Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' guz'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 7 results

  1. Pewne grzyby przenoszą się z jelita do trzustki, zwiększają swoją populację ponad 1000-krotnie i sprzyjają wzrostowi komórek nowotworowych. Opublikowane w Nature badania jako pierwsze zapewniają silne dowody, że mykobiom (społeczność grzybów z trzustki) może wyzwalać zmiany, które przekształcają normalne komórki w przewodowego gruczolakoraka trzustki (ang. pancreatic ductal adenocarcinoma, PDA). Badania przeprowadzone na myszach i pacjentach z rakiem trzustki pokazały, że grzyby przemieszczają się do trzustki przez przewód trzustkowy, który odprowadza z trzustki sok trzustkowy. Zespół z Uniwersytetu Nowojorskiego (NYU) zauważył także, że podawanie myszom silnego leku przeciwgrzybicznego zmniejszało w ciągu 30 tygodni wagę guza (PDA) o 20-40%. O ile wcześniejsze badania naszego zespołu pokazały, że bakterie przemieszczają się z jelita do trzustki, o tyle najnowsze studium po raz pierwszy potwierdza, że grzyby także odbywają takie wyprawy. Ponadto [wykazaliśmy, że] związane z tym zmiany populacji grzybów sprzyjają zapoczątkowaniu i wzrostowi guza - podkreśla dr George Miller. Zespół z NYU dodaje, że choć Amerykańskie Towarzystwo Onkologiczne uznaje za przyczyny raka trzustki wirusy, bakterie i pasożyty, żadne z wcześniejszych badań nie połączyło z tą chorobą grzybów. By ustalić, czy mykobiom jest reprogramowany, gdy prawidłowe komórki zmieniają się w nowotworowe (gdy zachodzi nowotworzenie), przez 30 tyg. badano próbki kału myszy zdrowych i z rakiem trzustki. By zidentyfikować i zliczyć obecne gatunki grzybów, naukowcy przeprowadzili analizy genomiczne i statystyczne. Żeby prześledzić migracje przez jelito i trzustkę, grzyby znakowano fluorescencyjnymi białkami. Naukowcy zaobserwowali znaczące różnice w wielkości i składzie populacji grzybów zdrowej i zmienionej chorobowo trzustki. Największy wzrost populacji (zarówno u myszy, jak i w ludzkich tkankach) stwierdzono w przypadku rodzaju Malassezia. Nieprawidłowo podwyższona liczebność występowała również w przypadku rodzajów Parastagonospora, Saccharomyces i Septoriella. Od dawna wiadomo, że grzyby z rodzaju Malassezia, które generalnie występują na skórze, w tym na skórze głowy, są odpowiedzialne za łupież i niektóre postaci egzemy. Ostatnie badania powiązały je jednak dodatkowo z nowotworami skóry i jelita grubego. Nasze nowe ustalenia dostarczają dowody, że dużo grzybów Malassezia występuje również w guzach trzustki - opowiada prof. Deepak Saxena. By przetestować wpływ zmieniających się grzybowych populacji na nowotwór, akademicy przeleczyli myszy amfoterycyną B (antybiotykiem przeciwgrzybicznym o szerokim spektrum działania). Okazało się, że masa guza spadła, o 20-30% zmniejszyła się też częstość występowania dysplazji. Wyeliminowanie grzybów o 15-25% wzmocniło także antynowotworowy wpływ standardowej chemioterapii gemcytabiną - dodaje dr Berk Aykut. Gdy trzustki myszy zostały w większości oczyszczone z grzybów przez leczenie, zespół badał, co się stanie z guzem, jeśli na zasiedlenie narządu pozwoli się tylko pewnym gatunkom grzybów. Okazało się, że guz rósł 20% szybciej w trzustkach ponownie zasiedlonych Malassezia (nie działo się tak jednak w obecności innych często występujących grzybów). Amerykanie tłumaczą, że grzyby zwiększają ryzyko raka, aktywując układ dopełniacza; wcześniejsze badania wykazały bowiem, że w obecności pewnych nieprawidłowości genetycznych dopełniacz sprzyja agresywnemu wzrostowi tkanki. « powrót do artykułu
