Jak stworzyć coś z niczego
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Troje astronomów, poszukując źródeł atomów antyhelu, które zostały zarejestrowane przez Alpha Magnetic Spectrometer (AMS-02) znajdujący się na pokładzie Międzynarodowej Stacji Kosmicznej, wpadło na ślad 14 gwiazd zbudowanych z antymaterii – antygwiazd.
Simon Dupourque, Luigi Tibaldo oraz Peter von Ballmoos z Uniwersytetu w Tuluzie znaleźli antygwiazdy w archiwalnych danych Fermi Gamma-ray Telescope. Koncepcja istnienia antygwiazd jest pomysłem kontrowersyjnym, jeśli jednak one istnieją to powinny być widoczne dzięki słabemu sygnałowi promieniowania gamma, który największą moc osiąga przy energii 70 MeV. Sygnał ten pochodzić ma z cząstek materii opadających na gwiazdę i przez nią anihilowanych.
Antyhel-4 uzyskano po raz pierwszy w 2011 roku podczas zderzeń cząstek w Relativistic Heavy Ion Collider w Brookhaven National Laboratory. Wówczas naukowcy doszli do wniosku, że jeśli pierwiastek ten zostanie wykryty w przestrzeni kosmicznej, będzie to oznaczało, że pochodzi on z fuzji we wnętrzu antygwiazd.
W 2018 roku AMS-02 wykrył w promieniowaniu kosmicznym 8 atomów antyhelu: sześć atomów antyhelu-3 oraz dwa antyhelu-4. Wówczas jednak uznano, że atomy te powstały w wyniku oddziaływania promieniowania kosmicznego na materię międzygwiezdną, w wyniku czego powstała antymateria.
Jednak kolejne analizy zasiały wątpliwość co do pochodzenia antyhelu. Stwierdzono bowiem, że im więcej nukleonów w jądrze pierwiastka antymaterii, tym trudniej takiemu pierwiastkowi uformować się w wyniku oddziaływania promieniowania kosmicznego. Naukowcy obliczyli wówczas, że prawdopodobieństwo, by antyhel-3 powstał w wyniku oddziaływania promieni kosmicznych jest 50-krotnie mniejsze niż powstanie jąder zarejestrowanych przez AMS, a powstanie antyhelu-4 w wyniku oddziaływania promieniowania kosmicznego jest aż 105 mniejsze niż jąder, które zarejestrowano na Międzynarodowej Stacji Kosmicznej.
Po tych badaniach naukowcy skupili się więc na poszukiwaniu źródła antyhelu, w tym w stronę mało wiarygodnie brzmiącego wyjaśnienia, mówiącego, że pierwiastek ten powstał w antygwiazdach.
Zgodnie z obowiązującymi teoriami, podczas Wielkiego Wybuchu powinno powstać tyle samo materii i antymaterii. Następnie powinno dojść do ich anihilacji i powstania wszechświata, który będzie pełen promieniowania, a pozbawiony będzie materii. Żyjemy jednak we wszechświecie zdominowanym przez materię, a to oznacza, że podczas Wielkiego Wybuchu musiało powstać więcej materii niż antymaterii. Problem ten wciąż stanowi nierozwiązaną zagadkę.
Większość naukowców od dekad twierdzi, że obecnie we wszechświecie antymateria niemal nie występuje, z wyjątkiem niewielkich ilości powstających w wyniku zderzeń materii, mówi Tibaldo. Jednak odkrycie antyhelu w przestrzeni kosmicznej może podważać to przekonanie. Może bowiem oznaczać, że istnieją antygwiazdy.
Wspomnianych 14 potencjalnych antygwiazd zostało zidentyfikowanych w katalogu obejmującym 5878 źródeł promieniowania gamma zarejestrowanych w ciągu 10 lat przez Fermi Gamma-ray Telescope. Na podstawie tych danych Dupourque, Tibaldo i von Ballmoos wyliczyli pewne cechy, które powinny mieć antygwiazdy obecne w Drodze Mlecznej.
Naukowcy stwierdzają, że jeśli antygwiazdy utworzył się w dysku galaktyki obok zwyczajnych gwiazd, to powinna istnieć 1 antygwiazda na 400 000 zwykłych gwiazd. Jeśli jednak antygwiazdy są gwiazdami pierwotnymi i powstały we wczesnym wszechświecie w czasie, gdy Droga Mleczna dopiero się tworzyła, co oznacza, że znajdują się w najstarszych regionach naszej galaktyki – w galaktycznym halo – to mogą stanowić nawet 20% wszystkich gwiazd.
