Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Astronomowie, astrofizycy i fizycy cząstek zgromadzeni w Kavli Institute for Theoretical Physics na Uniwersytecie Kalifornijskim zastanawiają się, na ile poważne są różnice w pomiarach dotyczących stałej Hubble'a. Zagadnienie to stało się jednym z ważniejszych problemów współczesnej astrofizyki, gdyż od rozstrzygnięcia zależy nasza wiedza np. od tempie rozszerzania się wszechświata.

Problem polega na tym, że wyliczenia stałej Hubble'a w oparciu o badania promieniowania wyemitowanego podczas Wielkiego Wybuchu różnią się od stałej Hubble'a uzyskiwanej na podstawie obliczeń opartych na badaniu supernowych. Innymi słowy, obliczenia oparte na najstarszych danych różnią się od tych opartych na danych nowszych. Jeśli specjaliści nie znajdą wyjaśnienia tego fenomenu może się okazać, że nie rozumiemy wielu mechanizmów działania wszechświata.

W latach 20. XX wieku Edwin Hubble zauważył, że najdalsze obiekty we wszechświecie wydają się oddalać od siebie szybciej niż te bliższe. Pojawiła się więc propozycja stworzenia stałą Hubble'a opisującej tempo rozszerzania się wszechświata.

Eksperymenty mające na celu określenie warto tej stałej dają jednak różne wyniki. Jedna z technik jej poszukiwania zakłada wykorzystanie mikrofalowego promieniowania tła, czyli światła powstałego wkrótce po Wielkim Wybuchu. Prowadzone na tej podstawie pomiary i obliczenia wykazały, że stała Hubble'a to 67,4 km/s/Mpc ± 0,5 km/s/Mpc. Jednak badania oparte o dane z supernowych pokazują, że stała Hubble'a to 74,0 km/s/Mpc. Obie wartości nie mogą być prawdziwe, chyba, że przyjmiemy, że coś niezwykłego stało się na początku rozszerzania się wszechświata. Niektórzy fizycy sugerują, że u zarania dziejów istniał inny rodzaj ciemnej energii powodującej rozszerzanie się wszechświata.

Na razie jednak fizycy nie wszczynają alarmu i uważają, że obecne teorie dotyczące działania wszechświata są nadal ważne.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Posted (edited)

W artykule nie wspomniano o standardowych syrenach (fale grawitacyjne). Tutaj obliczenia wskazują narazie 70km/s.

Proponuję jeszcze sprawdzić prędkości podane w artykule, bo prędkość wyliczona dzięki CBM wynosi chyba 67km/s, a nie 57km/s. Wikipedia twiedzi, że od 2001 roku nikt nie wyliczył mniej niż 67km/s/Mpc:

https://en.wikipedia.org/wiki/Hubble's_law

Edited by kremien
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Tak. w źródle: Such studies have shown the Hubble Constant to be 67.4 km/s/Mpc, with an error rate of just 0.5 km/s/Mpc.

Share this post


Link to post
Share on other sites

Przede wszystkim "stała" Hubble'a raczej już nie jest uznawana za stałą - przyjmuje się że rozszerzanie przyśpiesza, co oznacza "stałą" zależną np. od wieku obiektów użytych do pomiaru.

Ale w kosmologii raczej jesteśmy daleko od bycia pewnym czegokolwiek. Na przykład przyciąganie grawitacyjne (ściągające Wszechświat) maleje 1/r^2. Przyjmuje się że rozszerzanie jednak przyśpiesza z powodu ciemnej energii - prawo zachowania energii mówi że jej gęstość powinna maleć 1/r^3, czyli w końcu 1/r^2 grawitacja powinna wygrać - ostatecznie prowadząc do zapaści do punktu "Big Crunch".

Też zapaść jest konieczna dla możliwości modelu cyklicznego ( https://en.wikipedia.org/wiki/Cyclic_model ), który pozwala uniknąć bardzo problematycznego momentu początku czasu - który mając tylko przyszłość jest np. niezgodny z fundamentalną symetrią: CPT, też z perspektywy równania Einsteina które wymaga wewnętrznej krzywizny - niemającej sensu na "krańcu" rozmaitości.

W każdym razie jeszcze duuużo potrzebujemy czasu żeby móc mówić tutaj coś rzeczywiście pewnego.

Share this post


Link to post
Share on other sites
14 minut temu, Jarek Duda napisał:

Przede wszystkim "stała" Hubble'a raczej już nie jest uznawana za stałą - przyjmuje się że rozszerzanie przyśpiesza, co oznacza "stałą" zależną np. od wieku obiektów użytych do pomiaru.

