Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

  W dniu 3.08.2019 o 21:13, mankomaniak napisał:

Czyli błędu już nie ma. Internetowa encyklopedia ma to do siebie, że błędy będą poprawiane. Gdyby o ciemnej energii napisano błędnie, na pewno dawno by ktoś im to wytknął i też by poprawili.

oczywiscie, ze są poprawiane, jednak by Ci Mankomaniak napisal dwoma linkami udowodnilem Ci że glupoty piszesz i jezeli PWN coś mówi to tak nie musi być każdy logicznie myślący człowiek to wie , no ale tak by Ci napisal Mankomaniak, ja Ci tak nie napiszę ;)

Ja Ci napiszę, że już wielu w historii rozwoju naszej nauki myśleli że już coś jest na pewno a potem inni przychodzili i jednak tak nie do końca się okazało. Nie znam sie, wiec nie wypowiem czy pan z pwn ma racje czy nie ale wystarczy ze by dali innego eksperta bardziej ostrożnego czy tez "uznającego" inne hipotezy i trz byś pisał "bo pwn mówi".

 

Więcej pokory.

 

No ale to na boku bylo ni chu chu sie nie znam ale lubię o.tym czytac (spory też)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 3.08.2019 o 11:22, Jarek Duda napisał:

Też zapaść jest konieczna dla możliwości modelu cyklicznego ( https://en.wikipedia.org/wiki/Cyclic_model ), który pozwala uniknąć bardzo problematycznego momentu początku czasu

W zasadzie modele cykliczne tego problemu nie rozwiązują - przesuwają tylko w nieskończoność. Zresztą innych problemów też nie rozwiązują.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 4.08.2019 o 02:07, ex nihilo napisał:

W zasadzie modele cykliczne tego problemu nie rozwiązują - przesuwają tylko w nieskończoność. Zresztą innych problemów też nie rozwiązują.

W przeciwieństwie do hipotezy że na początku naszego wielkiego wybuchu rzeczywiście rozpoczął się czas, modele cykliczne pozwalają uniknąć sprzeczności z podstawowymi dobrze zweryfikowanymi eksperymentalnie zasadami: jak zasada zachowania energii, symetria CPT, czy ograniczenie przyczynowości do prędkości świata.

Fizyka może szukać wewnętrznie spójnych teorii, przede wszystkim zgodnych z tym co zostało wiarygodnie zweryfikowane eksperymentalnie - ale jeśli pytasz się o genezę, tutaj raczej nigdy nie będzie podstaw dla jakiejś wiarygodnej odpowiedzi (nawet jeśli pwn napisałoby inaczej czy sam bóg by się we śnie objawił) - pozostaje rozważanie hipotez: przed wszystkim czy nasz wszechświat pojawił się z niczego w punkcie który łamie większość zasad znanej fizyki, czy może po prostu istniał i będzie istniał wiecznie: cyklicznie zapadając się i rozszerzając w wyniku grawitacji ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie wskazuję konkretnego modelu - uważam że zdecydowanie za wcześnie na szczegóły ... tylko ogólną (subiektywną) filozofię: wszechświat to stała ilość energii - która zapada się grawitacyjnie, w pewnym momencie prawie do punktu - który z zachowania energii zaczyna kolejny wielki wybuch i rozszerzenie - w którym w końcu wygrywa grawitacja prowadząc do kolejnego zapadnięcia ... i tak dalej cyklicznie w nieskończoność.

Ogólnie intuicyjny sposób myślenia "ewoluujące 3D" z wielkim wybuchem na początku jest myśleniem narzucającym asymetrię czasu ... podczas gdy fundamentalne modele których skutecznie używamy są czasowo/CPT symetryczne (jak cykliczny wszechświat): mechaniki Lagranżowskie (od QFT do ogólnej teorii względności), ewolucja unitarna, zespoły po trajektoriach: np. Feynmanowskie równoważne z QM.

Ta narzucona intuicyjna asymetria czasu jest w "lokalnym realizmie" który prowadzi do paradoksów jak łamanie nierówności Bella. Zastępując go czasowo symetrycznym czasoprzestrzennym "4D lokalnym realizmem": z trajektoriami jako podstawowe obiekty, te paradoksy znikają. Dobrze to widać już w jednorodnym rozkładzie po trajektoriach ( https://en.wikipedia.org/wiki/Maximal_entropy_random_walk ) - który już prowadzi do "kwantowych" własności jak lokalizacja Andersona, reguła Borna, czy wynikłe łamanie nierówności Bella: https://arxiv.org/pdf/0910.2724

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 3.08.2019 o 21:41, Afordancja napisał:

Nie znam sie, wiec nie wypowiem czy pan z pwn ma racje czy nie ale wystarczy ze by dali innego eksperta bardziej ostrożnego czy tez "uznającego" inne hipotezy i trz byś pisał "bo pwn mówi".

To znajdź hipotezy, gdzie jest powiedziane, że gęstość ciemnej energii się zmienia. Inaczej tylko filozofujesz. Stałość gęstości ciemnej energii nie jest założeniem, jak nasz "ekspert" twierdzi.

Edytowane przez mankomaniak

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

mankomaniak, w fizyce jest wiele poziomów wiarygodności - najlepszy jest bezpośredni eksperyment, dużo dalej wniosek z modelu - zwykle po drodze ukrywający setki założeń, szczególnie w kosmologii ... na samym końcu jest subiektywna opinia pojedynczego eksperta - gdyby pwn zapytało o ten artykuł np. prof. Kutscherę z UJ, jego treść byłaby raczej absolutnie inna.

Artykuł pwn który wskazujesz jest przykładem tego ostatniego. Chcesz ciut bardziej obiektywne źródła to idź do angielskiej Wikipedii - tysiące specjalistów z całego świata pilnuje żeby w miarę obiektywnie reprezentować aktualny konsensus ... co jest dalej dalekie do stwierdzenie że to co tam jest napisane jest prawdą - do czego potrzebujesz eksperymentów, najlepiej bezpośrednich ... które już dla ciemnej materii uparcie dają brak obserwacji, a dla ciemnej energii chyba jeszcze żadnego nie było (?), a przynajmniej żadnego udanego.