Jeśli przyjmiemy, że antymateria została uwięziona w antygwiazdach, to mamy tutaj prawdopodobne wyjaśnienie, dlaczego nie doszło do anihilacji. Szczególnie, jeśli antygwiazdy istnieją w regionach, gdzie zwykła materia występuje rzadko, w takich jak galaktyczne halo, mówi von Ballmoos.
Oczywiście trzeba też przyjąć, że zarejestrowanych 14 kandydatów na antygwiazdy to coś zupełnie innego. Dlatego też Dupourque, Tibaldo i von Ballmoos sugerują, że następnym krokiem badań może być sprawdzenie, czy tych 14 źródeł emituje też sygnały w innych zakresach, które mogłyby świadczyć o tym, że są to np. aktywne jądra galaktyk czy pulsary.
Autorzy badań opublikowali ich wyniki na łamach Physical Review D.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy pracujący przy eksperymencie ALPHA prowadzonym w CERN-ie są pierwszymi, którym udało się schłodzić antymaterię za pomocą lasera. Osiągnięcie otwiera drogę do lepszego poznania wewnętrznej struktury antywodoru i zbadania, w jaki sposób zachowuje się on pod wpływem grawitacji.
Antywodór to najprostsza forma atomowej antymaterii. Teraz, gdy mamy możliwość ich chłodzenia, naukowcy będą mogli przeprowadzić porównania atomów antywodoru z atomami wodoru, dzięki czemu poznamy różnice pomiędzy atomami antymaterii i materii. Znalezienie takich ewentualnych różnic pozwoli na lepsze zrozumienie, dlaczego wszechświat jest stworzony z materii.
To zupełnie zmienia reguły gry odnośnie badań spektroskopowych i grawitacyjnych i może rzucić nawet światło na badania nad antymaterią, takie jak tworzenie molekuł antymaterii i rozwój interferometrii antyatomowej, mówi rzecznik prasowy eksperymentu ALPHA, Jeffrey Hangst. Jeszcze przed dekadą laserowe chłodzenie antymaterii należało do dziedziny science-fiction.
W eksperymencie ALPHA atomy antywodoru powstają dzięki antyprotonom uzyskiwanym w Antiproton Decelerator. Są one łączone z pozytonami, których źródłem jest sód-22. Zwykle tak uzyskane atomy antywodoru są więzione w pułapce magnetycznej, co zapobiega ich kontaktowi z materią i anihilacji. W pułapce tej najczęściej prowadzone są badania spektroskopowe, podczas których mierzona jest reakcja antyatomów na wpływ fali elektromagnetycznej – światła laserowego lub mikrofal. Jednak precyzja takich pomiarów jest ograniczona przez energię kinetyczną, czyli temperaturę, antyatomów.
Tutaj właśnie pojawia się potrzeba schłodzenia. Technika laserowego chłodzenia atomów polega na oświetlaniu ich laserem o energii fotonów nieco mniejszej niż energia przejść między poziomami energetycznymi dla danego pierwiastka. Fotony są absorbowane przez atomy, które wchodzą na wyższy poziom energetyczny. A wchodzą dzięki temu, że deficyt energii fotonu potrzebny do przejścia pomiędzy poziomami uzupełniają z własnej energii kinetycznej. Następnie atomy emitują fotony o energii dokładnie dopasowanej do różnicy energii poziomów atomu i spontanicznie powracają do stanu pierwotnego. Jako, że energia emitowanego fotonu jest nieco wyższa od energii fotonu zaabsorbowanego, wielokrotnie powtarzany cykl absorpcji-emisji prowadzi do schłodzenia atomu.
Podczas najnowszych eksperymentów naukowcy z ALPHA przez kilkanaście godzin chłodzili laserem chmurę atomów antywodoru. Po tym czasie stwierdzili, że średnia energia kinetyczna atomów obniżyła się ponad 10-krotnie. Wiele z atomów osiągnęło energię poniżej mikroelektronowolta, co odpowiada temperaturze około 0,012 kelwina. Następnie antywodór poddano badaniom spektroskopowym i stwierdzono, że dzięki schłodzeniu osiągnięto niemal 4-krotnie węższą linię spektralną niż przy badaniach prowadzonych bez chłodzenia laserowego.
Przez wiele lat naukowcy mieli problemy z laserowym chłodzeniem wodoru, więc sama myśl o chłodzeniu antywodoru była szaleństwem. Teraz możemy marzyć o jeszcze większych szaleństwach z udziałem antymaterii, mówi Makoto Fujiwara, który zaproponował, by przeprowadzić powyższy eksperyment.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z CERN-u wykorzystali zaawansowane techniki spektroskopii laserowej do zbadania, po raz pierwszy w historii, struktury subtelnej antywodoru. Okazało się, że przesunięcie Lamba – niewielkie rozbieżności między obserwowanymi poziomami energetycznymi, a przewidywaniami równania Diraca – jest tutaj takie samo jak w przypadku wodoru.