To trochę nie do końca tak. Kilkadziesiąt lat temu, gdy wydawało się nam, że Wszechświat powinien zwalniać (jak rzucona w górę cegła), "problem" był ten sam. Obserwacyjnie prawo Hubble dotyczy liniowej zależności między redshiftem a odległością (redshit niekoniecznie musi przekładać się liniowo na prędkość), a do tego czynnik skali i współrzędne współporuszające się.

ed: Słowem, do jakiejkolwiek zabawy trzeba przyjąć jakiś model kosmologiczny (zwykle metryka FLRW).

Share this post


Link to post
Share on other sites
Posted (edited)

Jednostajne rozszerzanie? Steady State Model chyba już umarł dawno temu? ;)

Cytat

The parameter H{\displaystyle H}H is commonly called the “Hubble constant”, but that is a misnomer since it is constant in space only at a fixed time; it varies with time in nearly all cosmological models

(to z Twojego linku :))

ed: index 0 dodawany przy H podkreśla H "na dziś" ;)

Edited by Astro

Share this post


Link to post
Share on other sites

Jasne można zdefiniować "na dzisiaj", tylko mówię że raczej nie jest już uznawana jako stałą - np. miliardy lat temu raczej była inna.

Share this post


Link to post
Share on other sites

Toż mówię to samo, patrz cytat. Na dziś jednak wydaje się stała :D. Czy jest stałą fundamentalną, to inna bajka.

H_0 definije się właśnie na dziś; inaczej z definicji raczej nie jest stałą. ;)

Share this post


Link to post
Share on other sites
Posted (edited)

Takie proste pytanie :)
To ile wynosiło H w czasie inflacji kosmologicznej?

To daje odpowiedź o fundamentalność tej średniej która jest używana do opisu obecnego stanu Wszechświata - nic ponadto.

Edited by thikim

Share this post


Link to post
Share on other sites
1 godzinę temu, Jarek Duda napisał:

Przyjmuje się że rozszerzanie jednak przyśpiesza z powodu ciemnej energii - prawo zachowania energii mówi że jej gęstość powinna maleć 1/r^3, czyli w końcu 1/r^2 grawitacja powinna wygrać - ostatecznie prowadząc do zapaści do punktu "Big Crunch".

Uwielbiam kompromitować naukowców. Ciemna energia ma stałą gęstość kolego - to jest podstawowa wiedza o niej, taka jest jej własność i nie oznacza to wcale, że prawo zachowania energii nie działa. Prędzej Wszechświat jest układem otwartym zwiększającym energię. Niewiarygodne, że ja, totalny laik z fizyki, muszę uczyć fizyki kogoś takiego jak ty.

Share this post


Link to post
Share on other sites
Posted (edited)

A skąd ta pewność? Jeszcze bardziej przekonanie że wszechświat jest układam otwartym - dlaczego nie widać efektów interakcji np. termodynamicznej z tym hipotetycznym czymś na zewnątrz?

Nie wiemy co to jest ciemna energia, możemy sobie gdybać różne rzeczy - założenie o stałej gęstości jest wbrew zachowaniu energii: oznacza że całkowita energia (pomnożona przez objętość) będzie rosła z rozszerzaniem się wszechświata, też będzie rósł procentowy wkład ciemnej energii do energii wszechświata.

Po prostu nie wiem i twierdzę że inni też nie mają podstaw na przekonanie że wiedzą.

Edited by Jarek Duda

Share this post


Link to post
Share on other sites
23 minuty temu, thikim napisał:

To daje odpowiedź o fundamentalność tej średniej która jest używana do opisu obecnego stanu Wszechświata

W przeciwieństwie do pewnych parametrów kosmologicznych FUNDAMENTALNIE (choć niezbyt prosto) daje się zmierzyć, a każdy pomiar jest cenny, bo pozwala ograniczyć szaleństwo teoretyków w kreowaniu jednorożców.

Share this post


Link to post
Share on other sites
4 minuty temu, Jarek Duda napisał:

twierdzę że inni też nie mają podstaw na przekonanie że wiedzą.

Haha, zanim zaczniesz twierdzić, to się trochę zapoznaj z czymś takim jak internet. Poczytaj sobie, choćby nawet encyklopedię pwn:

https://encyklopedia.pwn.pl/haslo/ciemna-energia;3886511.html

" Niezwykłą właściwością ciemnej energii jest to, że jej gęstość jest stała pomimo rozszerzania się Wszechświata. "

I co teraz? Na pwn piszą bzdury? Wszędzie indziej też?

