Mutacje, przez które nie boli
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Ból to sygnał, że z naszym organizmem dzieje się coś niepokojącego. To sygnał ostrzegawczy, który pokazuje nam, że powinniśmy zwrócić uwagę na nasze ciało, bo może dziać się coś niedobrego. Badania przeprowadzone na Uniwersytecie Harvarda sugerują, że ból może być czymś więcej niż tylko sygnałem alarmowym. Może być też formą bezpośredniej ochrony.
Z badań wynika bowiem, że neurony bólowe w jelitach myszy na co dzień regulują poziom chroniącego je śluzu, a gdy pojawia się stan zapalny, to właśnie one stymulują komórki do wytwarzania większej ilości śluzu. Uczeni z Harvarda opisali na łamach Cell cały złożony szlak sygnałowy i wykazali, że neurony bólowe bezpośrednio komunikują się z wydzielającymi śluz komórkami kubkowymi. Okazało się, że ból może chronić nas w sposób bezpośredni, a nie tylko przekazując do mózgu sygnały o potencjalnych problemach. Pokazaliśmy, w jaki sposób neurony bólowe komunikują się z pobliskimi komórkami nabłonka wyściełającymi jelita. To oznacza, że układ nerwowy odgrywa w jelitach większą rolę niż tylko wywoływanie nieprzyjemnych uczuć i jest on kluczowym elementem zapewniającym jelitom ochronę podczas stanu zapalnego, mówi profesor Isaac Chiu.
W układzie pokarmowym i oddechowym znajdują się komórki kubkowe. Wydzielają one śluz zawierający białka i cukry, który działa jak warstwa chroniąca organy przed uszkodzeniem. Teraz wykazano, że śluz jest wydzielany w wyniku bezpośredniej interakcji komórek kubkowych z neuronami bólowymi.
Podczas eksperymentów naukowcy zaobserwowali, że u myszy pozbawionych neuronów bólowych, śluz wytwarzany w jelitach miał gorsze właściwości ochronne. Doszło też do dysbiozy, zaburzenia równowagi pomiędzy pożytecznymi a szkodliwymi mikroorganizmami w mikrobiomie jelit. Bliższe badania wykazały, że komórki kubkowe zawierają receptory RAMP1, których zadaniem jest reakcja na sygnały przesyłane przez neurony bólowe. Z kolei neurony bólowe są aktywowane przez sygnały pochodzące z żywności, mikrobiomu, sygnały mechaniczne, chemiczne oraz duże zmiany temperatury. Gdy dochodzi do stymulacji neuronów bólowych, uwalniają one związek chemiczny o nazwie CGRP i to właśnie ten związek wychwytują receptory RAMP1. Co więcej, do wydzielania CGRP dochodziło w obecności niektórych mikroorganizmów, które zaburzały homeostazę w jelitach. To pokazuje nam, że neurony bólowe są pobudzane nie tylko przez stan zapalny, ale również przez pewne podstawowe procesy. Wystarczy obecność spotykanych w jelitach mikroorganizmów, by uruchomić neurony i zwiększyć produkcję śluzu, dodaje Chiu. Mamy tutaj więc mechanizm regulujący prawidłowe środowisko w jelitach. Nadmierna obecność niektórych mikroorganizmów pobudza neurony, neurony wpływają na produkcję śluzu, a śluz utrzymuje odpowiedni mikrobiom.
Eksperymenty wykazały też, że u myszy, którym brakowały neuronów bólowych, dochodziło do znacznie większych uszkodzeń w wyniku zapalenia okrężnicy. Biorąc zaś pod uwagę fakt, że osoby z tą chorobą często otrzymują środki przeciwbólowe, należy rozważyć potencjalnie szkodliwe skutki blokowania bólu w tej sytuacji. U osób z zapaleniem jelit ból jest jednym z głównych objawów, więc próbujemy jednocześnie blokować ból i leczyć chorobę. Jednak, jak widzimy, ból ten chroni jelita przed uszkodzeniem, zatem trzeba sobie zadać pytanie, jak zarządzać bólem, by nie poczynić dodatkowych szkód, wyjaśnia Chiu.
Trzeba też wziąć pod uwagę fakt, że wiele leków przeciwbólowych stosowanych przy migrenach tłumi sygnały przekazywane przez CGRP, zatem leki takie mogą prowadzić do uszkodzeń tkanki jelit zaburzając sygnały bólowe. Biorąc pod uwagę fakt, że CGRP bierze udział w produkcji śluzu, musimy dowiedzieć się, jak ciągłe blokowanie tego sygnału za pomocą środków przeciwbólowych wpływa na jelita. Czy leki te zaburzają wydzielanie śluzu oraz skład mikrobiomu?, pyta Chiu.