  W dniu 4.08.2019 o 10:00, Astro napisał:

Wybacz, ale to już stanowczo nie mój kościół.

Rozumiem że w przeciwieństwie do chyba większości fizyków, nie akceptujesz symetrii CPT - masz może jakiś argument na jej łamanie?

Osobiście nie akceptuję wszystkich równań, ale symetria czasowa/CPT jest kluczowa dla skutecznych modeli których używamy i nie znam realnego argumentu przeciw.

Standardowym jest druga zasada termodynamiki - ale termodynamika to nie poziom fundamentalny, tylko efektywny: konkretnego rozwiązania w którym żyjemy. Jak symetria powierzchni jeziora jest złamana na poziomie rozwiązania np. rzucając kamień. U nas tym "kamieniem" był wielki wybuch - wszystko było zlokalizowane: niska entropia - powodują gradient entropii (drugą zasadę) ... i zaczynając związki przyczynowo-skutkowe prowadzące do nas.

Edytowane przez Jarek Duda
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 4.08.2019 o 10:00, Astro napisał:

Manko, wskaż proszę JEDEN pomiar na potwierdzenie tego o czym mówisz. Mylisz jednorożce z linijkami.

Niczego nie mylę, to nie ja napisałem w renomowanej encyklopedii, że to własność ciemnej energii. Rozumiesz co to znaczy własność? To znaczy, że tak wynika z teorii, zapewne m.in. z teorii względności. A teoria względności została potwierdzona eksperymentalnie. To ty i nasz "ekspert" powinniście udowodnić, że ja się mylę, a nie ja. To wy powinniście wskazać konkretne źródła, gdzie będzie napisane, że gęstość CE wcale nie musi być stała, bo to tylko jakieś tam założenie etc. Na chwilę obecną jest tak, że ja - totalny laik przypominam - jako jedyny posługuję się rzetelnymi źródłami na potwierdzenie swoich racji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Astro, może to się zmieni, ale jak na razie wszystkie próby bezpośredniej obserwacji ciemnej materii zakończyły się niepowodzeniem: https://en.wikipedia.org/wiki/Dark_matter#Detection_of_dark_matter_particles

Aktualnie jest wnioskiem z modeli, stwierdzeniem że czegoś brakuje w naszym zrozumieniu - do bezpośredniej obserwacji mamy tylko zgadywanie czego nie rozumiemy.

Co do symetrii czasu/CPT, sprzeciwiłeś się że powinniśmy się ją uwzględnić w problematycznym "lokalnym realizmie" - w takim razie proszę rozwiń.

Edytowane przez Jarek Duda

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 4.08.2019 o 10:09, Jarek Duda napisał:

na samym końcu jest subiektywna opinia pojedynczego eksperta

Jest tylko jeden problem. W tej "opinii" autor stwierdził, że stała gęstość ciemnej energii to jej własność, a ty nie potrafisz nawet odpowiedzieć, dlaczego tak napisał. Z czego to wynika? Nie wiesz tego - i to jest problem deprecjonujący ciebie jako eksperta. Nie jesteś nim w tym konkretnym zagadnieniu, bo umiałbyś odpowiedzieć na to, co jest przesłanką do tak stanowczej "opinii".

Edytowane przez mankomaniak

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

OTW to jest bardzo odległa ekstrapolacja tego co możemy potwierdzić eksperymentalnie - nie mam pychy twierdzić że wiem że jest prawdziwa lub nieprawdziwa.

Ale skoro wierzysz w OTW, czy nie ma ona lokalnego realizmu?

Ma, ale trochę inny niż ten intuicyjny - mianowicie z symetrią czasową, nieprawdaż?

Np. OTW, przynajmniej w teorii, pozwala na wormhole - co jeśli wkleja się on w sposób nieorientowalny jak w butelce Kleina - tak że przechodząc przez niego przeszły i przyszły stożek światła zostają zamienione?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  Cytat

wszechświat to stała ilość energii - która zapada się grawitacyjnie, w pewnym momencie prawie do punktu - który z zachowania energii zaczyna kolejny wielki wybuch i rozszerzenie - w którym w końcu wygrywa grawitacja prowadząc do kolejnego zapadnięcia ... i tak dalej cyklicznie w nieskończoność.

Wątpliwe aby taki model był prawidłowy. Naprawdę nie ma powodu aby w pewnym momencie grawitacja zaczęła zwyciężać. Zwłaszcza im dalej się wszechświat rozszerzy tym więcej fragmentów Wszechświata straci kontakt przyczynowo-skutkowy ze sobą. Co prawda to nie przeszkadza polom kwantowym.
Na ile się orientuję to obecnie bardziej poważnie rozważa się śmierć cieplną Wszechświata.

Tak samo założenie o stałej ilości energii - nie musi być spełnione w skali Wszechświata, zarówno na poziomie piany kwantowej jak i na poziomie przekraczającym widzialny Wszechświat. 
Raczej widziałbym Wszechświat jako twór o stale rosnącej energii. Jeśli próżnia ma energię, a ma, to im większy jest Wszechświat tym więcej tej energii jest.

Ten rysunek poniżej trochę pomoże odnośnie H.
Wbrew pozorom moim zdaniem:
1. To nie są wielkie różnice. 
2. Stała Hubbla to zawsze jest taka średnia liczona dla wielu wielu odległości. Jako że dawniej Wszechświat jednak był mniejszy to średnia jest z innych liczb wyciągana.
Więc ogólnie poza inflacją to nie widzę powodu żeby stała Hubbla musiała się zmieniać w historii. 

comment_PYmatjkqPLsLXP2Qyh8vtj9Fa1RM2hE6

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 4.08.2019 o 10:27, Jarek Duda napisał:

Aktualnie jest wnioskiem z modeli, stwierdzeniem że czegoś brakuje w naszym zrozumieniu - do bezpośredniej obserwacji mamy tylko zgadywanie czego nie rozumiemy.

Tak.

Czegoś nie rozumiemy. Ciemna materia to tylko jakieś proponowane wyjaśnienie. Jak na razie wszystkie eksperymenty mające ją potwierdzić - potwierdzają że jej nie ma. Oczywiście - jeden udany zdoła potwierdzić że jest. Ale ponieważ nie ma tego jedynego.
Obserwacje jednak w dużej skali wskazują że coś powinno być.