 

https://www.salon24.pl/u/zbigwie/890454,ciemna-energia-i-punkty-hawkinga-czyli-szalenstwo-sir-rogera-penrose

" Twierdzenie, że gęstość ciemnej energii jest stała, opiera się również na obserwacjach astronomicznych, a zatem jest również prawdziwe z pewną dokładnością: przez ostatnie 8 miliardów lat gęstość ciemnej energii zmieniła się nie więcej niż 1,1 razy. Możemy dziś powiedzieć to z pewnością. "

Jeszcze ci poszukać? Pamiętaj, że jestem totalnym laikiem z fizyki, który cię ośmieszył.

Share this post


Link to post
Share on other sites
Posted (edited)

To nie jest prawda objawiona tylko założenie - może prawdziwe, może nie - w każdym razie mówi że całkowita energia wszechświata rośnie z jego objętością, nie podając źródła tej dodatkowej energii - w tej postaci będąc sprzeczna z dość fundamentalną zasadą zachowania energii.

To że "pisze w książce" jest wystarczającym argumentem w religii, natomiast w nauce jesteśmy bardziej ostrożni - czy jest konkretny eksperyment pokazujący stałość tej gęstości?

Raczej nie - nawet ciemnej materii jeszcze nie udało się bezpośrednio zaobserwować. W kosmologii mamy tylko modele bazujące na olbrzymiej ilości założeń - jest ona bardzo odległa od pewności.

ps. A ta prawda objawiona była w której teorii? Tutaj są przykładowe: https://en.wikipedia.org/wiki/Dark_energy#Theories_of_dark_energy z komentarzem np.:

Quote

A major outstanding problem is that the same quantum field theories predict a huge cosmological constant, more than 100 orders of magnitude too large.[12] This would need to be almost, but not exactly, cancelled by an equally large term of the opposite sign. Some supersymmetric theories require a cosmological constant that is exactly zero,[46] which does not help because supersymmetry must be broken.

 

Edited by Jarek Duda

Share this post


Link to post
Share on other sites
3 minuty temu, Jarek Duda napisał:

To nie jest prawda objawiona tylko założenie - może prawdziwe, może nie

Jeżeli pwn mówi, że tak jest to tak jest, a nie że założenie. Gdyby nie było pewności, to nie napisaliby takiego zdania. W ogóle z czego ja się tłumaczę? Mam bronić tego co pwn napisało i udowodnić, że ma rację? Dobre.

9 minut temu, Jarek Duda napisał:

nie podając źródła tej dodatkowej energii - w tej postaci będąc sprzeczna z dość fundamentalną zasadą zachowania energii.

Powiedziałem przecież, że nie jest sprzeczna z prawem zachowania energii, jeśli przyjmiemy układ otwarty. Ciężko to zapamiętać? Ja wiem, że ten bloger pokrętnie to tłumaczył, ale tego nie cytowałem, bo nie odnosiłem się do tego. Energia może być czerpana z innych wymiarów postulowanych przez teorię strun, superstrun itp. Wszystko idealnie wtedy jest wyjaśnione.

A tego już nie rozumiem do końca, ale podoba mi się:

Cytat

Druga i trzecia właściwość ciemnej energii - zdolność do przyspieszenia ekspansji wszechświata i jej stałość w czasie (lub, bardziej ogólnie, bardzo powolne uzależnienie czasowe) - są w rzeczywistości ściśle ze sobą powiązane. Takie połączenie wynika z równań ogólnej teorii względności. W ramach tej teorii przyspieszenie ekspansji wszechświata następuje dokładnie wtedy, gdy gęstość energii w nim albo wcale się nie zmienia, albo zmienia się bardzo powoli. Tak więc antygrawitacja ciemnej energii i jej złożone relacje z prawem zachowania energii są dwiema stronami tego samego medalu.

 

Share this post


Link to post
Share on other sites

Pod tym artykułem PWN jest autor: Stanisław Bajtlik - przedstawiający swoją opinię, wskazując ulubioną teorię: kwintesencji.

Tutaj jest więcej hipotetycznych teorii: https://en.wikipedia.org/wiki/Dark_energy#Theories_of_dark_energy - zapytać się kogoś innego to pewnie wskaże inną.

Natomiast proszę wskaż mi tą która została potwierdzona eksperymentalnie? Eksperyment to główna różnica między nauką a religią.

Niestety jesteśmy bardzo daleko do tego - wcześniej zostają tylko subiektywne indywidualne opinie, mniej lub bardziej zgodne z innymi zasadami jak zachowania energii.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
Posted (edited)
29 minut temu, Jarek Duda napisał:

Raczej nie - nawet ciemnej energii jeszcze nie udało się bezpośrednio zaobserwować.

