Jump to content
Forum Kopalni Wiedzy

Recommended Posts

19 minut temu, mankomaniak napisał:

Czyli błędu już nie ma. Internetowa encyklopedia ma to do siebie, że błędy będą poprawiane. Gdyby o ciemnej energii napisano błędnie, na pewno dawno by ktoś im to wytknął i też by poprawili.

oczywiscie, ze są poprawiane, jednak by Ci Mankomaniak napisal dwoma linkami udowodnilem Ci że glupoty piszesz i jezeli PWN coś mówi to tak nie musi być każdy logicznie myślący człowiek to wie , no ale tak by Ci napisal Mankomaniak, ja Ci tak nie napiszę ;)

Ja Ci napiszę, że już wielu w historii rozwoju naszej nauki myśleli że już coś jest na pewno a potem inni przychodzili i jednak tak nie do końca się okazało. Nie znam sie, wiec nie wypowiem czy pan z pwn ma racje czy nie ale wystarczy ze by dali innego eksperta bardziej ostrożnego czy tez "uznającego" inne hipotezy i trz byś pisał "bo pwn mówi".

 

Więcej pokory.

 

No ale to na boku bylo ni chu chu sie nie znam ale lubię o.tym czytac (spory też)

Share this post


Link to post
Share on other sites
14 godzin temu, Jarek Duda napisał:

Też zapaść jest konieczna dla możliwości modelu cyklicznego ( https://en.wikipedia.org/wiki/Cyclic_model ), który pozwala uniknąć bardzo problematycznego momentu początku czasu

W zasadzie modele cykliczne tego problemu nie rozwiązują - przesuwają tylko w nieskończoność. Zresztą innych problemów też nie rozwiązują.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
2 hours ago, ex nihilo said:

W zasadzie modele cykliczne tego problemu nie rozwiązują - przesuwają tylko w nieskończoność. Zresztą innych problemów też nie rozwiązują.

W przeciwieństwie do hipotezy że na początku naszego wielkiego wybuchu rzeczywiście rozpoczął się czas, modele cykliczne pozwalają uniknąć sprzeczności z podstawowymi dobrze zweryfikowanymi eksperymentalnie zasadami: jak zasada zachowania energii, symetria CPT, czy ograniczenie przyczynowości do prędkości świata.

Fizyka może szukać wewnętrznie spójnych teorii, przede wszystkim zgodnych z tym co zostało wiarygodnie zweryfikowane eksperymentalnie - ale jeśli pytasz się o genezę, tutaj raczej nigdy nie będzie podstaw dla jakiejś wiarygodnej odpowiedzi (nawet jeśli pwn napisałoby inaczej czy sam bóg by się we śnie objawił) - pozostaje rozważanie hipotez: przed wszystkim czy nasz wszechświat pojawił się z niczego w punkcie który łamie większość zasad znanej fizyki, czy może po prostu istniał i będzie istniał wiecznie: cyklicznie zapadając się i rozszerzając w wyniku grawitacji ...

Share this post


Link to post
Share on other sites

Nie wskazuję konkretnego modelu - uważam że zdecydowanie za wcześnie na szczegóły ... tylko ogólną (subiektywną) filozofię: wszechświat to stała ilość energii - która zapada się grawitacyjnie, w pewnym momencie prawie do punktu - który z zachowania energii zaczyna kolejny wielki wybuch i rozszerzenie - w którym w końcu wygrywa grawitacja prowadząc do kolejnego zapadnięcia ... i tak dalej cyklicznie w nieskończoność.

Ogólnie intuicyjny sposób myślenia "ewoluujące 3D" z wielkim wybuchem na początku jest myśleniem narzucającym asymetrię czasu ... podczas gdy fundamentalne modele których skutecznie używamy są czasowo/CPT symetryczne (jak cykliczny wszechświat): mechaniki Lagranżowskie (od QFT do ogólnej teorii względności), ewolucja unitarna, zespoły po trajektoriach: np. Feynmanowskie równoważne z QM.

Ta narzucona intuicyjna asymetria czasu jest w "lokalnym realizmie" który prowadzi do paradoksów jak łamanie nierówności Bella. Zastępując go czasowo symetrycznym czasoprzestrzennym "4D lokalnym realizmem": z trajektoriami jako podstawowe obiekty, te paradoksy znikają. Dobrze to widać już w jednorodnym rozkładzie po trajektoriach ( https://en.wikipedia.org/wiki/Maximal_entropy_random_walk ) - który już prowadzi do "kwantowych" własności jak lokalizacja Andersona, reguła Borna, czy wynikłe łamanie nierówności Bella: https://arxiv.org/pdf/0910.2724

Share this post


Link to post
Share on other sites
12 godzin temu, Afordancja napisał:

Nie znam sie, wiec nie wypowiem czy pan z pwn ma racje czy nie ale wystarczy ze by dali innego eksperta bardziej ostrożnego czy tez "uznającego" inne hipotezy i trz byś pisał "bo pwn mówi".

To znajdź hipotezy, gdzie jest powiedziane, że gęstość ciemnej energii się zmienia. Inaczej tylko filozofujesz. Stałość gęstości ciemnej energii nie jest założeniem, jak nasz "ekspert" twierdzi.

Edited by mankomaniak

Share this post


Link to post
Share on other sites

mankomaniak, w fizyce jest wiele poziomów wiarygodności - najlepszy jest bezpośredni eksperyment, dużo dalej wniosek z modelu - zwykle po drodze ukrywający setki założeń, szczególnie w kosmologii ... na samym końcu jest subiektywna opinia pojedynczego eksperta - gdyby pwn zapytało o ten artykuł np. prof. Kutscherę z UJ, jego treść byłaby raczej absolutnie inna.

Artykuł pwn który wskazujesz jest przykładem tego ostatniego. Chcesz ciut bardziej obiektywne źródła to idź do angielskiej Wikipedii - tysiące specjalistów z całego świata pilnuje żeby w miarę obiektywnie reprezentować aktualny konsensus ... co jest dalej dalekie do stwierdzenie że to co tam jest napisane jest prawdą - do czego potrzebujesz eksperymentów, najlepiej bezpośrednich ... które już dla ciemnej materii uparcie dają brak obserwacji, a dla ciemnej energii chyba jeszcze żadnego nie było (?), a przynajmniej żadnego udanego.