Komórki kubkowe spełniają w jelitach wiele różnych ról. Współpracują z układem nerwowym produkując immunoglobulinę IgA, prezentują antygeny komórkom dendrytycznym. Rodzi się więc pytanie, czy zażywanie środków przeciwbólowych wpływa na inne niż wydzielanie śluzu funkcje komórek kubkowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ból to pożyteczny sygnał alarmowy, informujący nas o uszkodzeniu tkanek czy chorobie i skłaniający do wycofania się z nieprzyjemnej sytuacji oraz poszukania pomocy u lekarza. Gdy rana się zagoi, ból powinien ustąpić, ale wiele osób cierpi na ból nawet po całkowitym zagojeniu się rany. Co więcej, olbrzymia liczba osób na całym świecie zmaga się z chronicznym bólem, któremu w wielu przypadkach nie potrafimy przypisać żadnej przyczyny w postaci zranienia czy choroby.
Mimo że z chronicznym bólem zmagają się miliony ludzi, wciąż jest on jednym z najsłabiej zarządzanych przez medycynę problemów zdrowotnych. Na łamach Science Translational Medicine ukazał się artykuł, którego autorzy informują o potencjalnych nowych metodach leczenia chronicznego bólu, a metody w zaskakujący sposób wiążą się z... nowotworem płuc. Autorami odkrycia są naukowcy z Instytutu Biotechnologii Molekularnej Austriackiej Akademii Nauk, Wydziału Medycyny Uniwersytetu Harvarda oraz Boston Children's Hospital.
Już poprzednio wykazaliśmy, że neurony wytwarzają specyficzny metabolit, BH4, który napędza takie rodzaje chronicznego bólu jak ból neuropatyczny czy zapalny. Stężenie BH4 bardzo dobrze korelowało z intensywnością bólu. Uznaliśmy więc szlak sygnałowy BH4 za dobry cel poszukiwania nowych terapii przeciwbólowych, mówi Shane Cronin z Instytutu Biotechnologii Molekularnej.
Naukowcy zaczęli więc poszukiwanie leków, które mogłyby obniżyć poziom BH4 w neuronach. W tym celu dokonali „analizy fenotypowej” 1000 substancji leczniczych zatwierdzonych przez FDA. Analiza ta pozwoliła im na poszukiwanie konkretnych, obecnych już na rynku, leków, które mogłyby pomóc. Analiza pozwoliła np. połączyć znane przeciwbólowe działanie niektórych substancji, jak kapsaicyna czy klonidyna, ze szlakiem sygnałowym BH4.
Dzięki analizie dokonaliśmy też zaskakujących odkryć. Zauważyliśmy że flufenazyna – lek psychotropowy używany w leczeniu schizofrenii – blokuje szlak BH4 w uszkodzonych nerwach. Wykazaliśmy też, że działa w przypadku chronicznego bólu, mówi Cronin. Naukowcy przeprowadzili eksperymenty na myszach i stwierdzili, że flufenazyna wykazuje działanie przeciwbólowe już w niskich, bezpiecznych dla ludzi dawkach.
Uczeni odkryli niespodziewany związek pomiędzy szlakiem sygnałowym BH4 a szlakiem sygnałowym EGFR/KRAS, który jest istotnym elementem powstawania i progresji wielu nowotworów. Okazało się, że zablokowanie szlaku EGFR/KAS zmniejsza wrażliwość na ból poprzez zmniejszenie poziomu BH4. Jako, że geny EGFR i KRAS są dwoma najczęściej podlegającymi mutacjom genami w nowotworach płuc, naukowcy przyjrzeli się BH4 w przypadkach nowotworów płuc na modelu mysim. Ku ich zdumieniu usunięcie ważnego enzymu GCH1 ze szlaku sygnałowego BH4 skutkowało zmniejszeniem liczby guzów oraz znacznym wydłużeniem życia myszy z nowotworem płuc z mutacją KRAS. Odkrycie wspólnych elementów chronicznego bólu i nowotworów płuc otwiera nowe możliwości leczenia obu schorzeń.