I co z tego? Teraz próbujesz deprecjonować jej istnienie.

10 minut temu, Jarek Duda napisał:

Pod tym artykułem PWN jest autor: Stanisław Bajtlik - przedstawiający swoją opinię, wskazując ulubioną teorię: kwintesencji.

A to ciekawe, bo nigdzie nie napisano, że stałość gęstości CE to opinia, tylko opisano to jako fakt. Więc pytanie: kłamiesz, mylisz się, czy pwn jest nieprecyzyjna?

Edited by mankomaniak

Share this post


Link to post
Share on other sites
2 hours ago, Jarek Duda said:

Ale w kosmologii raczej jesteśmy daleko od bycia pewnym czegokolwiek. Na przykład przyciąganie grawitacyjne (ściągające Wszechświat) maleje 1/r^2. Przyjmuje się że rozszerzanie jednak przyśpiesza z powodu ciemnej energii - prawo zachowania energii mówi że jej gęstość powinna maleć 1/r^3, czyli w końcu 1/r^2 grawitacja powinna wygrać - ostatecznie prowadząc do zapaści do punktu "Big Crunch".

W swoich rozważaniach przyjmujesz  błędne założenie, że prawo grawitacji Newtona  F = G*M*m/(r*r) obowiązuje również w przypadku znacznych odległości kosmicznych rzędu  milionów lat świetlnych. Tymczasem wiadomo, że tak nie jest. Przyspieszanie Wszechświata jest przypisywane ciemnej energii, której natura nie jest zbyt dobrze poznana. Mechanizm przyspieszania można by wyjaśnić wykorzystując znane  prawa fizyki przy założeniu zmiennej gęstości energetycznej próżni. Od czasu opublikowania prac holenderskiego fizyka Hendrika Casimira i Dicka Poldera dotyczącego tzw. efektu Casimira, czyli oddziaływań kwantowych na siły powierzchniowe pomiędzy dwoma nienaładowanymi płytami w 1948 r. wiadomo, że próżnia nie jest tak naprawdę pusta, a wypełniają ją cząstki wirtualne - pary komplementarne elektron-pozyton, które pozostają w równowadze energetycznej tzn. ulegają anihilacji a następnie kreacji w tej samej ilości. Kwantowa próżnia tworzy tzw. pole Higgsa, w którym cząstki masowe nabywają masę dzięki bozonom Higgsa . W krótkim czasie po Wielkim Wybuchu (WW) Wszechświat ekspandował szybciej niż prędkość światła w próżni, gdyż rozszerzała się wówczas sama energia w fałszywej próżni. Po powstaniu masywnych cząstek i pierwiastków pojawiły się siły grawitacyjne, które oddziaływały również na cząstki wirtualne (pary elektron-pozyton) . Aproksymując ówczesny Wszechświat do wielkiej kuli na warstwy znajdujące się dalej od epicentrum WW oddziaływały większe siły grawitacyjne  przy założeniu jednakowej gęstości masowej ówczesnego Wszechświata co jest zgodne z prawem Newtona. Powodowało to różnicowanie się gęstości energetycznej Wszechświata, która z czasem zaczęła maleć wraz z odległością od epicentrum WW. Korzystając z zasady zachowania energii lub zasady zachowania pędu prędkość galaktyk będzie rosła coraz bardziej w miarę poruszania się w coraz „rzadszej” próżni, gdyż na bozony Higgsa masywnych cząstek w tych galaktykach będzie oddziaływało coraz słabsze pole Higgsa, a przez to wartość masy tych cząstek będzie coraz mniejsza.

Share this post


Link to post
Share on other sites

mankomaniak, jak napisałem - nie wiem i uważam że zdecydowanie za wcześniej na pychę żeby tutaj mówić coś pewnego. Trudno mi dyskutować z prawdą objawioną - wskaż konkretny eksperyment np. potwierdzający stałość gęstości ciemnej energii to chętnie się przyjrzę.

Qion, siła Casimira w praktyce raczej działa na mikroskopowych odległościach ... co ciekawe ma też hydrodynamiczny analog:

 

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
39 minut temu, Jarek Duda napisał:

mankomaniak, jak napisałem - nie wiem i uważam że zdecydowanie za wcześniej na pychę żeby tutaj mówić coś pewnego.