Swoją drogą to trochę podobnie jak z OTW i fizyką kwantową.
W małej skali widzimy coś innego niż w dużej. Może to nawet ma ze sobą związek.

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Astro, cieszę się że nie masz pewności - w przeciwieństwie do "przyziemnych" teorii, od OTW w górę trzeba zachowywać niezwykłą ostrożność - żeby szukać obiektywnej prawdy nie narzucając swojej pychy, pewnie jeszcze przez wieki zanim będziemy rzeczywiście mogli być pewni.

Natomiast jest dużo założeń które mają na tyle dobrą ewidencję eksperymentalną, że wydaje się że możemy ich bezpiecznie używać. Na przykład mechanika Lagranżowska - skutecznie używana od QFT do GR/OTW. Wszystkie mają skończoną prędkość propagacji - lokalność, też nie zależą od subiektywnego obserwatora - realizm. Jednak ich lokalność jest ciut inna niż intuicyjna (ta sprzeczna z Bellem) - posiada symetrię czasową: nie narzuca kauzalności tylko w jednym kierunku, ale np. ma równoważne czasowo-symetryczne sformułowanie przez optymalizację działania.

 

thinkim, dla mnie zasada zachowania energii to jest coś dobrze zweryfikowanego - potrzeba baardzo silnych argumentów żeby mieć pewność że może być łamana.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W przeciwieństwie do OTW, skala mikro ma olbrzymią ewidencję eksperymentalną z prawie wszystkich stron, bezpośredni wpływ na to co mierzymy - kwestia zebrania tego wszystkiego do kupy. Natomiast w OTW, kosmologii dużo gorzej z ewidencją - mamy głównie ekstrapolację: widząc kamień przewidujemy górę. Ale poprawia się się np. dzięki obserwacji fal grawitacyjnych - pewność będzie rosła, ale konieczna jest cierpliwość i ostrożność.

Mówiąc że wierzysz w OTW, znaczy że też wierzysz w formalizm Lagranżowski - który sam w sobie ma dużo założeń, jak używanie pochodnych wymagających lokalności, np dla wewnętrznej krzywizny z OTW.

No i przecież wyraźnie rozdzieliłem lokalność od realizmu w tym co zacytowałeś ... podkreślając że lokalność mechanik Lagranżowskich jest ciut inna niż ta intuicyjna lokalność: tylko pierwsza z nich jest czasowo/CPT symetryczna.

Edytowane przez Jarek Duda

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pominę kwestie językowe żeby jednak skupić się na części merytorycznej, też nic od Ciebie nie oczekuję.

Co do "intuicyjnej lokalności", jak już wiele razy pisałem - narzuca ona asymetrię czasową: że przyczynowość działa tylko w przyszłość.

Natomiast mechanika Lagranżowska jednak ma symetrię czasową/CPT, np. z równoważnym sformułowaniem przez optymalizację działania - przykładowo w OTW prowadząc do równania Einsteina jak:

wewnętrzna krzywizna czasoprzestrzeni jest proporcjonalna do tensora energii-pędu

jest ono czasowo-symetryczne: nie narzuca kierunku przyczynowości, tylko mówi o warunkach równowagi np. między przeszłością a przyszłością - jak w 4D galarecie: tzw. "block universe" Einsteina.

Jeszcze raz: jest drobna różnica między standardowym "lokalnym realizmem" narzucającym asymetrię czasową - prowadząc do paradoksów jak łamanie nierówności Bella, a czasowo-symetrycznym czasoprzestrzennym "4D lokalnym realizmem" - nie narzucającym kierunku przyczynowości: jak w optymalizacji działania np. w równaniu Einsteina, czy w zespołach po trajektoriach - jak Feynmanowskie równoważne z QM.

 

Może trochę rozwinę dlaczego uważam że "4D lokalny realizm" naprawia "kwantowe" paradoksy jak łamanie nierówności Bella. Podstawowa kwestia jest w tym że mamy tutaj dwa różne modele probabilistyczne:

1) standardowy, intuicyjny: prawdopodobieństwo alternatywy rozłącznych zdarzeń jest równe sumie ich prawdopodobieństw,

2) reguła Borna (rho ~ psi^2): prawdopodobieństwo alternatywy rozłącznych zdarzeń jest proporcjonalne do kwadratu sumy ich amplitud.

Nierówności typu Bella wyprowadzamy używając 1), natomiast mechanika kwantowa pozwala działać w 2) - czasem łamiąc takie nierówności wynikłe z innego modelu.

Pytanie sprowadza się do tego jak dostać reguły Borna - zakładając symetrię czasową rho ~ psi^2 samo wychodzi: jedno psi jest z przeszłości (zespołu po trajektoriach/propagatorze), drugie z przyszłości - np. w TSVF: https://en.wikipedia.org/wiki/Two-state_vector_formalism

Najprostszy zespół po trajektoriach - jednorodny (MERW: https://en.wikipedia.org/wiki/Maximal_entropy_random_walk ) już też to ma - na przykładzie nieskończonej studni [0,1]: zwykła dyfuzja powie rozkład jednorodny rho = 1 , mechanika kwantowa powie rho ~ sin^2 ... rozkład jednorodny po trajektoriach w przeszłość lub przyszłość powie rho ~ sin, po pełnych trajektoriach powie poprawnie rho ~ sin^2: mnożąc amplitudy z tych jednokierunkowych:

image.thumb.png.5eeb660e16dd3ddbebca73b0ba2b3041.png

Mając reguły Borna (np. z symetrii czasowej), możemy łamać nierówności Bella - najlepiej zobaczyć to na chyba najprostszej tego typu (Mermina): "rzucając 3 monetami, przynajmniej 2 dają tą samą wartość" - dla binarnych zmiennych ABC:   Pr(A=B) + Pr(A=C) + Pr(B=C) >= 1

Podczas gdy wydaje się absolutnie oczywista, mechanika kwantowa pozwala ją łamać ( https://arxiv.org/pdf/1212.5214 ). Zakładając same reguły Borna jak w MERW (szczegóły - strona 9 z  https://arxiv.org/pdf/0910.2724 ) też możemy ją łamać:

image.thumb.png.f6f3ad33728e9104967e380f2fcf6a4b.png

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Załóżmy dla uproszczenia że ta szklanka rozbija się w próżni bez grawitacji - symetria mówi że gdybyśmy nadali wszystkim kawałkom dokładnie przeciwny pęd i moment pędu, złożyłyby się w tą szklankę.