Jednym z najbardziej interesujących aspektów badań jest odkrycie mechanistycznego związku pomiędzy bólem a nowotworem płuc. Ten sam wyzwalacz, który rozpoczyna wzrost guza płuc wydaje się być zaangażowany w uruchamianie ścieżki chronicznego bólu, jaki często przecież odczuwają osoby chore na nowotwory. Wiemy też, że nerwy czuciowe mogą napędzać nowotwory, a to wyjaśniałoby zaklęty krąg nowotworów i związanego z nimi bólu, stwierdza Josef Penninger, dyrektor Instytutu Biotechnologii Molekularnej. Zrozumienie tego wzajemnego związku będzie pomocne nie tylko w leczeniu nowotworów, ale również pozwoli poprawić jakość życia pacjentów nowotworowych i ulżyć ich bólowi, dodaje.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jednym z wielkich wyzwań współczesnej medycyny jest zrozumienie, dlaczego niektórzy pacjenci nie reagują na leczenie onkologiczne. Guzy nowotworowe takich osób wykazują wielolekooporność, co znacząco ogranicza opcje terapeutyczne. Naukowcy z Hiszpańskiego Narodowego Centrum Badań Onkologicznych (CNIO, Centro Nacional de Investigaciones Oncológicas) znaleźli właśnie jedną z przyczyn tej lekooporności i opisali potencjalną strategię walki z guzami niepoddającymi się leczeniu.
Przeprowadzone przez nich badania pokazują, dlaczego terapie nie skutkują w przypadku niektórych guzów oraz pokazują słabe punkty tych opornych nowotworów. Teraz wiemy, że te słabe punkty można wykorzystać za pomocą już istniejących leków, mówi Oscar Fernandez-Capetillo, który stał na czele zespołu badawczego.
Hiszpanie znaleźli mutacje, w wyniku których dochodzi do dezaktywacji genu FBXW7, co z kolei powoduje, że guzy nowotworowe stają się niewrażliwe na większość dostępnych terapii. Jednak w tym samym czasie dezaktywacja genu FBXW7 powoduje, że komórki nowotworu stają się wrażliwe na leki wywołujące zintegrowaną odpowiedź na stres (ISR).
Autorzy badań zauważają, że FBXW7 jeden z 10 genów, które ulegają najczęstszym mutacjom w komórkach nowotworowych, a pojawienie się jego zmutowanej wersji jest powiązane z bardzo małymi szansami na przeżycie nowotworu.
Hiszpańscy naukowcy wykorzystali technologię CRISPR i mysie komórki macierzyste, by poszukać mutacji odpowiedzialnych za oporność na leki antynowotworowe czy ultrafiolet. Bardzo szybko wpadli na trop FBXW7, co sugerowało, że mutacja tego genu odpowiada za pojawienie się wielolekooporności. Przeanalizowali wówczas bazy danych z informacjami dotyczącymi oporności ponad 1000 linii komórkowych nowotworów na tysiące środków. Potwierdzili w ten sposób, że komórki ze zmutowanym FBXW7 są oporne na większość leków. Z kolei analizy bazy Cancer Therapeutics Response Portal ujawniły, że zmniejszenie ekspresji FBXW7 było powiązane z gorszymi wynikami leczenia.
Poszukując związku przyczynowo-skutkowego pomiędzy zmniejszoną ekspresją FBXW7 a wielolekoopornością naukowcy przyjrzeli się mitochondriom. Odkryli, że w komórkach z deficytem FBXW7 występuje nadmiar białek mitochondrialnych, o których wiemy, że są powiązane z występowaniem lekooporności. Stwierdzili też, że mitochondria w takich komórkach są poddane dużemu stresowi. I to właśnie ten stres może pomóc w przełamaniu lekooporności.
Mitochondria to pozostałości bakterii, które przed miliardami lat połączyły się z prymitywnymi komórkami eukariotycznymi. Powstaje więc pytanie, czy antybiotyki zabijające bakterie, mogłyby zabijać też komórki nowotworowe, w których występuje nadmiar białek mitochondrialnych. Wskazówki na ten temat pojawiały się już w przeszłości. Zauważono bowiem, że pewne antybiotyki pomagały niektórym pacjentom nowotworowym. Były to jednak izolowane przypadki, naukowcy nie byli w stanie określić, dlaczego akurat w tych nielicznych przypadkach antybiotyki były skuteczne. Hiszpanie poszli tym tropem i wykazali, że tygecyklina jest toksyczna dla komórek z deficytem FBXW7.