Teraz już inaczej śpiewasz. Przypomnę, co napisałeś na początku:

3 godziny temu, Jarek Duda napisał:

Przyjmuje się że rozszerzanie jednak przyśpiesza z powodu ciemnej energii - prawo zachowania energii mówi że jej gęstość powinna maleć 1/r^3, czyli w końcu 1/r^2 grawitacja powinna wygrać - ostatecznie prowadząc do zapaści do punktu "Big Crunch".

Więc skoro "przyjmuje się", to i ty przyjmujesz, bo następnie zaczynasz się pogrążać, twierdząc, że gęstość CE powinna spadać zgodnie z prawem zachowania energii. Wykazałem ci, że tak nie jest i tak być nie musi. Co więcej, poczytaj sobie, np.

Dark energy as the weight of violating energy conservation

to może w końcu dotrze, że opowiadasz bzdury.

Godzinę temu, Jarek Duda napisał:

Natomiast proszę wskaż mi tą która została potwierdzona eksperymentalnie? Eksperyment to główna różnica między nauką a religią.

Niczego nie muszę wskazywać, bo to nie o to tutaj chodzi. To ty przecież zacząłeś od teoretyzowania o ciemnej energii. To ty przyjąłeś błędne założenia i jako z góry pewne. Wynika z tego, że to ty uprawiasz religię,  nie ja. Ja tylko wykazałem twoją niewiedzę, a także to, że twoje wnioski są błędne.

Share this post


Link to post
Share on other sites

W przeciwieństwie do wielu wymyślonych modeli kosmologicznych, przykładami potwierdzonych podstawowych zasad fizyki są:

1) całkowita energia przy założeniu stałej gęstości = gęstość energii razy objętość

2) całkowita energia jest zachowana - jeśli gdzieś przybywa, to gdzie indziej musi ubyć.

Z którą z tych zasad się nie zgadzasz i dlaczego?

Jeśli zgadzasz się z obydwiema, to założenie że gęstość nie zmienia się z czasem, w połączeniu z rozszerzaniem się wszechświata, oznacza że całkowita energia wszechświata rośnie - nieprawdaż?

Jeśli tak to z zachowania energii potrzebujemy skądś ją brać - skąd?

Share this post


Link to post
Share on other sites

@UP

Ciemne materia i energia jak na razie są zaledwie teoretycznymi konstruktami wstawionymi do równań, aby te zgadzały się z obserwacjami. Jakiekolwiek twierdzenia na ich temat niewiele mają wspólnego z rzeczywistością. Równie dobrze mogę twierdzić, że za redshift odpowiadają "fioletowe międzygalaktyczne duszki".

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
33 minuty temu, Jarek Duda napisał:

Jeśli tak to z zachowania energii potrzebujemy skądś ją brać - skąd?

A skąd mam wiedzieć, może z ukrytych wymiarów. To ja tak samo mogę zapytać a skąd w ogóle wzięła się energia? Zgodnie z twoim rozumowaniem, nie może wziąć się z niczego, zatem musiała istnieć zawsze, czyli też przed powstaniem wszechświata. Ale to oznacza, że musiał istnieć inny wszechświat, w którym ta energia mogłaby istnieć i w jakiś sposób uwolnić się do nowego wszechświata. No to już masz logiczną odpowiedź - może ten proces odbywa się jakby ciągle.

Share this post


Link to post
Share on other sites

Przechodzisz do innego problemu o którym wspominałem - hipotezy początku czasu, sprzecznej np. z symetrią CPT czy zachowaniem energii.

Dlatego osobiście preferuję hipotezę rozwiązującą m.in. te problemy (wymagając żeby nasz wszechświat ostatecznie się zapadł) - cyklicznego wszechświata w którym stała energia periodycznie się zapada i ponownie wybucha:

https://en.wikipedia.org/wiki/Cyclic_model

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed dwoma tygodniami rozpoczęto testowanie nowego potężnego narzędzia, którego zadaniem jest stworzenie mapy milionów galaktyk oraz dokonanie pomiarów ich ruchu. Robotyczny instrument o nazwie DESI pozwoli astronomom na określenie ilości ciemnej energii oraz zachodzących w niej zmian.
      Dark Energy Spectroscopic Instrument (DESI) został zainstalowany w teleskopie znajdującym się w Kitt Peak National Observatory w Arizonie. Jego instalowanie zajęło specjalistom aż 18 miesięcy.
      DESI oficjalnie rozpocznie pracę na początku przyszłego roku. W idealnych warunkach instrument będzie rejestrował nawet 5000 galaktyk w ciągu 20 minut. Naukowcy spodziewają się, że w ciągu 5 lat pracy DESI zarejestruje światło z 35 milionów galaktyk i 2,4 miliona kwazarów. Tak wysoka wydajność jest możliwa dzięki zastosowaniu robotyki. Wewnątrz instrumentu umieszczono 5000 światłowodów oraz urządzenia do precyzyjnego pozycjonowania każdego z nich. Urządzenia te są w stanie w ciągu kilku minut ustawić wszystkie światłowody w predefiniowanej pozycji.
      DESI będzie zbierał konkretne długości fali światła z poszczególnych galaktyk, a astronomowie na tej podstawie określą, jak szybko oddalają się one od nas. Możliwe będzie też dokonanie pomiarów odległości każdej z galaktyk do Ziemi względem innych galaktyk. Lokalizacja galaktyk oraz ich względne odległości posłużą do stworzenia trójwymiarowej mapy wszechświata obejmującej przestrzeń w promieniu do 11 miliardów lat świetlnych.
      Dzięki pomiarom na temat tempa ruchu galaktyk astronomowie będą mogli ocenić ilość ciemnej energii, a jako że DESI dostarczy indywidualnych danych dla milionów galaktyk, możliwe będzie określenie ilości ciemnej energii w konkretnym miejscu i konkretnym czasie. To zaś pozwoli stwierdzić czy, zgodnie z założeniami współczesnej kosmologii, ilość ciemnej energii we wszechświecie jest stała czy też w jakiś sposób zmienia się w czasie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcom udało się przeprowadzić symulację okresu „ponownego ogrzewania” (reheating), który stworzył warunki do Wielkiego Wybuchu. Wielki Wybuch nastąpił około 13,8 miliardów lat temu. Jednak obecnie fizycy nie postrzegają Wielkiego Wybuchu jako wydarzenia inicjującego, które nastąpiło w czasie t=0.
      Współczesna kosmologia, mówiąc o Wielkim Wybuchu ma na myśli moment, na samym początku istnienia wszechświata, w którym zaistniały warunki konieczne do zaistnienia Wielkiego Wybuchu. To zaś oznacza, że ówczesny wszechświat był wypełniony wieloma różnymi typami gorącej materii, znajdującej się w termicznej równowadze. To stan równowagi zdominowany przez promieniowanie. Masy cząstek wypełniających wówczas wszechświat były znacznie mniejsze niż średnia temperatura wszechświata.
      W takim pojęciu mieści się więc założenie, że przed Wielkim Wybuchem miały miejsce wydarzenia, w wyniku których powstały warunki do Wielkiego Wybuchu. I właśnie te warunki postanowił zbadać profesor David I. Kaiser wraz ze swoim zespołem z MIT oraz Kenyon College.
      Przed Wielkim Wybuchem miała miejsce inflacja kosmologiczna. Trwała ona biliardową część sekundy, jednak w tym czasie zima materia zaczęła się gwałtownie rozszerzać, zanim procesy Wielkiego Wybuchu przejęły kontrolę, spowolniły to rozszerzanie i doprowadziły do dywersyfikacji rodzącego się wszechświata.
      Dokonane w ostatnim czasie obserwacje potwierdzają Wielki Wybuch oraz inflację kosmologiczną, jednak zjawiska te są tak bardzo od siebie różne, że naukowcy mieli dotychczas problem z ich połączeniem.
      Kaiser wraz z zespołem przeprowadzili szczegółową symulację fazy przejściowej, która połączyła inflację z Wielkim Wybuchem. Faza ta, znana pod nazwą „ponownego ogrzewania” (reheating) miała miejsce na samym końcu inflacji, a w jej wyniku z zimnej homogenicznej zupy wyłoniła się super gorąca złożona mieszanina, która dała początek Wielkiemu Wybuchowi.