Ale znamy dużo prostsze sposoby zrobienia szklanki: korzystając z łańcuchów przyczynowo-skutkowych zapoczątkowanych w naszym wielkim wybuchu - z utworzeniem ziemi, piasku, wytopieniem z niego szklanki.

Symetria CPT mówi że teoretycznie analogiczne łańcuchy przyczynowo-skutkowe można by wykonać w przeciwnym kierunku czasowym, tylko jest to trudne do realizacji z perspektywy rozwiązania w którym żyjemy.

Będę odpowiadał na argumenty merytoryczne na temat - pozostałe ignoruję.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 4.08.2019 o 11:42, Jarek Duda napisał:

thinkim, dla mnie zasada zachowania energii to jest coś dobrze zweryfikowanego - potrzeba baardzo silnych argumentów żeby mieć pewność że może być łamana.

thikim jak już.

Proszę bardzo:
https://zapytajfizyka.fuw.edu.pl/pytania/zachowanie-energii-i-poczatki-wszechswiata/

  Cytat

Ta gęstość zmieniała się dość wolno, a objętość rosła bardzo szybko, więc całkowita energia również rosła — nie była zachowana. Było to możliwe, gdyż zasada zachowania energii nie stosuje się do pola grawitacyjnego w Ogólnej Teorii Względności, o ile czasoprzestrzeń nie jest asymptotycznie płaska. 

i drugi przypadek:
http://naukawpolsce.pap.pl/aktualnosci/news%2C30242%2Czapytajnaukowca-dlaczego-w-prozni-czastki-powstaja-i-znikaja.html

Ogólnie ciężko jest jednak przeoczyć to że wszechświat się rozszerza. Ba, nawet coraz szybciej - i pogodzić to z założeniem że energia jest stała.
Bo energia planet, gwiazd, fotonów pozostaje z grubsza niezmieniona.
Mamy jednak Wszechświat który się rozszerza, coraz szybciej nawet. Mamy energię próżni. Tej próżni mamy coraz więcej.

Ale pozostaje problem co z energią potencjalną? Co z energią kinetyczną? Co z energią próżni?
Nie da się tego pogodzić z zasadą zachowania energii.

  W dniu 4.08.2019 o 14:47, Jarek Duda napisał:

Będę odpowiadał na argumenty merytoryczne na temat - pozostałe ignoruję.

Będzie Ci coraz trudniej - wiesz o tym?

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Owszem zakładamy tutaj niezachowanie energii - że jest ono możliwe. Z drugiej strony QFT przewiduje energię próżni ponad sto rzędów za dużą (10^100) - po prostu nie wiemy: bawimy się w zgadywankę, wymyślamy założenia, modele - ale daleko do czegoś pewnego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A co jeśli teoria Wielkiego Wybuchu jest nieprawdziwa? Wtedy wszystkie te dywagacje nie mają sensu. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Symetria czasu/CPT jest w sercu teorii których używamy we wszystkich skalach - to coś więcej niż zgadywanka:

- mechaniki Lagranżowskie od QFT do GR/OTW - z symetrycznym sformułowaniem przez optymalizację działania jak równanie Einsteina: warunek równowagi między przeszłością a przyszłością,

- mechanika kwantowa jest unitarna: z ewolucją symetryczną w czasie - dla funkcji falowej wszechświata: gdzie nie ma otoczenia koniecznego dla kolapsu,

- w szczególnej teorii względności kierunek czasu jest subiektywny: zmienia się z prędkością obserwatora,

- w ogólnej teorii względności czas to równoważny wymiar, np. zamieniający się z przestrzennym pod horyzontem czarnej dziury,

- mamy równoważne sformułowanie mechaniki kwantowe przez Feynmanowskie zespoły po trajektoriach: obiekty symetryczne czasowo.

Przestając akceptować tą symetrię, wali się praktycznie cała fizyka teoretyczna .. https://en.wikipedia.org/wiki/CPT_symmetry#Derivation_of_the_CPT_theorem

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 4.08.2019 o 10:28, mankomaniak napisał:

Jest tylko jeden problem. W tej "opinii" autor stwierdził, że stała gęstość ciemnej energii to jej własność, a ty nie potrafisz nawet odpowiedzieć, dlaczego tak napisał. Z czego to wynika? Nie wiesz tego - i to jest problem deprecjonujący ciebie jako eksperta. Nie jesteś nim w tym konkretnym zagadnieniu, bo umiałbyś odpowiedzieć na to, co jest przesłanką do tak stanowczej "opinii".

Gęstość ciemnej energii nie musi być stała, a przynajmniej nie była na każdym etapie lub nawet rejonie Wszechświata. Badania włoskich naukowców Guido Risaliti i Elisabeta'y Lusso nie potwierdzają dotychczasowych założeń co do natury ciemnej energii:

 https://www.forbes.com/sites/startswithabang/2019/01/31/dark-energy-may-not-be-a-constant-which-would-lead-to-a-revolution-in-physics/#433f4210b737

(…)Recently, however, a team of scientists has begun using X-ray emitting quasars, which are much brighter and, hence, visible at even earlier times: when the Universe was only one billion years old. In an interesting new paper, scientists Guido Risaliti and Elisabeta Lusso use quasars as a standard candle to go farther back than we ever have in measuring the nature of dark energy. What they found is still tentative, but astounding nonetheless.

Using data from around 1,600 quasars, and a new method for determining the distances to them, they found a strong agreement with the supernova results for quasars from the past 10 billion years: dark energy is real, about two thirds of the energy in the Universe, and appears to be a cosmological constant in nature.

