
Debatują nad stałą Hubble'a
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W danych z nieczynnego już satelity ROSAT (Roentgen Satellite) znaleziono największą superstrukturę w lokalnym wszechświecie. I, jak twierdzą jej odkrywcy, największą w ogóle strukturę, o której można powiedzieć, że stanowi całość. Naukowcy z Instytutu Maxa Plancka, Uniwersytetu Ludwika i Maksymiliana w Monachium, Uniwersytetu w Kapsztadzie i Europejskiej Agencji Kosmicznej przyjrzeli się obszarowi położonemu w odległości 416–826 milionów lat świetlnych od Ziemi (przesunięcie ku czerwieni z=0,03–0,06). Zauważyli tam gigantyczną superstrukturę o długości 1,4 miliarda lat świetlnych. Nazwali ją Quipu.
W wielkiej skali wszechświat jest niemal homogeniczny. Jednak gdy przyjrzymy się mniejszym skalom, okazuje się, że występują w nim znaczne różnice w rozkładzie materii. Dokładna wiedza na ten temat jest niezbędna do prowadzenia badań kosmologicznych. Jeśli przyjrzysz się rozkładowi gromad galaktyk na nieboskłonie na sferze znajdującej się w odległości 416–826 milionów lat świetlnych, natychmiast zobaczysz olbrzymią strukturę, która rozciąga się od wysokości północnych niemal do południowej krawędzie nieboskłonu, mówi główny autor bada Hans Böhringer. Składa się ona z 68 gromad galaktyk, ma około 1,4 miliarda lat świetlnych długości, a jej masę oszacowano na 2,4x1017 mas Słońca. Wykracza ona poza wszystko, co dotychczas udało się wiarygodnie zmierzyć we wszechświecie.
Satelita ROSAT w ciągu ośmiu lat pracy dokonał przeglądu całego nieba w zakresie promieniowania rentgenowskiego. Dzięki niemu skatalogowano około 80 tysięcy źródeł takiego promieniowania i około 6 tysięcy źródeł skrajnego ultrafioletu. Dostarczone przez niego dane wciąż są analizowane i opracowywane. Dzięki nim naukowcy stworzyli bardziej precyzyjne trójwymiarowe mapy rozkładu gromad galaktyk. Stworzony w ten sposób katalog opisuje przestrzeń w odległości do 1 miliarda lat świetlnych od Ziemi.
Odkrycie Quipu ma duże znaczenie dla pomiarów kosmologicznych. Obecność taki struktur wpływa bowiem na pomiary stałej Hubble'a czy mikrofalowego promieniowania tła. Nawet jeśli wpływ takich struktur zmienia wartości o kilka procent, to jest wpływ niezmiernie istotny, gdyż potrafimy dokonywać coraz bardziej precyzyjnych pomiarów, wyjaśnia Gayoung Chon z Instytutu Fizyki im. Maxa Plancka.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W próbkach pobranych z dna Pacyfiku występuje niespodziewanie dużo berylu-10, informują naukowcy z Niemiec i Australii. Ten rzadki izotop powstaje w atmosferze pod wpływem promieniowania kosmicznego i dostarcza cennych informacji na temat geologicznej historii Ziemi. Jego większa od spodziewanej akumulacja na dnie oceanu może mieć związek ze zmianami prądów lub zjawiskami astrofizycznymi, które miały miejsce około 10 milionów lat temu. Nadmiarowy beryl może być znacznikiem, dzięki któremu będziemy mogli bardziej precyzyjnie opisać historię geologiczną naszej planety.
Izotopy promieniotwórcze, jak beryl-10, są wykorzystywane do datowania. Najbardziej znanym z nich jest węgiel-14. Jednak metoda radiowęglowa może być wykorzystywana do datowania próbek nie starszych niż około 50 tysięcy lat. Aby datować starsze próbki potrzebujmy innych izotopów, takich jakich beryl-10. Powstaje on w górnych partiach atmosfery, gdy promienie kosmiczne wchodzą w interakcje z tlenem i azotem. Później wraz z deszczem 10Be opada na powierzchnię planety i może akumulować się na dnie oceanów. Czas jego połowicznego rozpadu wynosi 1,4 miliona lat, co pozwala na datowanie próbek starszych niż 10 milionów lat.
Niedawno naukowcy z Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Uniwersytetu Technicznego w Dreźnie i Austalijskiego Uniwersytetu Narodowego prowadzili szczegółowe analizy próbek z dna Pacyfiku. Wykorzystali akceleratorową spektrometrię mas do oceny zawartości berylu-10. A gdy sprawdzili uzyskane wyniki, czekała ich niespodzianka. W próbce sprzed około 10 milionów lat znaleźliśmy niemal dwukrotnie więcej 10Be niż się spodziewaliśmy. To nieznana dotychczas anomalia, mówi doktor Dominik Koll z HZDR. Uczeni, by upewnić się, że nie doszło do zanieczyszczenia, poddali podobne analizie inne próbki i uzyskali takie same wyniki.
Anomalia taka wymaga wyjaśnienia. Doktor Koll ma dwie hipotezy. Jedna z nich związana jest z cyrkulacją oceaniczną wokół Antarktyki. Przypuszcza się, że 10–12 milionów lat temu doszło tam do znacznych zmian rozkładu prądów morskich. To mogło spowodować, że przez pewien czas dystrybucja 10Be była nierównomierna i spowodowało to szczególnie dużą koncentrację tego pierwiastka na Pacyfiku.