21 minutes ago, Astro said:

Wybacz, ale to już stanowczo nie mój kościół.

Rozumiem że w przeciwieństwie do chyba większości fizyków, nie akceptujesz symetrii CPT - masz może jakiś argument na jej łamanie?

Osobiście nie akceptuję wszystkich równań, ale symetria czasowa/CPT jest kluczowa dla skutecznych modeli których używamy i nie znam realnego argumentu przeciw.

Standardowym jest druga zasada termodynamiki - ale termodynamika to nie poziom fundamentalny, tylko efektywny: konkretnego rozwiązania w którym żyjemy. Jak symetria powierzchni jeziora jest złamana na poziomie rozwiązania np. rzucając kamień. U nas tym "kamieniem" był wielki wybuch - wszystko było zlokalizowane: niska entropia - powodują gradient entropii (drugą zasadę) ... i zaczynając związki przyczynowo-skutkowe prowadzące do nas.

Edited by Jarek Duda
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
13 minut temu, Astro napisał:

Manko, wskaż proszę JEDEN pomiar na potwierdzenie tego o czym mówisz. Mylisz jednorożce z linijkami.

Niczego nie mylę, to nie ja napisałem w renomowanej encyklopedii, że to własność ciemnej energii. Rozumiesz co to znaczy własność? To znaczy, że tak wynika z teorii, zapewne m.in. z teorii względności. A teoria względności została potwierdzona eksperymentalnie. To ty i nasz "ekspert" powinniście udowodnić, że ja się mylę, a nie ja. To wy powinniście wskazać konkretne źródła, gdzie będzie napisane, że gęstość CE wcale nie musi być stała, bo to tylko jakieś tam założenie etc. Na chwilę obecną jest tak, że ja - totalny laik przypominam - jako jedyny posługuję się rzetelnymi źródłami na potwierdzenie swoich racji.

Share this post


Link to post
Share on other sites

Astro, może to się zmieni, ale jak na razie wszystkie próby bezpośredniej obserwacji ciemnej materii zakończyły się niepowodzeniem: https://en.wikipedia.org/wiki/Dark_matter#Detection_of_dark_matter_particles

Aktualnie jest wnioskiem z modeli, stwierdzeniem że czegoś brakuje w naszym zrozumieniu - do bezpośredniej obserwacji mamy tylko zgadywanie czego nie rozumiemy.

Co do symetrii czasu/CPT, sprzeciwiłeś się że powinniśmy się ją uwzględnić w problematycznym "lokalnym realizmie" - w takim razie proszę rozwiń.

Edited by Jarek Duda

Share this post


Link to post
Share on other sites
20 minut temu, Jarek Duda napisał:

na samym końcu jest subiektywna opinia pojedynczego eksperta

Jest tylko jeden problem. W tej "opinii" autor stwierdził, że stała gęstość ciemnej energii to jej własność, a ty nie potrafisz nawet odpowiedzieć, dlaczego tak napisał. Z czego to wynika? Nie wiesz tego - i to jest problem deprecjonujący ciebie jako eksperta. Nie jesteś nim w tym konkretnym zagadnieniu, bo umiałbyś odpowiedzieć na to, co jest przesłanką do tak stanowczej "opinii".

Edited by mankomaniak

Share this post


Link to post
Share on other sites

OTW to jest bardzo odległa ekstrapolacja tego co możemy potwierdzić eksperymentalnie - nie mam pychy twierdzić że wiem że jest prawdziwa lub nieprawdziwa.

Ale skoro wierzysz w OTW, czy nie ma ona lokalnego realizmu?

Ma, ale trochę inny niż ten intuicyjny - mianowicie z symetrią czasową, nieprawdaż?

Np. OTW, przynajmniej w teorii, pozwala na wormhole - co jeśli wkleja się on w sposób nieorientowalny jak w butelce Kleina - tak że przechodząc przez niego przeszły i przyszły stożek światła zostają zamienione?

Share this post


Link to post
Share on other sites
Cytat

wszechświat to stała ilość energii - która zapada się grawitacyjnie, w pewnym momencie prawie do punktu - który z zachowania energii zaczyna kolejny wielki wybuch i rozszerzenie - w którym w końcu wygrywa grawitacja prowadząc do kolejnego zapadnięcia ... i tak dalej cyklicznie w nieskończoność.

Wątpliwe aby taki model był prawidłowy. Naprawdę nie ma powodu aby w pewnym momencie grawitacja zaczęła zwyciężać. Zwłaszcza im dalej się wszechświat rozszerzy tym więcej fragmentów Wszechświata straci kontakt przyczynowo-skutkowy ze sobą. Co prawda to nie przeszkadza polom kwantowym.
Na ile się orientuję to obecnie bardziej poważnie rozważa się śmierć cieplną Wszechświata.

Tak samo założenie o stałej ilości energii - nie musi być spełnione w skali Wszechświata, zarówno na poziomie piany kwantowej jak i na poziomie przekraczającym widzialny Wszechświat. 
Raczej widziałbym Wszechświat jako twór o stale rosnącej energii. Jeśli próżnia ma energię, a ma, to im większy jest Wszechświat tym więcej tej energii jest.

Ten rysunek poniżej trochę pomoże odnośnie H.
Wbrew pozorom moim zdaniem:
1. To nie są wielkie różnice. 
2. Stała Hubbla to zawsze jest taka średnia liczona dla wielu wielu odległości. Jako że dawniej Wszechświat jednak był mniejszy to średnia jest z innych liczb wyciągana.
Więc ogólnie poza inflacją to nie widzę powodu żeby stała Hubbla musiała się zmieniać w historii. 

comment_PYmatjkqPLsLXP2Qyh8vtj9Fa1RM2hE6

Edited by thikim

Share this post


Link to post
Share on other sites
33 minuty temu, Jarek Duda napisał:

Aktualnie jest wnioskiem z modeli, stwierdzeniem że czegoś brakuje w naszym zrozumieniu - do bezpośredniej obserwacji mamy tylko zgadywanie czego nie rozumiemy.