Jednak jeszcze ważniejsze było odkrycie, jak na takie komórki działa tygecyklina. Hiszpanie wykazali, że zabija ona komórki poprzez nadmierną aktywację zintegrowanej odpowiedzi na stres (ISR). A później dowiedli, że inne antybiotyki zdolne do aktywowania ISR, również są toksyczne dla komórek ze zmutowanym FBXW7.
Trzeba w tym miejscu dodać, że wiele z takich leków jest obecnie używanych w terapiach przeciwnowotworowych, sądzono jednak, że działają za pomocą innych mechanizmów. Nasze badania pokazują, że aktywowanie zintegrowanej odpowiedzi na stres może być sposobem na przełamanie oporności na chemioterapię. Jednak pozostało jeszcze wiele do zrobienia. Trzeba odpowiedzieć na pytanie, które leki najlepiej aktywują ISR i działają najsilniej, którzy pacjenci mogą odnieść największe korzyści z ich stosowania. W najbliższej przyszłości będziemy pracowali nad tymi odpowiedziami, dodaje Fernandez-Capetillo.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ludzie są jednym z niewielu gatunków, których samice żyją długo po utracie zdolności do rozmnażania się. To zaskakująca cecha, gdyż biologia większości zwierząt jest zoptymalizowana pod kątem przekazania genów. O tym, jaką korzyść może odnosić nasz gatunek z długiego życia kobiet pisaliśmy niedawno. Jednak w jaki sposób cecha ta w ogóle pojawiła się u H. sapiens? Naukowcy z Kalifornii twierdzą, że istnienie babek możemy zawdzięczać m.in. ... rzeżączce.
Uczeni z Wydziału Medycyny Uniwersytetu Kalifornijskiego w San Diego (UCSD) już 7 lat temu odkryli u ludzi unikatowy zestaw mutacji genetycznych, chroniących przed demencją i spadkiem zdolności poznawczych. Teraz na łamach Molecular Biology and Evolution opisują swoje badania nad jednym z tych genów i nad próbą opisania jego historii ewolucyjnej.
Porównanie genomu ludzkiego i szympansiego pokazało, że posiadamy unikatową wersję genu receptora CD33 obecnego w komórkach układu odpornościowego. Standardowy receptor CD33 wiąże się z kwasem sjalowym. To cukier, którym pokryte są komórki ludzkiego organizmu. Gdy komórka układu odpornościowego wyczuje za pomocą CD33 kwas sjalowy, rozpoznaje komórę organizmu i nie atakuje jej.
Receptor CD33 jet też obecny w komórkach mikrogleju w mózgu. To makrofagi biorące udział w odpowiedzi immunologicznej i odgrywającą ważną rolę w usuwaniu uszkodzonych komórek mózgu oraz płytek amyloidowych zaangażowanych w pojawianie się choroby Alzheimera. Jednak standardowe receptory CD33, przyłączając się do kwasu sjalowego uszkodzonych komórek i płytek tłumią działanie mikrogleju, zwiększając ryzyko demencji.
I tutaj właśnie pojawia się nowy wariant genu. W pewnym momencie ewolucji w naszych organizmach pojawiła się zmutowana forma CD33, której brakuje miejsca przyłączania się do kwasu sjalowego. Zmutowany receptor nie reaguje więc na obecność tego cukru w uszkodzonych komórkach i płytkach amyloidowych, dzięki czemu mikroglej może je usuwać. Skądinąd wiemy, że wyższy poziom zmutowanych CD33 jest powiązany z lepszą ochroną przeciwko pojawieniu się choroby Alzheimera.
Profesor Ajit Varki i jego koledzy z UCSD postanowili sprawdzić, kiedy zmutowany wariant CD33 się pojawił. Odkryli istnienie silnej pozytywnej presji selektywnej, której istnienie wskazuje, że jakiś czynnik napędza ewolucję genu tak, że jest ona szybsza niż spodziewana. Zauważyli też, że zmutowanego CD33 nie mieli ani neandertalczycy ani denisowianie. To było dla nas zaskoczeniem, gdyż większość genów, którymi różnimy się od szympansa, jest obecna także u neandertalczyków. To zaś sugerowało, że mądrość i opieka ze strony zdrowych dziadków mogła być tym, co dało nam przewagę nad innymi homininami, mówi Varki.