      Postinflacyjne ponowne ogrzewanie stworzyło warunki dla Wielkiego Wybuchu. Podpaliło lont. To okres, w którym rozpętało się piekło, a materia zaczęła zachowywać się w bardzo złożony sposób, wyjaśnia Kaiser.
      Uczeni symulowali interakcje jaki zachodziły pomiędzy poszczególnymi rodzajami materii po zakończeniu procesu inflacji. ich badania wykazały, że olbrzymia ilość energii, która napędzała inflację, błyskawicznie się rozprzestrzeniła, tworząc warunki do Wielkiego Wybuchu.
      Okazało się także, że do takich gwałtownych zmian mogło dojść jeszcze szybciej i zachodziły one bardziej efektywnie, jeśli zjawiska kwantowe zmodyfikowały sposób, w jaki materia przy wysokich energiach reaguje na oddziaływanie grawitacji. Zjawiska te odbiegają od tych opisanych przez ogólną teorię względności. To pozwala nam opisanie całego ciągu wydarzeń, od inflacji, poprzez okres postinflacyjny po Wielki Wybuch i dalej. Możemy śledzić rozwój poszczególnych znanych procesów fizycznych i stwierdzić na tej podstawie, że jest to prawdopodobny rozwój wydarzeń, które doprowadziły do tego, że obecnie wszechświat jest taki, jakim go widzimy, dodaje uczony.
      Teoria inflacji została opracowana w latach 80. przez Alana Gutha z MIT. Mówi ona, że historia wszechświata rozpoczęła się od niezwykle małe punktu, wielkości miliardowych części średnicy protonu. Ten punkt był wypełniono wysokoenergetyczną materią. Jej energia była tak wielka, że powstały siły grawitacyjne odpychające się wzajemnie, które wywołały gwałtowną inflację. Proces ten był niezwykle gwałtowny. W czasie krótszym niż bilionowa część sekundy ten zaczątek wszechświata zwiększył swoją objętość kwadryliard (1027) razy.
      Kaiser i jego zespół badali, co stało się po zakończeniu inflacji, a przed Wielkim Wybuchem. Najwcześniejsza faza ponownego ogrzewania powinna charakteryzować się istnieniem rezonansów. Dominuje jedna forma wysokoenergetycznej materii która wstrząsa w tę i z powrotem całą olbrzymią przestrzenią, rezonując sama ze sobą, prowadząc do gwałtownego powstawania nowych cząstek. To nie trwa wiecznie. W miarę, jak przekazuje ona swoją energię drugiej formie materii, jej własne oscylacje stają się bardziej chaotyczne i nierówne. Chcieliśmy się dowiedzieć, jak długo trwało, zanim ten efekt rezonansowy się załamał i jak stworzone cząstki rozpraszały się na sobie nawzajem tworząc równowagę termiczną, warunki potrzebne do powstania Wielkiego Wybuchu.
      Uczeni do symulacji wybrali konkretny model inflacyjny i jego warunki wyjściowe. Zdecydowali się na ten, którego założenia najlepiej odpowiadają precyzyjnym pomiarom mikrofalowego promieniowania tła. Podczas symulacji śledzono zachowanie dwóch typów materii podobnych do bozonu Higgsa, które były dominującymi typami w czasie inflacji. Model zmodyfikowali też o taki rodzaj oddziaływań grawitacyjnych, jakie powinny istnieć w świecie materii o znacznie wyższych energiach, tak, jak to było w czasie inflacji. W takich warunkach siła grawitacji może być różna w czasie i przestrzeni.
      Symulacja wykazała, że im silniejszy wpływ grawitacji zmodyfikowanej o efekt kwantowy, tym szybciej zachodziła przemiana ze stanu zimnej homogenicznej materii, w zróżnicowane formy gorącej materii, które są charakterystyczne dla Wielkiego Wybuchu.
      Ponowne ogrzewanie to był szalony okres, w którym wszystko oszalało. Wykazaliśmy, że materia wchodziła w tak silne interakcje, że mogło dojść do równie szybkiego rozprężenia i pojawienia się warunków do Wielkiego Wybuchu. Nie wiemy, czy tak to wyglądało, ale tak wynika z naszych symulacji, którą przeprowadziliśmy wyłącznie z uwzględnieniem znanych nam praw fizyki, mówi Kaiser.
      Prace Amerykanów pochwalił profesor Richard Easther z University of Auckland. Istnieją setki propozycji dotyczących inflacji. Jednak przejście od inflacji do Wielkiego Wybuchu jest najmniej zbadanym elementem całości. Ta praca kładzie podwaliny pod precyzyjne symulowania epoki postinflacyjnej.
      Ze szczegółami pracy można zapoznać się na serwerze arXiv [PDF].