But they also found more distant quasars, which showed something unexpected: at the greatest distances, there's a deviation from this "constant" behavior. Risaliti has written a blog post here, detailing the implications of his work, including this gem:

Our final Hubble Diagram gave us completely unexpected results: while our measurement of the expansion of the Universe was in agreement with supernovae in the common distance range (from an age of 4.3 billion years up to the present day), the inclusion of more distant quasars shows a strong deviation from the expectations of the standard cosmological model! If we explain this deviation through a dark energy component, we find that its density must increase with time.

(…) Dark energy may not be a constant, after all, and only by looking to the Universe itself will we ever know for sure.

----------------------------------  

W tłumaczeniu:

(…) Jednakże ostatnio zespół naukowców rozpoczął badania kwazarów emitujących promienie X, które są znacznie jaśniejsze, a przez to widoczne z jeszcze wcześniejszych etapów ewolucji Wszechświata, gdy liczył on sobie zaledwie miliard lat. W interesującej pracy naukowcy Guido Risaliti i Elisabeta Lusso wykorzystują kwazary jako świetlne wskaźniki Modelu Standardowego (dosł. świeczki) aby cofnąć się do jeszcze wcześniejszych etapów, które nie były dotychczas brane pod uwagę w badaniach nad ciemną energią.  Ich odkrycia nie są jeszcze potwierdzone, ale nie mniej zdumiewające.

Wykorzystując dane z 1600 kwazarów i nowej metody określania odległości do nich doszli do zgodnego wniosku z wynikami badań supernowych z kwazarów jakie istniały przez ostatnie 10 miliardów lat: ciemna energia faktycznie istnieje stanowiąc 2/3 Wszechświata i wydaje się mieć stałą gęstość w naturze.

Jednakże znaleźli oni bardziej odległe kwazary, które wskazują na coś całkiem nieoczekiwanego: w znacznych odległościach występuje niezgodność w zachowaniu się tej „stałej”

(…) Końcowy wykres  Hubble’a daje nam całkiem niespodziewane wyniki: podczas gdy nasz pomiar rozszerzania się Wszechświata jest zgodny z analizą supernowych mieszczących się w zwykłym przedziale wykonywania pomiarów (od 4,3 miliarda lat od WW do chwili obecnej), to włączenie do badań bardziej odległych kwazarów pokazuje znaczące niezgodności ze standardowym modelem kosmologicznym. Jeśli wytłumaczymy tą różnicę wykorzystując składnik jakim jest ciemna energia, to okaże się, że gęstość ciemnej energii wzrasta z czasem.

(…)  W końcu ciemna energia może nie mieć stałej gęstości i tylko poprzez obserwacje Wszechświata mamy szansę aby uzyskać pewność.

------------------------------------- 

 

Wzrost gęstości energii mogę wytłumaczyć oddziaływaniem grawitacyjnym masy wczesnych galaktyk na energię rozproszoną na dziesiątki miliardów lat światła po Wielkim Wybuchu.

Astronomowie szacują, że średnica Wszechświata, czyli granicy pomiędzy rzeczywistą a fałszywą próżnią wynosi około 92 mld lat świetlnych. Przyspieszanie ekspansji masy barionowej we Wszechświecie nie daje odpowiedzi na to czy wzrastają również rozmiary całego Wszechświata, czyli obszaru gdzie występuje jeszcze pole Higgsa.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 4.08.2019 o 16:07, Jarek Duda napisał:

Symetria czasu/CPT jest w sercu teorii których używamy we wszystkich skalach - to coś więcej niż zgadywanka:

O dużych skalach to my nie wiemy aż tak dużo. Tak samo o małych.
Jakbyśmy wiedzieli dużo o dużych skalach to byśmy nie mieli problemu z CM i CE. A mamy i to duży. 

Jakbyśmy wiedzieli dużo o małych skalach to by nam zasada Heisenberga nie była do niczego potrzebna.
Ogólnie małe skale nam zakrywa Heisenberg a duże nam zakrywa widzialny Wszechświat.

I to co na pewno wiemy to że ruch obiektów kosmicznych w wielkiej skali możemy wyjaśnić jeśli założymy że znamy jedynie 5 % Wszechświata.

Marne to założenie, jak i nasza wiedza.
Ale zauważ że mamy też problem z energią potencjalną i kinetyczną w wielkiej skali.

  W dniu 4.08.2019 o 16:26, Qion napisał:

Jeśli wytłumaczymy tą różnicę wykorzystując składnik jakim jest ciemna energia, to okaże się, że gęstość ciemnej energii wzrasta z czasem.

Dlatego po raz kolejny napiszę: nie wiemy co się dzieje z energią potencjalną i kinetyczną w skali całego Wszechświata.

Bo jak sobie zrobimy układ Ziemia - piłka i podrzucimy piłkę to wiadomo co się dzieje.
Rośnie sobie energia potencjalna piłki, maleje kinetyczna, a potem na odwrót.

No to teraz wyobraźmy sobie że piłek są niezliczone ilości i zaczęły się jak galaktyki od siebie oddalać. Gdyby ich prędkość malała to by było dość jasne że rośnie energia potencjalna.
Ale ich prędkość rośnie - czyli galaktyki mają coraz więcej energii kinetycznej. Ale druga niespodzianka: ich energia potencjalna także rośnie bo się od siebie oddalają. 

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mówię tylko że te symetrie są podstawą modeli które używamy na wszystkich skalach - jasne, może wszystkie należy wyrzucić do kosza - ale do tego potrzebujemy bardzo silnych argumentów i alternatywy - do czasu której coś jednak warto by było założyć jeśli chcemy uprawiać fizykę.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  W dniu 4.08.2019 o 17:16, Jarek Duda napisał:

Mówię tylko że te symetrie są podstawą modeli które używamy na wszystkich skalach - jasne, może wszystkie należy wyrzucić do kosza

Ale po co chcesz coś wyrzucać co się znakomicie sprawdza w naszych skalach?

Ale też nie udawaj że nasze modele są ok. Bo CM i CE świadczy że nie są.
A jak jeszcze porównamy te 5% tego o czym coś wiemy z 95 % tego o czym nic nie wiemy to czemu tak chwalisz te modele?