Przeprowadzone badania sugerują, że elementem, który dał nam tę przewagę i który w tak decydujący sposób wpłynął na naszą ewolucję mogły być takie patogeny jak dwoinka rzeżączki (Neisseria gonorrhoeae) oraz paciorkowiec bezmleczności (Streptococcus agalactiae). Bakterie te chowają się w otoczce z kwasu sjalowego. Więc na podobieństwo wilka w owczej skórze są w stanie oszukać układ odpornościowy. Dlatego też Varki, profesor patologii Pascal Gagneux i ich zespół sugerują, że presja ze strony tych patogenów spowodowała, że pojawił się wariant CD33, który potrafił rozpoznać niebezpieczne bakterie. Przypuszczenie to potwierdzili odkrywając, że jedna ze specyficznych dla ludzi mutacji powoduje, że układ odpornościowy jest w stanie rozpoznać przeciwnika.
Jako, że oba wspomniane patogeny przenoszone są drogą płciową, naukowcy sądzą, że najpierw ludzie nabyli zmutowany wariant CD33 by chronił nas przed zachorowaniem w okresie rozrodczym. Z czasem mutacja ta została przejęta przez mózg w celu ochrony go przed demencją. Możliwe, że CD33 to jeden z wielu genów wybranych w trakcie ewolucji do ochrony przed patogenami. Później zaś nasze organizmy ponownie go wybrały, ze względu na ochronę przed demencją i innymi chorobami związanymi z wiekiem, mówi Gagneux.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Powszechną praktyką jest leczenie ostrego bólu za pomocą leków przeciwzapalnych i sterydów. Najnowsze badania wskazują jednak, że może być to bardzo krótkowzroczne i szkodliwe podejście. Badania przeprowadzone przez międzynarodowy zespół wskazują bowiem, że stan zapalny zapobiega pojawieniu się chronicznego bólu. Zatem jego zwalczanie może doprowadzić do tego, że ulżymy pacjentowi w chwilowym bólu, ale pojawi się u niego ból chroniczny.
Od dziesięcioleci standardową praktyką medyczną jest leczenie bólu za pomocą środków przeciwzapalnych. Odkryliśmy, że takie pozbycie się bieżącego bólu może prowadzić do długoterminowych problemów, mówi profesor Jeffery Mogil z McGill University.
Naukowcy z Kanady, Włoch, Holandii, Szwajcarii i USA zbadali mechanizmy bólu u ludzi i myszy. Stwierdzili, że neutrofile, komórki układu odpornościowego pomagające w zwalczaniu infekcji, odgrywają kluczową rolę w walce z bólem.
Przeanalizowaliśmy geny osób cierpiących na bóle krzyża i zauważyliśmy zachodzące z czasem zmiany w genach u ludzi, którzy bólu się pozbyli. Wydaje się, że najważniejszymi zmianami były te zachodzące we krwi, szczególnie w neutrofilach, mówi profesor Luda Diatchenko. Neutrofile dominują we wczesnych etapach stanu zapalnego i przygotowują grunt pod naprawę uszkodzonej tkanki. Stan zapalny pojawia się z konkretnego powodu i zakłócanie tego procesu wydaje się niebezpieczne, dodaje profesor Mogil.
Gdy naukowcy w ramach eksperymentów zablokowali działanie neutrofili u myszy, ból trwał nawet 10-krotnie dłużej niż wówczas, gdy pozwolono neutrofilom działać. Gdy leczono u nich ból za pomocą środków przeciwzapalnych i sterydów, jak diklofenak czy deksametazon, uzyskano podobne wyniki, chociaż ból ustępował wcześniej.
Wyniki badań na myszach potwierdzono następnie analizą danych o 500 000 mieszkańców Wielkiej Brytanii. Okazało się, że osoby, które przyjmowały środki przeciwzapalne w celu likwidowania bólu z większym prawdopodobieństwem doświadczały bólów 2 do 10 lat później, niż osoby nie przyjmujące leków przeciwzapalnych czy sterydów.
Wyniki naszych badań powinny skłonić nas do przemyślenia sposobów radzenia sobie z ostrym bólem. Na szczęście ból można likwidować w inny sposób, niż zakłócając przebieg procesu zapalnego, stwierdza Massimo Allegri z Policlinico di Monza.
Naukowcy mówią, że należy przeprowadzić testy kliniczne, podczas których trzeba dokonać bezpośredniego porównania skutków przyjmowania środków przeciwzapalnych ze środkami, które znoszą ból, ale nie zakłócają stanu zapalnego.
Szczegółowy opis badań znajdziemy na łamach Science Translational Medicine.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.