Tak.

Czegoś nie rozumiemy. Ciemna materia to tylko jakieś proponowane wyjaśnienie. Jak na razie wszystkie eksperymenty mające ją potwierdzić - potwierdzają że jej nie ma. Oczywiście - jeden udany zdoła potwierdzić że jest. Ale ponieważ nie ma tego jedynego.
Obserwacje jednak w dużej skali wskazują że coś powinno być.

Swoją drogą to trochę podobnie jak z OTW i fizyką kwantową.
W małej skali widzimy coś innego niż w dużej. Może to nawet ma ze sobą związek.

Edited by thikim

Share this post


Link to post
Share on other sites

Astro, cieszę się że nie masz pewności - w przeciwieństwie do "przyziemnych" teorii, od OTW w górę trzeba zachowywać niezwykłą ostrożność - żeby szukać obiektywnej prawdy nie narzucając swojej pychy, pewnie jeszcze przez wieki zanim będziemy rzeczywiście mogli być pewni.

Natomiast jest dużo założeń które mają na tyle dobrą ewidencję eksperymentalną, że wydaje się że możemy ich bezpiecznie używać. Na przykład mechanika Lagranżowska - skutecznie używana od QFT do GR/OTW. Wszystkie mają skończoną prędkość propagacji - lokalność, też nie zależą od subiektywnego obserwatora - realizm. Jednak ich lokalność jest ciut inna niż intuicyjna (ta sprzeczna z Bellem) - posiada symetrię czasową: nie narzuca kauzalności tylko w jednym kierunku, ale np. ma równoważne czasowo-symetryczne sformułowanie przez optymalizację działania.

 

thinkim, dla mnie zasada zachowania energii to jest coś dobrze zweryfikowanego - potrzeba baardzo silnych argumentów żeby mieć pewność że może być łamana.

Share this post


Link to post
Share on other sites

W przeciwieństwie do OTW, skala mikro ma olbrzymią ewidencję eksperymentalną z prawie wszystkich stron, bezpośredni wpływ na to co mierzymy - kwestia zebrania tego wszystkiego do kupy. Natomiast w OTW, kosmologii dużo gorzej z ewidencją - mamy głównie ekstrapolację: widząc kamień przewidujemy górę. Ale poprawia się się np. dzięki obserwacji fal grawitacyjnych - pewność będzie rosła, ale konieczna jest cierpliwość i ostrożność.

Mówiąc że wierzysz w OTW, znaczy że też wierzysz w formalizm Lagranżowski - który sam w sobie ma dużo założeń, jak używanie pochodnych wymagających lokalności, np dla wewnętrznej krzywizny z OTW.

No i przecież wyraźnie rozdzieliłem lokalność od realizmu w tym co zacytowałeś ... podkreślając że lokalność mechanik Lagranżowskich jest ciut inna niż ta intuicyjna lokalność: tylko pierwsza z nich jest czasowo/CPT symetryczna.

Edited by Jarek Duda

Share this post


Link to post
Share on other sites

Pominę kwestie językowe żeby jednak skupić się na części merytorycznej, też nic od Ciebie nie oczekuję.

Co do "intuicyjnej lokalności", jak już wiele razy pisałem - narzuca ona asymetrię czasową: że przyczynowość działa tylko w przyszłość.

Natomiast mechanika Lagranżowska jednak ma symetrię czasową/CPT, np. z równoważnym sformułowaniem przez optymalizację działania - przykładowo w OTW prowadząc do równania Einsteina jak:

wewnętrzna krzywizna czasoprzestrzeni jest proporcjonalna do tensora energii-pędu

jest ono czasowo-symetryczne: nie narzuca kierunku przyczynowości, tylko mówi o warunkach równowagi np. między przeszłością a przyszłością - jak w 4D galarecie: tzw. "block universe" Einsteina.

Jeszcze raz: jest drobna różnica między standardowym "lokalnym realizmem" narzucającym asymetrię czasową - prowadząc do paradoksów jak łamanie nierówności Bella, a czasowo-symetrycznym czasoprzestrzennym "4D lokalnym realizmem" - nie narzucającym kierunku przyczynowości: jak w optymalizacji działania np. w równaniu Einsteina, czy w zespołach po trajektoriach - jak Feynmanowskie równoważne z QM.

 

Może trochę rozwinę dlaczego uważam że "4D lokalny realizm" naprawia "kwantowe" paradoksy jak łamanie nierówności Bella. Podstawowa kwestia jest w tym że mamy tutaj dwa różne modele probabilistyczne:

1) standardowy, intuicyjny: prawdopodobieństwo alternatywy rozłącznych zdarzeń jest równe sumie ich prawdopodobieństw,

2) reguła Borna (rho ~ psi^2): prawdopodobieństwo alternatywy rozłącznych zdarzeń jest proporcjonalne do kwadratu sumy ich amplitud.

Nierówności typu Bella wyprowadzamy używając 1), natomiast mechanika kwantowa pozwala działać w 2) - czasem łamiąc takie nierówności wynikłe z innego modelu.

Pytanie sprowadza się do tego jak dostać reguły Borna - zakładając symetrię czasową rho ~ psi^2 samo wychodzi: jedno psi jest z przeszłości (zespołu po trajektoriach/propagatorze), drugie z przyszłości - np. w TSVF: https://en.wikipedia.org/wiki/Two-state_vector_formalism

Najprostszy zespół po trajektoriach - jednorodny (MERW: https://en.wikipedia.org/wiki/Maximal_entropy_random_walk ) już też to ma - na przykładzie nieskończonej studni [0,1]: zwykła dyfuzja powie rozkład jednorodny rho = 1 , mechanika kwantowa powie rho ~ sin^2 ... rozkład jednorodny po trajektoriach w przeszłość lub przyszłość powie rho ~ sin, po pełnych trajektoriach powie poprawnie rho ~ sin^2: mnożąc amplitudy z tych jednokierunkowych:

image.thumb.png.5eeb660e16dd3ddbebca73b0ba2b3041.png

Mając reguły Borna (np. z symetrii czasowej), możemy łamać nierówności Bella - najlepiej zobaczyć to na chyba najprostszej tego typu (Mermina): "rzucając 3 monetami, przynajmniej 2 dają tą samą wartość" - dla binarnych zmiennych ABC:   Pr(A=B) + Pr(A=C) + Pr(B=C) >= 1