  2. Indyjscy stomatolodzy usunęli 7-letniemu chłopcu ponad pół tysiąca zębów. Jedenastego lipca br. mały pacjent trafił do Saveetha Dental College and Hospital w Madrasie. Uskarżał się na opuchliznę w obrębie żuchwy. Gdy Ravindranowi wykonano badania obrazowe, okazało się, że znajduje się tam 526 drobnych zębów. Przez zmianę nie mogły wyrosnąć trzonowe zęby stałe. Rtg. i tomografia komputerowa wykazały, że w torebce guza znajdują się liczne szczątkowe zęby. Operacja trwała pięć godzin - opowiada prof. P. Senthilnathan. Lekarze podkreślają, że na szczęście zmiana została wychwycona stosunkowo wcześnie. Pozostałe zęby chłopca są w dobrym stanie. W wieku nastoletnim Ravindran będzie wymagał wstawienia implantów zębów trzonowych. Operację wykonano za darmo. Rodzice zgodzili się na nią od razu, przekonywanie 7-latka zajęło jednak parę godzin. Wielkość zębów [odontoidów] była bardzo różna: wahała się od 0,1 do 15 mm. Nawet najmniejszy miał koronę, korzeń i szkliwo [...]. Nigdy nie widzieliśmy tak wielu zębów w jednym miejscu - podkreśla szef oddziału patologii szczękowo-twarzowej Prathibha Ramani. Guz zlokalizowany w prawej części żuchwy był wyraźnie odgraniczony od kości. Udało się go usunąć w całości - dodaje chirurg Senthil Nathan. Fachowo przypadłość 7-latka nazywa się zębiakiem zestawnym (odontoma compositum). Rozwijając się wewnątrzkostnie, zębiaki często mogą zaburzać wyrzynanie się zębów lub powodować ich przemieszczanie. W 2014 r. w podobnym przypadku nastolatkowi z Mumbaju usunięto 232 zęby.   « powrót do artykułu
  3. Gdy w 1982 roku naukowcy zauważyli związek pomiędzy Helicobacter pylori a przewlekłym nieżytem żołądka, wywołało to całą lawinę badań. Wkrótce okazało się, że H. pylori odpowiada zarówno za wrzody żołądka jak i raka przewodu pokarmowego. Jednak mimo tego, że związek ten był jasny, dotychczas nie wiedziano, w jaki sposób bakteria wywołuje nowotwór. Teraz naukowcy z Uniwersytetu Kanazawa oraz Japońskiej Agencji Badań Medycznych i Rozwoju wykazali, że zapalenie wywoływane przez H. pylori powoduje proliferację komórek macierzystych nabłonka układu pokarmowego, co prowadzi do rozwoju nowotworu. Wyniki badań opublikowano na łamach Oncogene. Już wcześniej wykazaliśmy, że czynnik martwicy nowotworów TNF-α, który wywołuje zapalenie, wspomaga powstawanie guza poprzez aktywowanie proteiny NOXO1. Nie wiedzieliśmy jak dokładnie NOXO1 przyczynia się do powstania guza, mówi główny autor badań, doktor Kanae Echizen. NOXO1 wchodzi w skład oksydazy NOX1, która wytwarza szkodliwe reaktywne formy tlenu (RFT). Pod wpływem stresu oksydacyjnego powodowanego przez RFT może dojść do mutacji DNA w komórkach żołądka, co może doprowadzić do rozwoju guza. W czasie zapalenie powodowanego przez H. pylori również pojawiają się RFT. Autorzy najnowszych badań wykazali, że stan zapalny prowadzi do nadmiarowej produkcji protein NOX1. Dzieje się to w odpowiedzi na sygnały przesyłane przez proteinę NF-kB, która włącza geny odpowiedzialne za zwalczanie infekcji i która jest ważnym elementem odpowiedzi układu odpornościowego.. Uczeni zauważyli najważniejszą rzecz, a mianowicie, że sygnały przesyłane przez NOX1 i RFT powodują, iż komórki macierzyste nabłonka układu pokarmowego zaczynają namnażać się w sposób niekontrolowany, powodując powstanie guza. Po zdobyciu tej wiedzy naukowcy wykorzystali leki do wyciszenia aktywności NOX1, co natychmiast zatrzymało wzrost komórek nowotworowych. Co więcej, gdy u myszy zniszczono NOXO1, to powstrzymano proliferację komórek macierzystych nabłonka. W końcu wykazaliśmy, że stan zapalny zwiększa ekspresję NOXO1, co z kolei pobudza proliferację komórek macierzystych nabłonka układu pokarmowego, prowadząc do pojawienia się guza. Rak układu pokarmowego to czwarty najbardziej rozpowszechniony nowotwór na świecie i drugi pod względem liczby ofiar śmiertelnych. Jeśli będziemy w stanie zablokować szlak sygnałowy NOX1/RFT, być może będziemy też w stanie zapobiec rozwojowi choroby, cieszy się doktor Masanobu Oshima. « powrót do artykułu