Fakt że w kosmosie wydaje się istnieć bardzo niewiele antymaterii od dawna niepokoi fizyków. Tworzenie i badania atomów antymaterii to jeden ze sposobów na poznanie przyczyn tej asymetrii. Szczególnym zainteresowaniem cieszy się tutaj badanie anomalii w spektrach antyatomów i porównywanie ich ze spektrami atomów, za pomocą którego możemy odkryć i wyjaśnić naruszenie symetrii CPT.
ALPHA tworzy atomy antywodoru łącząc antyprotony dostarczane przez Antiproton Decelerator z antyalektronami. Następnie całość umieszcza w pułapce magnetycznej w próżni, dzięki czemu antywodór nie wchodzi w reakcję z materią i nie ulega anihilacji. Na atomy antywodoru kierowane jest następnie światło lasera, za pomocą którego dokonywane są pomiary.
Na łamach Nature opisano najnowszy eksperyment, podczas którego uczeni z ALPHA badali strukturę subtelną antywodoru znajdującego się w pierwszym stanie wzbudzonym. Pomiary wykonano za pomocą setek antyatomów, które wytwarzano w grupach po około 20 średnio co 4 minuty. Antyatomy były przez dwa dni przechowywane w pułapce magnetycznej. Następnie za pomocą krótkich impulsów światła ultrafioletowego poziom wzbudzenia był zmieniany ze stanu podstawowego do 2P1/2 lub 2P3/2. Gdy antyatomy wracały do stanu 1S niektóre z nich uciekały z pułapki i ulegały anihilacji z atomami z jej ścianek.
W ten sposób naukowcy byli w stanie określić różnice pomiędzy oboma stanami 2P, a stanem 1S. Pomiarów z dokładnością 16 części na miliard. Okazało się, że rozszczepienie struktury subtelnej atomów wodoru i antywodoru jest takie samo. Niepewność obliczeń nie przekracza tutaj 2%. Również badania przesunięcia Lamba wykazały wysoką zgodność pomiędzy atomami wodoru i antywodoru. Tutaj różnice nie przekraczają 11%.
Randolf Pohl z Uniwersytetu w Moguncji mówi, że zespół ALPHA osiągnął spektakularny sukces w dziedzinie spektroskopii laserowej antywodoru. Szczególnie ważnym osiągnięciem jest zmniejszenie niepewności pomiaru przesunięcia Lamba do mniej niż 1/10000. Dalsze uściślenie pomiarów powinno pozwolić na zbadanie czy rzeczywiście dochodzi do naruszenia symetrii CPT.
Stwierdzenie, że pomiędzy tymi dwiema formami materii nie ma żadnej różnicy, może wstrząsnąć podstawami fizyki opartej na Modelu Standardowym. Nasze nowe pomiary dotyczą pewnych aspektów związanych z interakcją antymaterii, takich jak przesunięcie Lamba, które od dawna chcemy badać, mówi Jeffrey Hangst, rzecznik prasowy grupy ALPHA.
W następnym etapie naszych badań chcemy wykorzystać najnowocześniejszą technikę do schłodzenia dużych ilości antywodoru. Tego typu techniki umożliwią niezwykle precyzyjne porównanie materii i antymaterii, dodaje.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Kleszcze z gatunku Haemaphysalis flava zostały jako pierwsze sfilmowane żywe pod skaningowym mikroskopem elektronowym (SEM). To nie lada osiągnięcie, zważywszy, że próbki umieszcza się w próżni i bombarduje wiązką elektronów.
By próżnia nie doprowadziła przypadkiem do wybuchu, przed umieszczeniem w mikroskopie próbki pochodzenia biologicznego poddaje się liofilizacji niskotemperaturowej. W takiej właśnie komorze liofilizacyjnej podłączonej do pompy próżniowej Yasuhito Ishigaki z Kanazawa Medical University natrafił na żywe kleszcze. Nawet po półgodzinie, gdy większość powietrza już odessano, pajęczaki czuły się całkiem dobrze.
Zadziwiony wytrzymałością pasażerów na gapę, Japończyk umieścił 20 osobników (8 dorosłych samic i 12 nimf) w SEM. Nie przygotowywał ich w jakiś specjalny sposób, tylko przykleił do taśmy przewodzącej (normalnie, ponieważ pozostała po liofilizacji substancja organiczna raczej nie odbija szybkich elektronów, ale je hamuje, trzeba zastosować powlekanie cienką warstwą metalu, np. złota).