Podczas gdy wydaje się absolutnie oczywista, mechanika kwantowa pozwala ją łamać ( https://arxiv.org/pdf/1212.5214 ). Zakładając same reguły Borna jak w MERW (szczegóły - strona 9 z  https://arxiv.org/pdf/0910.2724 ) też możemy ją łamać:

image.thumb.png.f6f3ad33728e9104967e380f2fcf6a4b.png

Share this post


Link to post
Share on other sites

Załóżmy dla uproszczenia że ta szklanka rozbija się w próżni bez grawitacji - symetria mówi że gdybyśmy nadali wszystkim kawałkom dokładnie przeciwny pęd i moment pędu, złożyłyby się w tą szklankę.

Ale znamy dużo prostsze sposoby zrobienia szklanki: korzystając z łańcuchów przyczynowo-skutkowych zapoczątkowanych w naszym wielkim wybuchu - z utworzeniem ziemi, piasku, wytopieniem z niego szklanki.

Symetria CPT mówi że teoretycznie analogiczne łańcuchy przyczynowo-skutkowe można by wykonać w przeciwnym kierunku czasowym, tylko jest to trudne do realizacji z perspektywy rozwiązania w którym żyjemy.

Będę odpowiadał na argumenty merytoryczne na temat - pozostałe ignoruję.

Share this post


Link to post
Share on other sites
4 godziny temu, Jarek Duda napisał:

thinkim, dla mnie zasada zachowania energii to jest coś dobrze zweryfikowanego - potrzeba baardzo silnych argumentów żeby mieć pewność że może być łamana.

thikim jak już.

Proszę bardzo:
https://zapytajfizyka.fuw.edu.pl/pytania/zachowanie-energii-i-poczatki-wszechswiata/

Cytat

Ta gęstość zmieniała się dość wolno, a objętość rosła bardzo szybko, więc całkowita energia również rosła — nie była zachowana. Było to możliwe, gdyż zasada zachowania energii nie stosuje się do pola grawitacyjnego w Ogólnej Teorii Względności, o ile czasoprzestrzeń nie jest asymptotycznie płaska. 

i drugi przypadek:
http://naukawpolsce.pap.pl/aktualnosci/news%2C30242%2Czapytajnaukowca-dlaczego-w-prozni-czastki-powstaja-i-znikaja.html

Ogólnie ciężko jest jednak przeoczyć to że wszechświat się rozszerza. Ba, nawet coraz szybciej - i pogodzić to z założeniem że energia jest stała.
Bo energia planet, gwiazd, fotonów pozostaje z grubsza niezmieniona.
Mamy jednak Wszechświat który się rozszerza, coraz szybciej nawet. Mamy energię próżni. Tej próżni mamy coraz więcej.

Ale pozostaje problem co z energią potencjalną? Co z energią kinetyczną? Co z energią próżni?
Nie da się tego pogodzić z zasadą zachowania energii.

56 minut temu, Jarek Duda napisał:

Będę odpowiadał na argumenty merytoryczne na temat - pozostałe ignoruję.

Będzie Ci coraz trudniej - wiesz o tym?

Edited by thikim

Share this post


Link to post
Share on other sites

Owszem zakładamy tutaj niezachowanie energii - że jest ono możliwe. Z drugiej strony QFT przewiduje energię próżni ponad sto rzędów za dużą (10^100) - po prostu nie wiemy: bawimy się w zgadywankę, wymyślamy założenia, modele - ale daleko do czegoś pewnego.

Share this post


Link to post
Share on other sites

A co jeśli teoria Wielkiego Wybuchu jest nieprawdziwa? Wtedy wszystkie te dywagacje nie mają sensu. 

Share this post


Link to post
Share on other sites

Symetria czasu/CPT jest w sercu teorii których używamy we wszystkich skalach - to coś więcej niż zgadywanka:

- mechaniki Lagranżowskie od QFT do GR/OTW - z symetrycznym sformułowaniem przez optymalizację działania jak równanie Einsteina: warunek równowagi między przeszłością a przyszłością,

- mechanika kwantowa jest unitarna: z ewolucją symetryczną w czasie - dla funkcji falowej wszechświata: gdzie nie ma otoczenia koniecznego dla kolapsu,

- w szczególnej teorii względności kierunek czasu jest subiektywny: zmienia się z prędkością obserwatora,

- w ogólnej teorii względności czas to równoważny wymiar, np. zamieniający się z przestrzennym pod horyzontem czarnej dziury,

- mamy równoważne sformułowanie mechaniki kwantowe przez Feynmanowskie zespoły po trajektoriach: obiekty symetryczne czasowo.

Przestając akceptować tą symetrię, wali się praktycznie cała fizyka teoretyczna .. https://en.wikipedia.org/wiki/CPT_symmetry#Derivation_of_the_CPT_theorem

Share this post


Link to post
Share on other sites
5 hours ago, mankomaniak said:

Jest tylko jeden problem. W tej "opinii" autor stwierdził, że stała gęstość ciemnej energii to jej własność, a ty nie potrafisz nawet odpowiedzieć, dlaczego tak napisał. Z czego to wynika? Nie wiesz tego - i to jest problem deprecjonujący ciebie jako eksperta. Nie jesteś nim w tym konkretnym zagadnieniu, bo umiałbyś odpowiedzieć na to, co jest przesłanką do tak stanowczej "opinii".