Druga z hipotez mówi, że przed 10 milionami lat promieniowanie kosmiczne stało się bardziej intensywne, na przykład w wyniku wybuchu pobliskiej supernowej. Ewentualnie Układ Słoneczny mógł przejściowo utracić swoją warstwę ochronną – heliosferę – na przykład w wyniku kolizji z gęstą chmurą międzygwiezdną. Jedynie dodatkowe pomiary berylu pokażą, czy anomalia spowodowana jest zmianą rozkładu prądów oceanicznych czy wydarzeniem astrofizycznym, mówi Koll. Dlatego chcemy w przyszłości przeanalizować więcej próbek i mamy nadzieję, że inne zespoły naukowe zrobią to samo, dodaje.
Jeśli do podobnej anomalii doszło na całej planecie, będzie to oznaczało, że jest ona skutkiem tego, co stało się w przestrzeni kosmicznej. Jeśli występuje tylko lokalnie, prawdopodobnie winna jest zmiana prądów oceanicznych.
Zauważony właśnie nadmiar berylu może być niezwykle przydatny w datowaniu geologicznym. Gdy bowiem porównuje się różne zestawy danych głównym problemem konieczność istnienia uniwersalnych znaczników czasowych, które pozwolą zsynchronizować dane. Dla okresów liczonych w milionach lat takie kosmogeniczne znaczniki jeszcze nie istnieją. Ta anomalia może być pierwszym z nich, wyjaśnia Koll.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wiele z odkrytych dotychczas czarnych dziur jest częścią układu podwójnego. Układy takie składają się z krążących wokół siebie czarnej dziury oraz innego obiektu – jak gwiazda, gwiazda neutronowa czy druga czarna dziura. Astronomowie z MIT-u i Caltechu poinformowali właśnie o zaskakującym odkryciu. Jedna z najlepiej przebadanych czarnych dziur, klasyfikowana jako część układu podwójnego, okazała się wchodzić w skład układu potrójnego.
Dotychczas sądzono, że czarnej dziurze V404 Cygni towarzyszy jedynie sąsiednia gwiazda. Obiega ona dziurę w ciągu 6,5 doby, to tak blisko, że V404 Cygni wciąga materiał z gwiazdy.Ku zdumieniu badaczy okazało się jednak, że wokół czarnej dziury krąży jeszcze jedna gwiazda.
Ten drugi z towarzyszy znajduje się w znacznie większej odległości. Gwiazda obiega dziurę w ciągu 70 000 lat. Sam fakt, że czarna dziura wywiera wpływ grawitacyjny na tak odległy obiekt każe zadać pytania o jej pochodzenie. Czarne dziury tego typu powstają w wyniku eksplozji supernowej. Badacze zauważają jednak, że gdyby tak było w tym przypadku, to energia wyemitowana przez gwiazdę przed jej zapadnięciem się, eksplozją i utworzeniem czarnej dziury, wyrzuciłaby w przestrzeń kosmiczną każdy luźno powiązany z nią obiekt. Zatem tej drugiej gwiazdy, bardziej odległej od czarnej dziury, nie byłoby w jej otoczeniu.
Dlatego też badacze uważają, że zaobserwowana przez nich czarna dziura powstała w wyniku bezpośredniego zapadnięcia się gwiazdy, w procesie, który nie doprowadził do pojawienia się supernowej. To znacznie bardziej łagodna droga tworzenia się czarnych dziur. Sądzimy, że większość czarnych dziur powstaje w wyniku gwałtownej eksplozji gwiazd, jednak to odkrycie poddaje tę drogę w wątpliwość. To bardzo interesujący układ z punktu badania ewolucji czarnych dziur. I każe zadać sobie pytanie, czy istnieje więcej układów potrójnych, mówi Kevin Burdge z MIT-u.
Odkrycia dokonano przypadkiem. Naukowcy analizowali bazę Aladin Lite, repozytorium obserwacji astronomicznych wykonanych przez różne teleskopy naziemne i kosmiczne. Wykorzystali automatyczne narzędzie, by wyodrębnić z bazy obserwacje dotyczące tych samych fragmentów nieboskłonów. Szukali w nich śladów nieznanych czarnych dziur. Z ciekawości Burdge zaczął przyglądać się V404 Cygni. To czarna dziura znajdująca się w odległości 8000 lat od Ziemi i jedna z pierwszych potwierdzonych czarnych dziur. Od czasu potwierdzenia w 1992 roku V404 Cygni jest jedną z najlepiej przebadanych czarnych dziur, na jej temat powstało ponad 1300 prac naukowych.
Burdge, oglądając jej zdjęcia, zauważył dwa źródła światła, zadziwiająco blisko siebie. Pierwsze ze źródeł zostało już wcześniej opisane jako niewielka gwiazda, której materiał jest wciągany przez V404 Cygni. Drugim ze źródeł nikt się dotychczas szczegółowo nie zainteresował. Burdge przystąpił do pracy. Dzięki danym z europejskiego satelity Gaia stwierdził, że to druga gwiazda, poruszająca się w tandemie z pierwszą. Prawdopodobieństwo, że to tylko przypadek, wynosi 1 do 10 milinów.
Zatem ta druga gwiazda również jest powiązana grawitacyjnie z V404 Cygni. Jest jednak daleko od niej. Znajduje się w odległości 3500 jednostek astronomicznych, czyli 3500 razy dalej niż Ziemia od Słońca. Obserwacje tej gwiazdy zdradziły też wiek całego układu. Badacze stwierdzili, że gwiazda rozpoczyna proces zmiany w czerwonego olbrzyma, ma zatem około 4 miliardów lat.
Jak się zatem okazuje, nawet – wydawałoby się – bardzo dobrze przebadane obiekty astronomiczne mogą skrywać niezwykłe tajemnice, których rozwikłanie znacząco zmienia i wzbogaca naszą wiedzę.
« powrót do artykułu -
przez KopalniaWiedzy.pl
DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.