  4. Usunięcie guza piersi z odpowiednim marginesem to dobra wiadomość dla pacjentki. Teraz naukowcy zdobyli kolejne dowody pokazujące, dlaczego to takie ważne. Okazuje się, że gdy skutecznie usunie się guza, układ odpornościowy kieruje swoją uwagę na zwalczanie komórek, które rozniosły się po organizmie, mówi doktor Hasa Korkaya z Georgia Cancer Center. W mysim modelu używanym przez naukowców kolejne guzy nie pojawiły się przez wiele miesięcy po zabiegu, co wskazuje, że układ odpornościowy poradził sobie z komórkami, które przed wycięciem guza trafiły do węzłów chłonnych i innych organów. Jednak tam, gdzie pierwotny guz nie został całkowicie usunięty wydaje się, że układ odpornościowy wspomaga jego odrastania, pojawia się on szybciej i jest większy, a komórki rozniesione po organizmie przeżywają. Chcieliśmy sprawdzić, czy uda się nam odtworzyć procesy, które zachodzą w organizmie, mówi Korkaya. Naukowcy do dzisiaj spierają się, co powoduje śmiertelne przerzuty. Badania retrospektywne wskazują, że całkowite usunięcie guza piersi wydłuża życie pacjentów, jednak z drugiej strony modele mysie wskazywały, że usunięcie guza przyspiesza wzrost komórek, które zdążyły przenieść się do innych części ciała. Badania wykazywały też, że stan zapalny, który jest naturalną konsekwencją zabiegu chirurgicznego, zarówno wspomaga rozrost guzów, jak i wydłuża życie pacjentów. Uczeni, chcąc zrozumieć to, co dzieje się na poziomie molekularnym, wykorzystali modele zarówno najbardziej agresywnych nowotworów piersi, jak i tych łagodniejszych. W ciągu tygodnia komórki nowotworowe pojawiły się w węzłach chłonnych u myszy z obu modeli. Wykryto je też w płucach. Jednak w przypadku bardziej agresywnego nowotworu doszło do przerzutów w dalsze części organizmu. Jak się można było spodziewać, metastaza i zgony szybciej pojawiły się w modelu bardziej agresywnym. Jednak w przypadku łagodniejszego nowotworu naukowcy zaobserwowali, że po usunięciu całego guza pierwotnego komórki nowotworowe, które rozprzestrzeniły się po organizmie nie zostawały uśpione, ale organizm się ich pozbył. Co więcej organizmom myszy udało się zwalczyć trzy kolejne injekcje składające się ze 100 000 komórek nowotworowych. Naukowcy oznaczyli komórki, następnie wstrzykiwali je do organizmu myszy i obserwowali. Komórki, podobnie jak komórki guza pierwotnego raka piersi, powędrowały do płuc. Tam w ciągu kilku dni zostały zniszczone. To bardzo efektywny system, mówi Korkaya. Zjawisko to obserwowano w ciągu kilku tygodni po usunięciu guza pierwotnego. Naukowcy uważają, że układ odpornościowy zapamiętał agresora i pamiętał go jeszcze co najmniej pół roku później. Gdy jednak część guza pierwotnego pozostawiono, wydawało się, że układ odpornościowy wspomaga jego odrastanie. Guz rósł szybciej i był większy niż oryginał, a obecne w innych częściach ciała komórki nowotworowe bardziej efektywnie się rozprzestrzeniały. Naukowcy zaobserwowali, że do obszarów, w których były obecne te komórki, emigrowało od 4 do 10 razy więcej niż zwykle komórek supresyjnych z linii mieloidalnej (MDSC), które tłumiły odpowiedź układu odpornościowego. Rolę komórek MDSC potwierdzono wstrzykując MDSC z bardziej agresywnego raka piersi myszom z łagodniejszym nowotworem. Taka mysz nie była więcej w stanie oczyścić organizmu z komórek nowotworowych i pomimo skutecznego usunięcia guza pierwotnego w ciągu 2 tygodni pojawiły się u niej guzy w płucach. Korkaya uważa, że gdy skutecznie usunie się guza nowotworowego sam zabieg chirurgiczny wywołuje stan zapalny, który wzmacnia odpowiedź układu odpornościowego na obecność