Gęstość ciemnej energii nie musi być stała, a przynajmniej nie była na każdym etapie lub nawet rejonie Wszechświata. Badania włoskich naukowców Guido Risaliti i Elisabeta'y Lusso nie potwierdzają dotychczasowych założeń co do natury ciemnej energii:

 https://www.forbes.com/sites/startswithabang/2019/01/31/dark-energy-may-not-be-a-constant-which-would-lead-to-a-revolution-in-physics/#433f4210b737

(…)Recently, however, a team of scientists has begun using X-ray emitting quasars, which are much brighter and, hence, visible at even earlier times: when the Universe was only one billion years old. In an interesting new paper, scientists Guido Risaliti and Elisabeta Lusso use quasars as a standard candle to go farther back than we ever have in measuring the nature of dark energy. What they found is still tentative, but astounding nonetheless.

Using data from around 1,600 quasars, and a new method for determining the distances to them, they found a strong agreement with the supernova results for quasars from the past 10 billion years: dark energy is real, about two thirds of the energy in the Universe, and appears to be a cosmological constant in nature.

But they also found more distant quasars, which showed something unexpected: at the greatest distances, there's a deviation from this "constant" behavior. Risaliti has written a blog post here, detailing the implications of his work, including this gem:

Our final Hubble Diagram gave us completely unexpected results: while our measurement of the expansion of the Universe was in agreement with supernovae in the common distance range (from an age of 4.3 billion years up to the present day), the inclusion of more distant quasars shows a strong deviation from the expectations of the standard cosmological model! If we explain this deviation through a dark energy component, we find that its density must increase with time.

(…) Dark energy may not be a constant, after all, and only by looking to the Universe itself will we ever know for sure.

----------------------------------  

W tłumaczeniu:

(…) Jednakże ostatnio zespół naukowców rozpoczął badania kwazarów emitujących promienie X, które są znacznie jaśniejsze, a przez to widoczne z jeszcze wcześniejszych etapów ewolucji Wszechświata, gdy liczył on sobie zaledwie miliard lat. W interesującej pracy naukowcy Guido Risaliti i Elisabeta Lusso wykorzystują kwazary jako świetlne wskaźniki Modelu Standardowego (dosł. świeczki) aby cofnąć się do jeszcze wcześniejszych etapów, które nie były dotychczas brane pod uwagę w badaniach nad ciemną energią.  Ich odkrycia nie są jeszcze potwierdzone, ale nie mniej zdumiewające.

Wykorzystując dane z 1600 kwazarów i nowej metody określania odległości do nich doszli do zgodnego wniosku z wynikami badań supernowych z kwazarów jakie istniały przez ostatnie 10 miliardów lat: ciemna energia faktycznie istnieje stanowiąc 2/3 Wszechświata i wydaje się mieć stałą gęstość w naturze.

Jednakże znaleźli oni bardziej odległe kwazary, które wskazują na coś całkiem nieoczekiwanego: w znacznych odległościach występuje niezgodność w zachowaniu się tej „stałej”

(…) Końcowy wykres  Hubble’a daje nam całkiem niespodziewane wyniki: podczas gdy nasz pomiar rozszerzania się Wszechświata jest zgodny z analizą supernowych mieszczących się w zwykłym przedziale wykonywania pomiarów (od 4,3 miliarda lat od WW do chwili obecnej), to włączenie do badań bardziej odległych kwazarów pokazuje znaczące niezgodności ze standardowym modelem kosmologicznym. Jeśli wytłumaczymy tą różnicę wykorzystując składnik jakim jest ciemna energia, to okaże się, że gęstość ciemnej energii wzrasta z czasem.

(…)  W końcu ciemna energia może nie mieć stałej gęstości i tylko poprzez obserwacje Wszechświata mamy szansę aby uzyskać pewność.

------------------------------------- 

 

Wzrost gęstości energii mogę wytłumaczyć oddziaływaniem grawitacyjnym masy wczesnych galaktyk na energię rozproszoną na dziesiątki miliardów lat światła po Wielkim Wybuchu.

Astronomowie szacują, że średnica Wszechświata, czyli granicy pomiędzy rzeczywistą a fałszywą próżnią wynosi około 92 mld lat świetlnych. Przyspieszanie ekspansji masy barionowej we Wszechświecie nie daje odpowiedzi na to czy wzrastają również rozmiary całego Wszechświata, czyli obszaru gdzie występuje jeszcze pole Higgsa.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
Godzinę temu, Jarek Duda napisał:

Symetria czasu/CPT jest w sercu teorii których używamy we wszystkich skalach - to coś więcej niż zgadywanka:

O dużych skalach to my nie wiemy aż tak dużo. Tak samo o małych.
Jakbyśmy wiedzieli dużo o dużych skalach to byśmy nie mieli problemu z CM i CE. A mamy i to duży. 

Jakbyśmy wiedzieli dużo o małych skalach to by nam zasada Heisenberga nie była do niczego potrzebna.
Ogólnie małe skale nam zakrywa Heisenberg a duże nam zakrywa widzialny Wszechświat.

I to co na pewno wiemy to że ruch obiektów kosmicznych w wielkiej skali możemy wyjaśnić jeśli założymy że znamy jedynie 5 % Wszechświata.

Marne to założenie, jak i nasza wiedza.
Ale zauważ że mamy też problem z energią potencjalną i kinetyczną w wielkiej skali.

51 minut temu, Qion napisał:

Jeśli wytłumaczymy tą różnicę wykorzystując składnik jakim jest ciemna energia, to okaże się, że gęstość ciemnej energii wzrasta z czasem.

Dlatego po raz kolejny napiszę: nie wiemy co się dzieje z energią potencjalną i kinetyczną w skali całego Wszechświata.

Bo jak sobie zrobimy układ Ziemia - piłka i podrzucimy piłkę to wiadomo co się dzieje.
Rośnie sobie energia potencjalna piłki, maleje kinetyczna, a potem na odwrót.

No to teraz wyobraźmy sobie że piłek są niezliczone ilości i zaczęły się jak galaktyki od siebie oddalać. Gdyby ich prędkość malała to by było dość jasne że rośnie energia potencjalna.
Ale ich prędkość rośnie - czyli galaktyki mają coraz więcej energii kinetycznej. Ale druga niespodzianka: ich energia potencjalna także rośnie bo się od siebie oddalają. 