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Tegoroczne Nagrody Nobla z dziedziny fizyki zostały przyznane za wkład w zrozumienie ewolucji wszechświata i miejsca Ziemi w kosmosie. Otrzymali je James Peebles za teoretyczne odkrycia w dziedzinie kosmologii fizycznej oraz Michel Mayor i Didier Queloz za odkrycie egzoplanety krążącej wokół gwiazdy typu Słońca.
      James Peebles to Kanadyjczyk pracujący obecnie na Princeton University. Michel Mayor jest Szwajcarem, pracuje na Uniwersytecie w Genewie. Podobnie zresztą jak Didier Queloz, który dodatkowo zatrudniony jest na Cambridge University.
      Profesor Peebles, odpowiadając podczas konferencji prasowej na pytanie o możliwość istnienia życia na innych planetach, stwierdził: Ironią jest, że możemy być pewni, że istnieje wiele planet zdolnych do podtrzymania życia [...], ironią jest, że mamy wizję życia na innych planetach, ale możemy być pewni, że nigdy nie zobaczymy tych form życia, tych planet. To pokazuje, jak wielkie są możliwości i jak wielkie są ograniczenia nauki, powiedział noblista.
      Niestety, wbrew naszym oczekiwaniom, tegorocznym laureatem nie został profesor Artur Ekert, o którego szansach na nagrodę informowaliśmy wczoraj.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Tibet AS-gamma Experiment zarejestrował najbardziej intensywne promieniowanie pochodzące ze źródła astrofizycznego. Energia fotonów pochodzących z Mgławicy Kraba wynosiła ponad 100 teraelektronowoltów (TEV), to około 10-krotnie więcej niże maksymalna energia uzyskiwana w Wielkim Zderzaczu Hadronów.
      Naukowcy spekulują, że źródłem tak intensywnego promieniowania jest pulsar ukryty głęboko we wnętrzu Mgławicy.
      Pojawienie się Mgławicy Kraba zostało zauważone na Ziemi w 1054 roku. Wydarzenie to odnotowały źródła historyczne. Jako, że Mgławica położona jest w odległości ponad 6500 lat świetlnych od Ziemi wiemy, że eksplozja, w wyniku której powstała, miała miejsce około 7500 lat temu.
      Nowa gwiazda została po raz pierwszy zaobserwowana 4 lipca 1054 roku. Jej pojawienie się odnotowały chińskie źródła. W ciągu kilku tygodni przygasła, a dwa lata po pojawieniu się zniknęła zupełnie. Obecnie wiemy, że jej pojawienie się odnotowano też w XIII-wiecznym japońskim dokumencie oraz w źródłach arabskich. Niewykluczone też, że jest wspominana w źródłach europejskich.
      Mgławica Kraba została po raz pierwszy odkryta w 1731 roku przez Johna Bevisa. Następnie obserwowali ją inni astronomowie. Nazwę nadal jej William Parsons w 1844 roku. W latach 20. XX wieku ostatecznie stwierdzono, że Mgławica Kraba to pozostałość supernowej z 1054 roku. Tym samym stała się ona pierwszym obiektem astronomicznym powiązanym z eksplozją supernowej.
      Mgławica Kraba emituje promieniowanie niemal w każdym zakresie fal. Wysyła zarówno niskoenergetyczne fale radiowe, wysokoenergetyczne promieniowanie gamma i rentgenowskie, emituje też światło widzialne. Jednak zarejestrowanie ultraenergetycznego promieniowania to coś nowego.
      Wysokoenergetyczne fotony, takie jak promieniowanie gamma, z trudnością przedziera się przez ziemską atmosferę. Gdy promienie gamma trafią na atomy w atmosferze, powstaje cały deszcz innych cząstek. Jednak astronomowie nauczyli się rejestrować te cząstki. Najlepiej zrobić to za pomocą narzędzi o dużej powierzchni. Takich jak Tibet AS-gamma, który składa się z 597 detektorów rozrzuconych na przestrzeni niemal 66 000 metrów kwadratowych. A kilka metrów pod detektorami znajdują się 64 betonowe zbiorniki wypełnione wodą, która służy jako dodatkowy wykrywacz.
      Dzięki rozłożeniu detektorów na dużej powierzchni można śledzić kierunek i energię wysokoenergetycznych wydarzeń, a woda pozwala na rejestrowanie specyficznych sygnatur takich zjawisk. Dzięki temu specjaliści potrafią odróżnić promieniowanie gamma od promieniowania kosmicznego.
      Dane zebrane pomiędzy lutym 2014 roku a majem roku 2017 ujawniły istnienie 24 wydarzeń o energiach przekraczających 100 TeV pochodzących z Mgławicy Kraba. Niektóre z docierających do nas promieni miały energię dochodzącą do 450 TeV.
      Obecnie nie jest jasne, w jaki sposób powstają fotony o tak wysokich energiach, ani czy istnieje jakaś granica intensywności promieniowania. Specjaliści pracujący przy Tibet AS-gamma wyznaczyli sobie ambitny cel – zarejestrowanie fotonów o energiach liczonych w petaelektronowoltach, czyli przekraczających 1000 TeV. Biorąc pod uwagę, że analizy takich zjawisk trwają całymi latami, nie można wykluczyć, iż tego typu fotony już zostały przez Tibet AS-gamma zarejestrowane. Teraz wystarczy je tylko zidentyfikować w danych.

      « powrót do artykułu
×
×
  • Create New...