komórek nowotworowych. Jednak gdy część guza nie zostanie usunięta dochodzi do sytuacji, w której układ odpornościowy wspomaga guza. Pewne dowody wskazują, że za to niekorzystne zjawisko może być odpowiedzialny czynnik stymulujący tworzenie kolonii granulocytów (G-CSF). W modelach mysich zauważono bowiem wysoki poziom G-CSF we krwi. Obecnie naukowcy zbierają próbki krwi od pacjentek z rakiem piersi. Korkaya sądzi, że u tych pań, u których rokowania są gorsze, zostanie odkryty wysoki poziom G-CSF. Chcemy sprawdzić, czy istnieje tutaj jakiś związek, mówi uczony. « powrót do artykułu
  5. Symulacje pokazują, że jeśli mężczyzna z łagodnym rozrostem gruczołu krokowego (ang. benign prostatic hyperplasia, BPH) zachoruje na raka prostaty, większa prostata utrudni wzrost guza. Wyniki sugerują, że zmniejszanie prostaty za pomocą operacji czy leków niekoniecznie jest dobrym rozwiązaniem, gdyż może przyspieszyć wzrost zmiany nowotworowej. Naukowcy z Purdue University oraz Uniwersytetu Teksańskiego w Austin podkreślają, że choć generalnie wskaźnik 5-letnich przeżyć jest dla raka gruczołu krokowego wysoki, choroba ta jest nadal jedną z wiodących przyczyn zgonu Amerykanów. Symulacje komputerowe zapewniły potencjalne wyjaśnienie, czemu łagodny rozrost gruczołu krokowego chroni życie: ponieważ prostata może się powiększyć tylko w ograniczonej przestrzeni, akumulujące się siły naciskają na guz i sprawiają, że pozostaje mały. Wiadomo, że [różne] siły i naprężenia wpływają na wzrost guza. Skądinąd wiadomo też, że pacjentów z BPH cechuje wolniejszy wzrost guzów nowotworowych. Dotąd jednak nikt tego nie wyjaśnił - opowiada prof. Hector Gomez z Purdue University. Amerykanie przyglądali się danym mężczyzn biorących udział w badaniach medycznych, u których wystąpiły zarówno łagodny rozrost gruczołu krokowego, jak i rak stercza. Guillermo Lorenzo, były doktorant Gomeza, który obecnie pracuje na Uniwersytecie w Pawii, wyekstrahował ze skanów z rezonansu magnetycznego (MRI) dane dot. trójwymiarowej anatomii prostaty i lokalizacji guzów. Symulacje rocznego wzrostu pokazały, że guzy pacjentów z historią BPH ledwo się powiększały. Kiedy jednak z programu usuwano historię łagodnego rozrostu gruczołu krokowego, pod koniec tego samego okresu guz był ponad 6-krotnie większy. Teraz wiemy, że naprężenia mechaniczne, które wiążą się z rozrostem prostaty, utrudniają wzrost guza - podkreśla prof. Thomas Hughes. Zanim lekarze podejmą jakiekolwiek działania, wyniki muszą być zweryfikowane klinicznie u ludzi (w ramach długoterminowego badania obserwacyjnego). W międzyczasie zespół z Purdue chce rozbudować model i uwzględnić wpływ leków zmniejszających prostatę.   « powrót do artykułu
  6. Bliskość komórek mięśniowych (miocytów) może sprzyjać rozprzestrzenianiu komórek raka prostaty. Rośnie wtedy prawdopodobieństwo, że będą one podlegać fuzji, co zwiększa ich inwazyjność oraz zdolność do przerzutowania. Naukowcy z amerykańskich Narodowych Instytutów Zdrowia hodowali komórki ludzkiego raka prostaty z ludzkimi komórkami mięśniowymi, które miały "symulować" mikrośrodowisko guza, a więc mięśnie gładkie otaczające gruczoł krokowy oraz mięśnie poprzecznie prążkowane zwieracza cewki moczowej. Komórki mięśniowe wydzielały interleukiny 4 i 13, które pobudzały komórki rakowe do produkowania anneksyny-A5 i syncytyny 1. Białka te wyzwalały fuzję komórek rakowych. Testy wykazały, że zlane komórki rozwijały cechy bardziej złośliwych komórek, które z większym prawdopodobieństwem dokonują inwazji i rozprzestrzeniają się do innych części ciała. Ogólnie rzecz biorąc, kohodowla komórek rakowych i miocytów powiększała subpopulację komórek rakowych z cechami charakterystycznymi dla komórek macierzystych nowotworu; chodzi m.in. o wzrost niezależny od zakotwiczenia (ang. anchorage-independent growth), zwiększoną ekspresję CD133 (promininy-1) i lekooporność. Wg dr Berny Uygur i innych, inhibitory anneksyny-A5 i syncytyny 1 powinno się zbadać pod kątem ich potencjału w terapii raka prostaty. Co ważne, anneksyna-A5 i syncytyna 1 mogą być biomarkerami do oceny stopnia zaawansowania nowotworu i potencjalnych celów terapeutycznych. « powrót do artykułu
