono kluczowym mechanizmem napędzającym „wiatr polarny”, czyli ucieczkę naładowanych cząstek z ziemskiej atmosfery w przestrzeń kosmiczną. Ma ona miejsce nad ziemskimi biegunami.
      „Wiatr polarny” został odkryty w latach 60. XX wieku. Od samego początku naukowcy uważali, że jego siłą napędową jest nieznane pole elektryczne. Uważano, że jest ono generowane w skali subatomowej i jest niezwykle słabe. Przez kolejnych kilkadziesiąt lat ludzkość nie dysponowała narzędziami, które mogły zarejestrować takie pole.
      W 2016 roku Glyn Collinson i jego zespół z Goddars Space Flight Center zaczęli pracować nad instrumentami zdolnymi do zmierzenia ambipolarnego pola elektrycznego. Stworzone przez nich urządzenia oraz metoda pomiaru zakładały przeprowadzenie badań za pomocą rakiety suborbitalnej wystrzelonej z Arktyki. Badacze nazwali swoją misję Endurance, na cześć statku, którym Ernest Shackleton popłynął w 1914 roku na swoją słynną wyprawę na Antarktykę. Rakietę postanowiono wystrzelić ze Svalbardu, gdzie znajduje się najbardziej na północ wysunięty kosmodrom. Svalbard to jedyny kosmodrom na świecie, z którego można wystartować, by przelecieć przez wiatr polarny i dokonać koniecznych pomiarów, mówi współautorka badań, Suzie Imber z University of Leicester.
      Misja Endurance została wystrzelona 11 maja 2022 roku. Rakieta osiągnęła wysokość 768,03 km i 19 minut później spadła do Morza Grenlandzkiego. Urządzenia pokładowe zbierały dane przez 518 kilometrów nabierania wysokości i zanotowały w tej przestrzeni zmianę potencjału elektrycznego o 0,55 wolta. Pół wolta to tyle co nic, to napięcie baterii w zegarku. Ale to dokładnie tyle, ile trzeba do napędzenia wiatru polarnego, wyjaśnia Collinson.
      Generowane pole elektryczne oddziałuje na jony wodoru, które dominują w wietrze polarnym, z siłą 10,6-krotnie większą niż grawitacja. To więcej niż trzeba, by pokonać grawitację. To wystarczająco dużo, by wystrzelić jony z prędkością naddźwiękową prosto w przestrzeń kosmiczną, dodaje Alex Glocer z NASA. Pole napędza też cięższe pierwiastki, jak jony tlenu. Z badań wynika, że dzięki obecności tego pola elektrycznego jonosfera jest na dużej wysokości o 271% bardziej gęsta, niż byłaby bez niego. Mamy tutaj rodzaj taśmociągu, podnoszącego atmosferę do góry, dodaje Collinson.
      Pole to nazwano ambipolarnym (dwukierunkowym), gdyż działa w obie strony. Opadające pod wpływem grawitacji jony ciągną elektrony w dół, a w tym samym czasie elektrony – próbując uciec w przestrzeń kosmiczną – ciągną jony w górę. Wskutek tego wysokość atmosfery zwiększa się, a część jonów trafia na wystarczającą wysokość, by uciec w przestrzen kosmiczną w postaci wiatru polarnego.
      Odkrycie ambipolarnego pola elektrycznego otwiera przed nauką nowe pola badawcze. Jest ono bowiem, obok grawitacji i pola magnetycznego, podstawowym polem energetycznym otaczającym naszą planetę, wciąż wpływa na ewolucję naszej atmosfery w sposób, który dopiero teraz możemy badać. Co więcej, każda planeta posiadająca atmosferę powinna mieć też ambipolarne pole elektryczne. Można więc będzie go szukać i badać na Marsie czy Wenus.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jedno z ważnych pytań o początki życia brzmi: w jaki sposób cząstki RNA swobodnie przemieszczające się w pierwotnej zupie zostały opakowane w chronione błoną komórki. Odpowiedź na to pytanie zaproponowali właśnie na łamach Science Advances inżynierowie i chemicy z Uniwersytetów w Chicago i w Houston oraz Jack Szostak, laureat Nagrody Nobla w dziedzinie fizjologii lub medycyny. W swoim artykule pokazują, jak przed 3,8 miliardami lat krople deszczu mogły ochronić pierwsze protokomórki i umożliwić powstanie złożonych organizmów żywych.
      Uczeni przyjrzeli się koacerwatom, dużym grupom cząstek, samoistnie tworzącym się w układach koloidalnych (niejednorodnych mieszaninach). Zachowanie koacerwatów można porównać do zachowania kropli oleju w wodzie.
      Już dawno pojawiła się hipoteza, że nie posiadające błon mikrokrople koacerwatów mogły być modelowymi protokomórkami, gdyż mogą rosnąć, dzielić się i gromadzić wewnątrz RNA. Jednak błyskawiczna wymiana RNA pomiędzy koacerwatami, ich szybkie łączenie się, zachodzące w ciągu minut oznaczają, że poszczególne krople nie są w stanie utrzymać swojej odrębności genetycznej. To zaś oznacza, że ewolucja darwinowska nie jest możliwa, a populacja takich protokomórek byłaby narażona na błyskawiczne załamanie w wyniku rozprzestrzeniania się pasożytniczego RNA, czytamy w artykule. Innymi słowy każda kropla, która zawierałaby mutację potencjalnie użyteczną na drodze do powstania życia, błyskawicznie wymieniałaby swoje RNA z innymi RNA, nie posiadającymi takich pożytecznych mutacji. W bardzo szybkim tempie wszystkie krople stałyby się takie same. Nie byłoby różnicowania, konkurencji, a zatem nie byłoby ewolucji i nie mogłoby powstać życie.