Akademik zrezygnował z metalowej powłoki (tzw. repliki), gdyż wiedział, że w przeszłości naukowcom i bez niej udawało się obserwować martwe kleszcze. We wnętrzu mikroskopu elektronowego musi panować wysoka próżnia, by elektrony nie rozpraszały się na cząsteczkach powietrza. Podczas eksperymentu zespołu Ishigakiego ciśnienie wysokiej próżni wynosiło 1.5×10−3 Pa. Pajęczaki poruszały odnóżami, a po wyjęciu z mikroskopu rozchodziły się na wszystkie strony. Wydaje się jednak, że "deszcz elektronów" zebrał swoje żniwo. Choć wszystkie osobniki przeżyły co najmniej 2 dni, bez kąpieli w ujemnie naładowanych cząstkach mogłyby żyć kilka tygodni. W niektórych przypadkach H. flava wydawały się podejmować próby ucieczki przed wiązką elektronów. Z dwojga złego lepsza jest próżnia, bo wszystko wskazuje na to, że kleszcze potrafią na długo wstrzymać oddech.
Badanie Japończyka nie uzupełnia w jakiś znaczący sposób naszej wiedzy o kleszczach. W dotyczących ich studiach SEM wykorzystuje się już od lat 70. Teraz zdobyliśmy jedynie garść szczegółów związanych lokomocją tych pajęczaków.
W 2008 r. ogłoszono, że niesporczaki potrafią przetrwać w kosmicznej próżni (tym samym stały się one pierwszymi zwierzętami, u których zidentyfikowano tę umiejętność). W ich przypadku "kontakt" miał jednak miejsce w stanie anhydrobiozy, a kleszcze w ogóle nie przygotowywały się do wyzwania.
-
przez KopalniaWiedzy.pl
Naukowcy pracujący w CERN-ie przy eksperymencie ALPHA dokonali kolejnego istotnego kroku na drodze ku zrozumieniu antymaterii i budowy wszechświata. Eksperymentalnie wykazali, że są w stanie zbadać strukturę wewnętrzną atomu antywodoru. Wiemy, że jest możliwe zaprojektowanie eksperymentu, który pozwoli nam na wykonanie szczegółowych pomiarów antyatomów - mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.
Nasz wszechświat wydaje się niemal w całości zbudowany z materii. Antymateria gdzieś zniknęła. Tymczasem podczas Wielkiego Wybuchu powinno być jej tyle samo co materii. Zetknięcie materii i antymaterii prowadzi do ich anihilacji. Przewaga materii we wszechświecie sugeruje, że natura preferuje ją nad antymaterię. Jeśli uda się szczegółowo zbadać atomy antymaterii będziemy bliżsi odpowiedzi na pytanie o tę preferencję.
W czerwcu ubiegłego roku informowaliśmy, że ekspertom z CERN-u udało się uwięzić i przechować atomy antywodoru przez 1000 sekund. Wówczas Joel Fajans, jeden z naukowców pracujących przy ALPHA mówił, że tysiąc sekund to aż nadto czasu, by wykonać pomiary schwytanego antyatomu. To wystarczająco długo, by np. zbadać jego interakcję z promieniem lasera czy mikrofalami.
W skład atomu wodoru wchodzi elektron. Oświetlając atom laserem można doprowadzić do pobudzenia elektronu, który przeskoczy na wyższą orbitę, a następnie powróci na oryginalną orbitę, emitując przy tym światło. Możliwe jest bardzo precyzyjne zmierzenie spektrum tego światła, które w świecie materii jest unikatowe dla wodoru. Teoretycznie niemal identyczne spektrum powinniśmy uzyskać z pobudzenia atomu antywodoru. I właśnie dokonanie takiego pomiaru jest ostatecznym celem eksperymentu ALPHA.
Wodór to najbardziej rozpowszechniony pierwiastek we wszechświecie. Jego strukturę rozumiemy bardzo dobrze. Teraz możemy zacząć odkrywać prawdę o antywodorze. Czy są one różne? Czas pokaże - mówi Hangst.
Naukowcy dokonali właśnie pierwszych pomiarów antywodoru. Atomy najpierw zostały złapane w magnetyczną pułapkę. Następnie oświetlono je mikrofalami o precyzyjnie dobranej częstotliwości. To spowodowało zmianę orientacji magnetycznej antyatomów i uwolnienie się ich z pułapki. Wówczas antyatomy napotkały na atomy i doszło do ich anihilacji, co pozwoliło czujnikom na zarejestrowanie charakterystycznego wzorca tego zdarzenia. To z kolei dowiodło, że możliwe jest przeprowadzenie eksperymentu, w którym właściwości wewnętrzne atomu antywodoru zostaną zbadane za pomocą mikrofal.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.