  7. Komórki guza odbijają terytorium sąsiadom za pomocą nowo odkrytego mechanizmu. W pewnym sensie przypomina on zapasy. Mimo wielu lat badań naukowcy nadal nie umieją powiedzieć, co się dokładnie dzieje od momentu pojawienia grupy nieprawidłowych komórek do powstania klinicznie wykrywalnej masy guza. Sugerowano, że pewne mutacje dają zmienionym komórkom konkurencyjną przewagę, pozwalając im zabić i zastąpić sąsiadów. To właśnie ten proces miałby zapoczątkowywać powstanie guza. Nikt jednak nie wiedział, jakie mechanizmy leżą u podłoża tej rywalizacji. Naukowcy z Instytutu Pasteura i Champalimaud Centre for the Unknown odkryli właśnie mechanizm, który może wyjaśnić, w jaki sposób komórki nowotworowe eliminują zdrowych sąsiadów i rozprzestrzeniają się po organizmie. Dwa lata temu Eduardo Moreno z Champalimaud Centre for the Unknown i Romain Levayer z Instytutu Pasteura zidentyfikowali nową formę rywalizacji między komórkami. Nazwali ją współzawodnictwem mechanicznym. M.in. podczas normalnego rozwoju istnieją fazy, kiedy tkanki stają się nadmiernie zatłoczone. Dlatego pewne komórki są eliminowane. Sądzono, że są one wypychane na drodze wytłaczania (ekstruzji) żywych komórek. Okazało się jednak, że to nieprawda i komórki wcale nie są wypychane żywe, ale aktywnie zabijane na drodze nieznanej wcześniej postaci rywalizacji. Gdy zablokowaliśmy szlak programowanej śmierci komórkowej, komórki mogły być ściskane i rozprężane, ale nie były wypychane ani nie umierały. Wtedy właśnie zdaliśmy sobie sprawę, że musi istnieć inny, mechaniczny, typ konkurencji, w ramach której komórki w jakiś sposób wyczuwają rosnące ciśnienie i wykorzystują je do eliminowania sąsiadów - wyjaśniają Moreno i Levayer. Mechanizm molekularny, który prowadzi do eliminowania skompresowanych komórek, został opisany na łamach Current Biology. Naukowcy skupili się na tkance nabłonkowej. Nabłonek to najbardziej rozpowszechniona tkanka w naszym ciele. Składa się z warstw komórek, które tworzą barierę odgradzającą zewnętrze od wnętrza. Większość ludzkich guzów (ok. 90%) powstaje właśnie z nabłonka - podkreśla Levayer. Pracując na nabłonku muszek owocowych (Drosophila melanogaster), akademicy wykazali, że mechaniczny stres oddziałuje na szlak EGFR/ERK, który reguluje przeżycie komórek. Portugalczycy i Francuzi zauważyli, że gdy zdrowe komórki były ściskane przez komórki nowotworowe, sprzyjający przeżyciu sygnał EGFR/ERK słabł. Gdy szlak był w ściskanych zdrowych komórkach sztucznie aktywowany, nie dochodziło do ich eliminacji, a ekspansja komórek guza ulegała spowolnieniu. Czemu zmienione chorobowo komórki wygrywają rywalizację z komórkami zdrowymi, mimo że obie grupy są poddawane działaniu tych samych sił? Naukowcy wyjaśniają, że te pierwsze mają zablokowane szlaki samoeliminacji (szlaki apoptyczne są zmutowane). Dodatkowo często bardziej się namnażają. Zidentyfikowanie szlaku, który odpowiada za wyczuwanie deformacji i uruchamia eliminację komórek, to ważny krok naprzód. Wydaje się, że można by zapobiegać eliminacji zdrowych komórek otoczonych przez guz, nie dopuszczając do zmniejszenia aktywacji szlaku [EGFR/ERK]. W przyszłości naukowcy chcą sprawdzić, jak bardzo rozpowszechniony jest to mechanizm i na ile został on utrwalony u ssaków. « powrót do artykułu
×
×
  • Create New...