Co do symetrii to szerszy temat niż prawo zachowania energii. 
Niepotrzebnie uogólniasz i rozszerzasz problem.
Argument podałem: opisz zachowanie energii potencjalnej i kinetycznej dla całego Wszechświata w sposób zgodny z zasadą zachowania energii.
Jeśli nie możesz tego zrobić no to jest jednak problem. Nie ignoruj go.

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przed czterema laty informowaliśmy, że NASA wybrała przyszłą misję, która pozwoli lepiej zrozumieć ewolucję wszechświata oraz zbadać, na ile powszechne w naszej galaktyce są podstawowe składniki niezbędne do powstania życia. Misja SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) wystartowała 11 marca i właśnie przysłała pierwsze zdjęcia. W ciągu dwóch lat pracy ma dostarczyć danych o ponad 450 milionach galaktyk i ponad 100 milionach gwiazd w Drodze Mlecznej.
      Mimo, że zdjęcia pochodzą z nieskalibrowanych jeszcze instrumentów, więc nie nadają się więc do prowadzenia badań, pokazują niezwykłe możliwości misji i – przede wszystkim – dowodzą, iż czujniki działają. Na każdym z sześciu obrazów, po jednym dla każdego z wyspecjalizowanych detektorów, widzimy jasne źródła światła, jak galaktyki czy gwiazdy. Każdy z nich powinien zawierać ponad 100 000 takich źródeł. Trzy górne obrazy prezentują ten sam obszar nieboskłonu, co trzy dolne. Widzimy tutaj pełne pole widzenia SPHEREx. To prostokątny obszar około 20-krotnie szerszy niż Księżyc w pełni widziany z Ziemi. Gdy w drugiej połowie kwietnia SPHEREx rozpocznie badania naukowe, będzie wykonywał około 600 takich ujęć na dobę.
      Najnowszy teleskop NASA działa w podczerwieni i wykorzystuje 102 filtry, po 17 dla każdego z czujników. Dzięki temu, badając unikatową sygnaturę światła, będzie mógł wykrywać różne związki chemiczne i molekuły. Urządzenie pomoże też mierzyć odległość do zaobserwowanych obiektów, co pozwoli na badanie odległych galaktyk i tworzenie trójwymiarowej mapy wszechświata.
      Zanim jednak SPHEREx przystąpi do badań, musi zostać odpowiednio przygotowany. Przez ostatnie dwa tygodnie inżynierowie z JPL (Jet Propulsion Laboratory), którzy zarządzają misją, sprawdzali stan teleskopu. Dotychczas wszystko działa bez zarzutu.
      Obecnie trwa schłodzenie czujników i innego sprzętu do docelowej temperatury roboczej około -210 stopni Celsjusza. Bez osiągnięcia tak niskiej temperatury promieniowanie cieplne samego teleskopu uniemożliwiłoby rejestrowanie obrazu w podczerwieni. Co interesujące, chłodzenie jest całkowicie pasywne. SPHEREx nie wykorzystuje w tym celu elektryczności czy specjalnych chłodziw, dzięki czemu był tańszy i prostszy w budowie. A chłodzi się dzięki trzem stożkowatym osłonom, które chronią urządzenia przed ciepłem Słońca oraz Ziemi oraz specjalnym lustrom, które odbijają promieniowanie cieplne urządzeń bezpośrednio w przestrzeń kosmiczną.
      Przesłane obrazy testowe dowiodły, że czujniki teleskopu zostały dobrze ustawione i zapewniają ostry obraz. To bardzo dobra informacja, gdyż odpowiedniego dostrojenia ostrości można było dokonać jedynie na Ziemi. W przestrzeni kosmicznej nie można już tego zmienić. Z tego, co widzimy na zdjęciach wynika, że zespół odpowiedzialny za instrumenty idealnie wykonał swoją robotę, cieszy się Jamie Bock, główny naukowiec misji.
      SPHEREx zapewni naukowcom ogólny przegląd nieboskłonu. O ile teleskopy takie jak Webb czy Hubble badają bardzo szczegółowo niewielki wycinek nieba, SPHEREx zapewnia bardzo szeroki widok. Posłuży zresztą między innymi do określania celów obserwacyjnych dla bardziej precyzyjnych urządzeń. Możliwości nowego teleskopu są tak duże, że w ciągu dwóch lat aż czterokrotnie sfotografuje on całe niebo.
      Program Explorer, w ramach którego powstał SPHEREx, to najstarszy wciąż kontynuowany program naukowy NASA. Pierwszą misją, jaką przeprowadzono w jego ramach, była Explorer 1 wystrzelona w 1958 roku. Dotychczas w ramach programu przeprowadzono około 100 misji w przestrzeni kosmicznej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Spotkanie, o którym poinformowaliśmy, nigdy nie miało miejsca. To żart primaaprilisowy. :)
      Ostatnie działania administracji prezydenta Trumpa wywołały spory niepokój w amerykańskim środowisku naukowym. Biały Dom, chcąc rozpoznać i załagodzić sytuację, zorganizował nieformalne spotkanie prezydenta z przedstawicielami Narodowej Fundacji Nauki (NSF). To niezależna agenda rządu federalnego, której zadaniem jest wspieranie badań i edukacji na wszystkich pozamedycznych polach nauki i inżynierii. Z budżetem sięgającym 10 miliardów dolarów NSF finansuje około 25% badań podstawowych wspieranych z budżetu federalnego.
      Z nieoficjalnych doniesień wynika, że spotkanie przebiegało w bardzo dobrej atmosferze, prezydent wypytywał o największe wyzwania i potrzeby amerykańskiej nauki. Ku zdziwieniu zebranych miał też ze spokojem i zrozumieniem przyjmować – lekką co prawda i kulturalną – krytykę swoich dotychczasowych działań. Jeden z biorących w nim udział naukowców zdradził redakcji PNAS (Proceedings of the National Academy of Sciences), pod warunkiem zachowania anonimowości, że rozmowa z gospodarzem Białego Domu przebiegała znacznie lepiej, niż sobie wyobrażał. Wydawało się, że prezydent rozumie obawy naukowców i rzeczywiście się nimi przejmuje.