Edited by thikim

Share this post


Link to post
Share on other sites

Mówię tylko że te symetrie są podstawą modeli które używamy na wszystkich skalach - jasne, może wszystkie należy wyrzucić do kosza - ale do tego potrzebujemy bardzo silnych argumentów i alternatywy - do czasu której coś jednak warto by było założyć jeśli chcemy uprawiać fizykę.

Share this post


Link to post
Share on other sites
11 minut temu, Jarek Duda napisał:

Mówię tylko że te symetrie są podstawą modeli które używamy na wszystkich skalach - jasne, może wszystkie należy wyrzucić do kosza

Ale po co chcesz coś wyrzucać co się znakomicie sprawdza w naszych skalach?

Ale też nie udawaj że nasze modele są ok. Bo CM i CE świadczy że nie są.
A jak jeszcze porównamy te 5% tego o czym coś wiemy z 95 % tego o czym nic nie wiemy to czemu tak chwalisz te modele?

Co do symetrii to szerszy temat niż prawo zachowania energii. 
Niepotrzebnie uogólniasz i rozszerzasz problem.
Argument podałem: opisz zachowanie energii potencjalnej i kinetycznej dla całego Wszechświata w sposób zgodny z zasadą zachowania energii.
Jeśli nie możesz tego zrobić no to jest jednak problem. Nie ignoruj go.