      Jeśli dochodzi do ciągłej wymiany molekuł czy to między kroplami czy między komórkami i po krótkim czasie wszystkie one wyglądają tak samo, to nie pojawi się ewolucja. Będziemy mieli grupę klonów, wyjaśnia Aman Agrawal z Pritzker School of Molecular Engineering na University of Chicago.
      Nauka od dawna zastanawia się, co było pierwszą molekułą biologiczną. To problem kury i jajka. DNA koduje informacje, ale nie przeprowadza żadnych działań. Białka przeprowadzają działania, ale nie przenoszą informacji. Badacze tacy jak Szostak wysunęli hipotezę, że pierwsze było RNA. To molekuła jak DNA, zdolna do kodowania informacji, ale zawija się jak białko.
      RNA było więc kandydatem na pierwszy materiał biologiczny, a koacerwaty kandydatami na pierwsze protokomórki. Wszystko wydawało się dobrze układać, aż w 2014 roku Szostak opublikował artykuł, w którym informował, że wymiana materiału pomiędzy kroplami koacerwatów zachodzi zbyt szybko. Możesz stworzyć różnego rodzaju krople koacerwatów, ale nie zachowają one swojej unikatowej odrębności. Zbyt szybko będą wymieniały RNA. To był problem z którym przez długi czas nie potrafiono sobie poradzić, mówi Szostak.
      W naszym ostatnim artykule wykazaliśmy, że problem ten można przynajmniej częściowo przezwyciężyć, jeśli koacerwaty zamkniemy w wodzie destylowanej – na przykład wodzie deszczowej czy jakiejś innej słodkiej wodzie. W kroplach takich pojawia się rodzaj wytrzymałej błony, która ogranicza wymianę zawartości, dodaje uczony.
      Na trop tego zjawiska naukowcy wpadli, gdy Aman Agrawal był na studiach doktoranckich. Badał zachowanie koacerwatów poddanych działaniu pola elektrycznego w destylowanej wodzie. Jego badania nie miały nic wspólnego z początkami życia. Interesował go fascynujący materiał z inżynieryjnego punktu widzenia. Manipulował napięciem powierzchniowym, wymianą soli, molekuł itp. Chciał w swojej pracy doktorskiej badać podstawowe właściwości koacerwatów.
      Pewnego dnia Agrawal jadł obiad z promotorem swojej pracy magisterskiej, profesorem Alamgirem Karimem oraz jego starym znajomym, jednym ze światowych ekspertów inżynierii molekularnej, Matthew Tirrellem. Tirrell zaczął się zastanawiać, jak badania Agrawala nad wpływem wody destylowanej na koacerwaty mogą się mieć do początków życia na Ziemi. Zadał swoim rozmówcom pytanie, czy 3,8 miliarda lat temu na naszej planecie mogła istnieć woda destylowana. Spontanicznie odpowiedziałem „deszczówka”! Oczy mu się zaświeciły i od razu było widać, że jest podekscytowany tym pomysłem. Tak połączyły się nasze pomysły, wspomina profesor Karim.
      Tirrell skontaktował Agrawla z Szostakiem, który niedawno rozpoczął na Uniwersytecie Chicagowskim nowy projekt badawczy, nazwany z czasem Origins of Life Initiative. Profesor Tirrel zadał Szostakowi pytanie: Jak sądzisz, skąd na Ziemi przed powstaniem życia mogła wziąć się woda destylowana. I Jack odpowiedział dokładnie to, co już usłyszałem. Że z deszczu.
      Szostak dostarczył Agrawalowi próbki DNA do badań, a ten odkrył, że dzięki wodzie destylowanej transfer RNA pomiędzy kroplami koacerwatów znacząco się wydłużył, z minut do dni. To wystarczająco długo, że mogło dochodzić do mutacji, konkurencji i ewolucji. Gdy mamy populację niestabilnych protokomórek, będą wymieniały materiał genetyczny i staną się klonami. Nie ma tutaj miejsca na ewolucję w rozumieniu Darwina. Jeśli jednak ustabilizujemy te protokomórki tak, by przechowywały swoją unikatową informację wystarczająco długo, co najmniej przez kilka dni, może dojść do mutacji i cała populacja będzie ewoluowała, stwierdza Agrawal.
      Początkowo Agrawal prowadził swoje badania z komercyjnie dostępną laboratoryjną wodą destylowaną. Jest ona wolna od zanieczyszczeń, ma neutralne pH. Jest bardzo odległa od tego, co występuje w naturze. Dlatego recenzenci pisma naukowego, do którego miał trafić artykuł, zapytali Agrawala, co się stanie, jeśli woda będzie miała odczyn kwasowy, będzie bardziej podobna do tego, co w naturze.
      Naukowcy zebrali więc w Houston deszczówkę i zaczęli z nią eksperymentować. Gdy porównali wyniki badań z wykorzystaniem naturalnej deszczówki oraz wody destylowanej laboratoryjnie, okazało się, że są one identyczne. W obu rodzajach wody panowały warunki, które pozwalałyby na ewolucję RNA wewnątrz koacerwatów.
      Oczywiście skład chemiczny deszczu, który pada obecnie w Houston, jest inny, niż deszczu, który padał na Ziemi przed 3,8 miliardami lat. To samo zresztą można powiedzieć o modelowych protokomórkach. Autorzy badań dowiedli jedynie, że taki scenariusz rozwoju życia jest możliwy, ale nie, że miał miejsce.
      Molekuły, których użyliśmy do stworzenia naszych protokomórek to tylko modele do czasu, aż znajdziemy bardziej odpowiednie molekuły. Środowisko chemiczne mogło się nieco różnić, ale zjawiska fizyczne były takie same, mówi Agrawal.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...