      Sytuacja uległa zmianie, gdy Donald Trump zapytał o amerykańską fizykę. Naukowcy powiedzieli mu m.in. o amerykańskim udziale w Wielkim Zderzaczu Hadronów (LHC) i w innych międzynarodowych projektach związanych z akceleratorami. Prezydent spytał o amerykańskie akceleratory i dowiedział się, że USA nie posiadają równie dużego co LHC. Gdy zaczął wypytywać o szczegóły, uczeni wyjaśnili mu, że budowa takiego akceleratora trwa wiele lat i jest niezwykle kosztowna. Wówczas Donald Trump powiedział coś, co niemal przyprawiło mnie o zawał, stwierdził rozmówca PNAS. Prezydent stwierdził, że USA powinny wycofać się z Wielkiego Zderzacza Hadronów, zaoszczędzone pieniądze przeznaczyć na budowę amerykańskiego akceleratora i... zabrać amerykańskie części z LHC. Dodał, że zleci administracji odpowiednie działania i analizy prawne, a jeśli są jakieś umowy, to Stany Zjednoczone je wypowiedzą.
      Naukowcy próbowali wyperswadować mu ten pomysł, jednak Donald Trump upierał się, że pieniądze amerykańskich podatników powinny być przeznaczane na rozwój amerykańskiej nauki i zapewniać naukowcom miejsca pracy w USA, a nie za granicą. Spotkanie, jak łatwo się domyślić, nie zakończyło się w równie dobrej atmosferze, w jakiej się toczyło.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Losy wszechświata zależą od równowagi pomiędzy ciemną energią, a materią. Dark Energy Spectroscopic Instrument (DESI), zamontowany na Kitt Peak w Arizonie działa od 2021 roku i zebrał dane o milionach galaktyk i kwazarów, dzięki czemu powstała największa trójwymiarowa mapa wszechświata. Gdy zaś naukowcy połączyli dane z DESI z danymi uzyskanymi z innych instrumentów, pojawiły się wskazówki, że ciemna energia – o której sądzono, że jest stałą kosmologiczną – ewoluuje w niespodziewany sposób i słabnie z czasem. A to oznacza, że standardowy model kosmologiczny może wymagać aktualizacji.
      DESI to międzynarodowy eksperyment zarządzany przez Lawrence Berkeley National Laboratory (LBNL). Zaangażowanych weń jest ponad 900 naukowców z ponad 70 instytucji badawczych na całym świecie. To co widzimy, jest niezwykle intrygujące. Bardzo ekscytująca jest świadomość, że możemy być o krok od wielkiego odkrycia dotyczącego ciemnej energii i natury wszechświata, mówi profesor Alexie Leauthaud-Harnett, rzecznik prasowa DESI.
      Same w sobie dane z DESI są zgodne z najpowszechniej uznawanym modelem wszechświata Lambda-CDM (ΛCDM), gdzie Λ to ciemna energia będącą tutaj stałą kosmologiczną, a CDM to zimna ciemna materia. Jeśli jednak połączy się te dane z wynikami badań mikrofalowego promieniowania tła (CMB), supernowych oraz słabego soczewkowania grawitacyjnego, coraz bardziej staje się oczywiste, że ciemna energia może słabnąć w czasie i inne modele kosmologiczne mogą lepiej opisywać rzeczywistość.
      Coraz bardziej i bardziej wygląda na to, że musimy zmodyfikować nasz standardowy model kosmologiczny tak, by wszystkie dane do siebie pasowały. A przyjęcie, że ciemna energia ulega ewolucji wydaje się najbardziej obiecującą metodą modyfikacji, dodaje profesor Will Percival, drugi z rzeczników prasowych DESI.
      Jak na razie poziom ufności, że rzeczywiście chodzi o ewolucję ciemnej energii nie osiągnął 5 sigma, kiedy to mówi się o odkryciu. Jednak różne kombinacje danych z DESI z pomiarami CMB, supernowych i soczewkowania dają wartości od 2,8 do 4,2 sigma. Poziom 3 sigma oznacza, że istnieje 0,3% szansy, iż uzyskane dane nie są prawdziwe. Pozornie to niewiele, jednak w fizyce już niejednokrotnie zdarzało się, że obserwacje o poziomie ufności 3 sigma po uwzględnieniu dodatkowych danych okazywały się anomalią statystyczną. Dlatego właśnie o odkryciu jest mowa przy poziomie 5 sigma.
      Pozwalamy wszechświatowi opowiedzieć nam, jak działa i być może mówi nam, że jest bardziej złożony, niż sądziliśmy. To niezwykle interesujące, a coraz więcej linii dowodowych prowadzi nas w tym samym kierunku, dodaje Andrei Cuceu, który stoi na czele grupy roboczej Lyman-alpha, mapującej odległe obszary wszechświata na podstawie rozkładu międzygalaktycznego wodoru.
      Jeśli rzeczywiście ciemna energia słabnie, nie wiemy, co to oznacza. Być może rozszerzanie wszechświata się zatrzyma i pod wpływem grawitacji zacznie się on kurczyć. A być może ciemna energia ulegnie dodatkowemu wzmocnieniu i wszechświat zacznie rozszerzać się jeszcze szybciej. Nowe obserwacje otwierają przed teoretykami nowe możliwości. O ile, oczywiście, są prawdziwe.
      DESI prowadzi jeden z najszerzej zakrojonych przeglądów kosmosu. Supernowoczesny instrument jest w stanie jednocześnie badać światło z 5000 galaktyk. Celem projektu jest zbadanie 50 milionów galaktyk i kwazarów. Cel ten może zostać osiągnięty pod koniec 2026 lub na początku 2027 roku. W międzyczasie, jeszcze w bieżącym roku DESI opublikuje wyniki badań nad gromadzeniem się galaktyk i materii w ciągu miliardów lat. Proces ten obrazuje wzajemne oddziaływanie grawitacji i ciemnej energii. Wyniki tych badań powinny jeszcze lepiej pokazać, czy rzeczywiście ciemna energia ulega osłabieniu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) pozwala na oglądanie kosmosu tak dokładnie, jak nigdy wcześniej. Dostarczył wielu danych, które zaskoczyły naukowców i zmusiły ich do uściślenia obowiązujących teorii, przyczynił się do pojawienia nowych hipotez, ma udział w interesujących odkryciach. Lior Shamir z Kansas State University poinformował na łamach Monthly Notices of the Royal Astronomical Society o kolejnej zaskakującej obserwacji. Uczony zauważył, że zdecydowana większość galaktyk spiralnych obraca się w tę samą stronę, przeciwną względem obrotu Drogi Mlecznej.