Edited by thikim

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      W Argentynie niektórzy miłośnicy piwa wsypują do kufla fistaszki. Te najpierw toną, później zaś unoszą się na powierzchnię, a następnie znowu toną i znowu się wynurzają. Fizyka fistaszków tańczących w piwie to tytuł artykułu naukowego, w którym akademicy z Niemiec, Francji i Wielkiej Brytanii opisują i wyjaśniają ten fenomen z punktu widzenia fizyki. Dzięki przeprowadzonej przez nich serii eksperymentów  możemy poznać tajemnicę interakcji orzeszków z piwem i przy najbliższej okazji pochwalić się znajomym, że wiemy, na czym ona polega.
      Orzeszki są cięższe od piwa, więc w nim toną. Jednak na dnie stają się miejscami nukleacji (zarodkowania), gromadzenia się bąbelków dwutlenku węgla obecnych w piwie. A gdy bąbelków zgromadzi się wystarczająco dużo, orzeszek zyskuje pływalność i podąża do góry. Gdy dociera na powierzchnię, przyczepione do niego bąbelki ulatniają się, a proces ten ułatwia obracanie się orzeszka. Fistaszek traci pływalność i znowu tonie. Proces powtarza się dopóty, dopóki napój jest na tyle nasycony gazem, by dochodziło do zarodkowania.
      Badający to zjawisko naukowcy zauważyli, że przyczepiające się do orzeszka bąbelki nie są tymi samymi, które samoistnie unoszą się w górę w piwie. Powierzchnia orzeszka powoduje tworzenie się bąbelków, które rosną, gromadzą się i w końcu nadają mu pływalność.
      W rozważanym przypadku do nukleacji gazu, czyli pojawienia się bąbelków, może dojść w samym piwie, na szkle naczynia oraz na orzeszku. Zajmujący się tym poważnym problemem międzynarodowy zespół wyliczył, że z energetycznego punktu widzenia najbardziej korzystna jest nukleacja gazu na orzeszku, a najmniej korzystne jest tworzenie się bąbelków w samym piwie. Dlatego też tak łatwo bąbelki gromadzą się wokół fistaszka i go wypychają. Uczeni wyliczyli nawet, że idealny promień bąbelka przyczepionego do orzeszka wynosi mniej niż 1,3 milimetra.
      Można się oczywiście zżymać, że naukowcy tracą pieniądze podatników na niepoważne badania. Nic jednak bardziej mylnego. Tańczące w piwie fistaszki pozwalają lepiej zrozumieć działanie zarówno przyrody, jak i niektóre procesy przemysłowe. To, co dzieje się w orzeszkiem w piwie jest bardzo podobne do zjawisk zachodzących w czasie procesu flotacji, wykorzystywanego na przykład podczas oddzielania rud minerałów, recyklingu makulatury czy oczyszczania ścieków.
      Badacze zapowiadają, że nie powiedzieli jeszcze ostatniego słowa. Mają bowiem zamiar kontynuować swoje prace, używając przy tym różnych orzeszków i różnych piw.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po 10 latach pionierskiej pracy naukowcy z amerykańskiego SLAC National Accelerator Laboratory ukończyli wykrywacze ciemnej materii SuperCDMS. Dwa pierwsze trafiły niedawno do SNOLAB w Ontario w Kanadzie. Będą one sercem systemu poszukującego dość lekkich cząstek ciemnej materii. Urządzenia mają rejestrować cząstki o masach od 1/2 do 10-krotności masy protonu. W tym zakresie będzie to najbardziej czuły na świecie wykrywacz ciemnej materii.
      Twórcy detektorów mówią, że przy ich budowie wiele się nauczyli i stworzyli wiele interesujących technologii, w tym elastyczne kable nadprzewodzące, elektronikę działającą w ekstremalnie niskich temperaturach czy lepiej izolowane systemy kriogeniczne, dzięki czemu całość jest znacznie bardziej czuła na ciemną materię. A dodatkową zaletą całego eksperymentu jest jego umiejscowienie 2 kilometry pod ziemią, co pozwoli na wyeliminowanie znaczniej części zakłóceń ze strony promieniowania kosmicznego. SNOLAB i SuperCDMS są dla siebie stworzone. Jesteśmy niesamowicie podekscytowani faktem, że detektory SuperCDMS mają potencjał, by bezpośrednio zarejestrować cząstki ciemnej materii i znacząco zwiększyć nasza wiedzę o naturze wszechświata, mówi Jodi Cooley, dyrektor SNOLAB. Zrozumienie ciemnej materii to jedno z najważniejszych zadań nauki, dodaje JoAnne Hewett ze SLAC.
      Wiemy, że materia widzialna stanowi zaledwie 15% wszechświata. Cała reszta to ciemna materia. Jednak nikt nie wie, czym ona jest. Wiemy, że istnieje, gdyż widzimy jej oddziaływanie grawitacyjne z materią widzialną. Jednak poza tym nie potrafimy jej wykryć.
      Eksperyment SuperCDMS SNOLAB to próba zarejestrowania cząstek tworzących ciemną materię. Naukowcy chcą w nim wykorzystać schłodzone do bardzo niskich temperatur kryształy krzemu i germanu. Stąd zresztą nazwa eksperymentu – Cryogenic Dark Matter Search (CDMS). Uczeni mają nadzieję, że w temperaturze o ułamek stopnia wyższej od zera absolutnego uda się zarejestrować wibracje kryształów powodowane interakcją z cząstkami ciemnej materii. Takie kolizje powinny zresztą wygenerować pary elektron-dziura, które – przemieszczając się w krysztale – wywołają kolejne wibracje, wzmacniając w ten sposób sygnał.
      Żeby jednak tego dokonać, detektory muszą zostać odizolowane od wpływu czynników zewnętrznych. Dlatego też eksperyment będzie prowadzony w SNOLAB, laboratorium znajdującym się w byłej kopalni niklu, ponad 2000 metrów pod ziemią.
      Stopień trudności w przeprowadzeniu tego typu eksperymentów jest olbrzymi. Nie tylko bowiem konieczne było stworzenie nowatorskich wykrywaczy, co wymagało – jak już wspomnieliśmy – 10 lat pracy. Wyzwaniem był też... transport urządzeń. Aby chronić je przed promieniowaniem kosmicznym, należało jak najszybciej dostarczy je z USA do Kanady. Oczywiście na myśl przychodzi przede wszystkim transport lotniczy. Jednak im wyżej się wzniesiemy, tym cieńsza warstwa atmosfery nas chroni, zatem tym więcej promieniowania kosmicznego do nas dociera.
      Wybrano więc drogę lądową, ale... naokoło. Pomiędzy Menlo Park w Kalifornii, gdzie powstały wykrywacze, a kanadyjską prowincją Ontario znajdują się Góry Skaliste. Ciężarówka z wykrywaczami musiałaby więc wjechać na sporą wysokość nad poziomem morza, co wiązałoby się z większym promieniowaniem docierającym do detektorów. Dlatego też jej trasa wiodła na południe, przez Teksas. Już następnego dnia po dotarciu do Ontario urządzenia zostały opuszczone pod ziemię, gdzie czekają na instalację. Jeszcze w bieżącym roku do Kanady trafią kolejne SuperCDMS, a wstępne przygotowania do uruchomiania laboratorium mają zakończyć się w 2024 roku. Naukowcy mówią, że po 3-4 latach pracy laboratorium powinno zebrać na tyle dużo danych, że zdobędziemy nowe informacje na temat ciemnej materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie z University of Southampton donoszą o zaobserwowaniu najpotężniejszej znanej kosmicznej eksplozji. Jest ona 10-krotnie jaśniejsza niż jakakolwiek znana supernowa i 3-krotnie jaśniejsza niż najpotężniejsze rozerwanie gwiazdy przez siły pływowe czarnej dziury. Eksplozję AT2021lwx naukowcy obserwują od trzech lat. To bardzo długo, w porównaniu np. z supernowymi, które są widoczne przez kilka miesięcy. Do AT2021lwx doszło przed 8 miliardami lat, gdy wszechświat liczył sobie około 6 miliardów lat.
      Specjaliści sądzą, że to, co obserwują to proces niszczenia olbrzymiej chmury gazu – tysiące razy większej od Słońca – przez czarną dziurę. Części chmury wpadły do czarnej dziury, a powstałe w wyniku tego fale uderzeniowe przemiszczają się przez resztę chmury, która otoczyła czarną dziurę, tworząc kształt obwarzanka.
      AT2021lwx została wykryta w 2020 roku przez Zwicky Transient Facility i potwierdzona przez Asteroid Terrestrial-impact Last Alert System. Te instalacje przeglądają nocne niebo w poszukiwaniu obiektów gwałtownie zmieniających jasność. Takie zmiany mogą wskazywać na obecność supernowej czy przelatujące komety lub asteroidy. Jednak w momencie wykrycia skala eksplozji nie była znana. Pojawienie się na niebie jasnego obiektu zostało zauważone przez algorytm poszukujący supernowych. Jednak supernowe nigdy nie trwają tak długo.
      Naukowcy przeprowadzili więc szereg badań za pomocą różnych teleskopów. Przeanalizowali spektrum światła, zmierzyli linie absorpcji i emisji, co pozwoliło im na określenie odległości do obiektu. Gdy już znamy odległość i wiemy, jak jasny się nam obiekt wydaje, możemy obliczyć jasność obiektu u źródła. Gdy to zrobiliśmy, zdaliśmy sobie sprawę, że jest on ekstremalnie jasny, mówi profesor Sebastian Hönig.
      Jedynymi obiektami, które dorównują AT2021lwx jasnością są kwazary, supermasywne czarne dziury, do których ciągle wpada gaz pędzący z olbrzymią prędkością. W przypadku kwazarów dochodzi do zmian jasności. Raz są jaśniejsze, raz ciemniejsze. Przyjrzeliśmy się danym archiwalnym, z dekady sprzed odkrycia AT2021lwx. Niczego tam nie było i nagle pojawia się najjaśniejszy obiekt we wszechświecie, dodaje profesor Mark Sullivan.
      Zjawisko można interpretować na wiele różnych sposobów, jednak najbardziej prawdopodobnym wyjaśnieniem jest niszczenie przez czarną dziurę gigantycznej chmury gazu, głównie wodoru. Naukowcy mają nadzieję, że w najbliższych latach dzięki nowym urządzeniom, jak Vera Rubin Observatory, znajdą więcej obiektów podobnych do AT2021lwx i będą mogli lepiej je zbadać.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba prawdopodobnie znalazł galaktyki, których istnienie przeczy standardowemu modelowi kosmologicznemu. Wydaje się, że są one zbyt masywne jak na czas swoich narodzin.
      Astronomowie z The University of Texas at Austin informują na łamach Nature Astronomy, że sześć z najstarszych i najbardziej masywnych galaktyk zaobserwowanych przez JWST wydaje się przeczyć najbardziej rozpowszechnionym poglądom obowiązującym w kosmologii. Naukowcy szacują bowiem, że galaktyki te narodziły się w ciągu 500–700 milionów lat po Wielkim Wybuchu, a ich masa wynosi ponad 10 miliardów mas Słońca. Jedna z nich wydaje się nawet równie masywna co Droga Mleczna, a jest od niej o miliardy lat młodsza.
      Jeśli szacunki dotyczące masy są prawidłowe, to wkraczamy na nieznane terytorium. Wyjaśnienie tego zjawiska będzie wymagało dodania czegoś całkowicie nowego do teorii formowania się galaktyk lub modyfikacji poglądów kosmologicznych. Jednym z najbardziej niezwykłych wyjaśnień byłoby stwierdzenie, że wkrótce po Wielkim Wybuchu wszechświat rozszerzał się szybciej, niż sądzimy. To jednak mogłoby wymagać dodania nowych sił i cząstek, mówi profesor Mike Boylan-Kolchin, który kierował zespołem badawczym. Co więcej, by tak masywne galaktyki uformowały się tak szybko, w gwiazdy musiałoby zamienić się niemal 100% zawartego w nich gazu. Zwykle w gwiazdy zamienia się nie więcej niż 10% gazu galaktyki. I o ile konwersja 100% gazu w gwiazdy mieści się w teoretycznych przewidywaniach, to taki przypadek wymagałby zupełnie innych zjawisk, niż obserwujemy, dodaje uczony.
      Dane, jakich dostarczył JWST, mogą postawić astronomów przed poważnym problemem. Jeśli bowiem masy i wiek wspomnianych galaktyk zostaną potwierdzone, mogą być potrzebne fundamentalne zmiany w obowiązującym modelu kosmologicznym. Takie, które dotkną też ciemnej materii i ciemnej energii. Jeśli istnieją inne, szybsze sposoby formowania się galaktyk, albo też więcej materii było dostępnej we wczesnym wszechświecie, konieczna będzie radykalna zmiana poglądów.
      Oceny wieku i masy wspomnianych 6 galaktyk to wstępne szacunki. Następnym etapem prac powinno być przeprowadzenie badań spektroskopowych. W ich trakcie może się np. okazać, że czarne dziury w centrach galaktyk tak bardzo podgrzewają otaczający je gaz, że galaktyki są jaśniejsze, zatem wydają się bardziej masywne niż w rzeczywistości. Nie można też wykluczyć, że galaktyki tak naprawdę są młodsze, ale znajdujący się pomiędzy nami a nimi pył zmienia kolor docierającego z nich światła tak, iż jest ono bardziej przesunięte ku czerwieni, zatem wydaje się dochodzić z większej odległości, a zatem z młodszych galaktyk.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizyka zajmuje się zróżnicowanym zakresem badań, od bardzo przyziemnych, po niezwykle abstrakcyjne. Koreańsko-niemiecki zespół badawczy, na którego czele stał Wenjing Lyu postanowił przeprowadzić jak najbardziej przyziemne badania, a wynikiem jego pracy jest artykuł pt. „Eksperymentalne i numeryczne badania piany na piwie”.
      Naukowcy zajęli się odpowiedzią na wiele złożonych pytań dotyczących dynamiki tworzenia się piany na piwie, co z kolei może prowadzić do udoskonalenia metod warzenia piwa czy nowej architektury dysz, przez które piwo jest nalewane do szkła. Tworzenie się pianki na piwie to skomplikowana gra pomiędzy składem samego piwa, naczynia z którego jest lane a naczyniem, do którego jest nalewane. Naukowcy, browarnicy i miłośnicy piwa poświęcili tym zagadnieniom wiele uwagi. Autorzy najnowszych badań skupili się zaś na opracowaniu metody, która pozwoli najtrafniej przewidzieć jak pianka się utworzy i jakie będą jej właściwości.
      Piana na piwie powstaje w wyniku oddziaływania gazu, głównie dwutlenku węgla, wznoszącego się ku górze. Tworzącymi ją składnikami chemicznymi są białka brzeczki, drożdże i drobinki chmielu. Pianka powstaje w wyniku olbrzymiej liczby interakcji chemicznych i fizycznych. Jest on cechą charakterystyczną piwa. Konsumenci definiują ją ze względu na jej stabilność, jakość, trzymanie się szkła, kolor, strukturę i trwałość. Opracowanie dokładnego modelu formowania się i zanikania pianki jest trudnym zadaniem, gdyż wymaga wykorzystania złożonych modeli numerycznych opisujących nieliniowe zjawiska zachodzące w pianie, czytamy w artykule opisującym badania.
      Naukowcy wspominają, że wykorzystali w swojej pracy równania Reynoldsa jako zmodyfikowane równania Naviera-Stokesa (RANS), w których uwzględnili różne fazy oraz przepływy masy i transport ciepła pomiędzy tymi masami. Liu i jego zespół wykazali na łamach pisma Physics of Fluids, że ich model trafnie opisuje wysokość pianki, jej stabilność, stosunek ciekłego piwa do pianki oraz objętość poszczególnych frakcji pianki.
      Badania prowadzono we współpracy ze startupem Einstein 1, który opracowuje nowy system nalewania piwa. Magnetyczna końcówka jest w nim wprowadzana na dno naczynia i dopiero wówczas rozpoczyna się nalewanie piwa, a w miarę, jak płynu przybywa, końcówka wycofuje się. Naukowcy zauważyli, że w systemie tym pianka powstaje tylko na początku nalewania piwa, a wyższa temperatura i ciśnienie zapewniają więcej piany. Po fazie wstępnej tworzy się już sam płyn. Tempo opadania piany zależy od wielkości bąbelków. Znika ona mniej więcej po upływie 25-krotnie dłuższego czasu, niż czas potrzebny do jej formowania się.
      W następnym etapie badań naukowcy będą chcieli przyjrzeć się wpływowi końcówki do nalewania na proces formowania się piany i jej stabilność.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...