      Jeśli kierunek obrotu galaktyk byłby przypadkowy, to liczba galaktyk obracających się zgodnie z ruchem wskazówek zegara powinna być mniej więcej taka sama, co liczba galaktyk obracających się w stronę przeciwną. Tymczasem gdy Shamir przeanalizował dane dotyczące 263 galaktyk obserwowanych przez Webba w ramach programu James Webb Space Telescopce Advanced Deep Extragalactic Survey (JADES) okazało się, że 2/3 z nich (158) obraca zgodnie z ruchem wskazówek zegara, a obrót 1/3 (105) zachodzi w kierunku przeciwnym. To od razu rzuca się w oczy. Nie trzeba mieć specjalnych zdolności czy wiedzy, by zobaczyć, że liczby są tak bardzo różne. Dzięki JWST każdy może to zobaczyć, dziwi się Shamir.
      To nie pierwszy raz gdy Shamir, ale też i inni uczeni, zauważają taki rozdźwięk. W swojej pracy Shamir wspomina na przykład o galaktykach obrazowanych w ramach SDSS (Sloan Digital Sky Survey). Badania ponad 36 000 galaktyk również pokazują nierównowagę i – co interesujące – im bardziej galaktyki są od nas oddalone, tym nierównowaga ta większa.
      Wracając jednak do obecnych badań, Shamir stwierdza, że istnieją dwa możliwe wyjaśnienia zaobserwowanego zjawiska. Być może wszechświat obracał się w momencie narodzin. Wyjaśnienie to jest zgodne z teoriami takimi jak kosmologia czarnej dziury, zgodnie z którą cały wszechświat znajduje się wewnątrz czarnej dziury. Jeśli jednak rzeczywiście wszechświat obracał się w momencie narodzin, to oznacza, że obowiązujące teorie są niekompletne, mówi Shamir.
      Ziemia, wraz z Układem Słonecznym, krążą wokół centrum Drogi Mlecznej. Efekt Dopplera powoduje, że galaktyki obracające się w przeciwnym kierunku, niż obrót Ziemi względem centrum naszej galaktyki, będą wydawały się nam jaśniejsze. Tutaj może tkwić kolejne z możliwych wyjaśnień naszej zagadki. Astronomowie powinni brać pod uwagę wpływ prędkości obrotowej Drogi Mlecznej – zjawisko to się pomija, gdyż powszechnie uważa się, że jego wpływ jest pomijalny – na pomiary dotyczące innych galaktyk.
      Jeśli rzeczywiście w tym tkwi problem, to musimy inaczej skalibrować instrumenty do obserwacji głębokich partii kosmosu. Zmiana kalibracji i pomiarów odległości pozwoliłaby też rozwiązać kilka ważnych zagadek kosmologicznych, takich jak prędkość rozszerzania się wszechświata czy istnienie galaktyk, które – zgodnie z obecnymi pomiarami – są starsze od wszechświata, mówi Shamir.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W danych z nieczynnego już satelity ROSAT (Roentgen Satellite) znaleziono największą superstrukturę w lokalnym wszechświecie. I, jak twierdzą jej odkrywcy, największą w ogóle strukturę, o której można powiedzieć, że stanowi całość. Naukowcy z Instytutu Maxa Plancka, Uniwersytetu Ludwika i Maksymiliana w Monachium, Uniwersytetu w Kapsztadzie i Europejskiej Agencji Kosmicznej przyjrzeli się obszarowi położonemu w odległości 416–826 milionów lat świetlnych od Ziemi (przesunięcie ku czerwieni z=0,03–0,06). Zauważyli tam gigantyczną superstrukturę o długości 1,4 miliarda lat świetlnych. Nazwali ją Quipu.
      W wielkiej skali wszechświat jest niemal homogeniczny. Jednak gdy przyjrzymy się mniejszym skalom, okazuje się, że występują w nim znaczne różnice w rozkładzie materii. Dokładna wiedza na ten temat jest niezbędna do prowadzenia badań kosmologicznych. Jeśli przyjrzysz się rozkładowi gromad galaktyk na nieboskłonie na sferze znajdującej się w odległości 416–826 milionów lat świetlnych, natychmiast zobaczysz olbrzymią strukturę, która rozciąga się od wysokości północnych niemal do południowej krawędzie nieboskłonu, mówi główny autor bada Hans Böhringer. Składa się ona z 68 gromad galaktyk, ma około 1,4 miliarda lat świetlnych długości, a jej masę oszacowano na 2,4x1017 mas Słońca. Wykracza ona poza wszystko, co dotychczas udało się wiarygodnie zmierzyć we wszechświecie.
      Satelita ROSAT w ciągu ośmiu lat pracy dokonał przeglądu całego nieba w zakresie promieniowania rentgenowskiego. Dzięki niemu skatalogowano około 80 tysięcy źródeł takiego promieniowania i około 6 tysięcy źródeł skrajnego ultrafioletu. Dostarczone przez niego dane wciąż są analizowane i opracowywane. Dzięki nim naukowcy stworzyli bardziej precyzyjne trójwymiarowe mapy rozkładu gromad galaktyk. Stworzony w ten sposób katalog opisuje przestrzeń w odległości do 1 miliarda lat świetlnych od Ziemi.
      Odkrycie Quipu ma duże znaczenie dla pomiarów kosmologicznych. Obecność taki struktur wpływa bowiem na pomiary stałej Hubble'a czy mikrofalowego promieniowania tła. Nawet jeśli wpływ takich struktur zmienia wartości o kilka procent, to jest wpływ niezmiernie istotny, gdyż potrafimy dokonywać coraz bardziej precyzyjnych pomiarów, wyjaśnia Gayoung Chon z Instytutu Fizyki im. Maxa Plancka.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...