Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' czarna dziura' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 6 wyników

  1. Amerykańskie i brytyjskie instytucje ogłosiły, że wykrywacz fal grawitacyjnych LIGO (Laser Interferometer Gravitational-Wave Observatory), zostanie znacząco udoskonalony. Amerykańska Narodowa Fundacja Nauki przeznaczy na projekt Advanced LIGO Plus (ALIGO+) 20,4 miliona USD, a UK Research dołoży kolejnych 13,7 miliona dolarów. Niewielki wkład finansowy będzie miała też Australia. Rozbudowa będzie dotyczyła obu miejsc, w których znajduje się LIGO, w stanach Waszyngton i Luizjana. W jej ramach urządzenie wzbogaci się m.in. w 300-metrowej długości komorę próżniową, która pozwoli manipulować właściwościami laserów wykorzystywanych w wykrywaczu oraz zmniejszyć poziom zakłóceń z tła. LIGO składa się z dwóch interferometrów w kształcie litery L. Jeden z nich znajduje się w Hanford w stanie Waszyngton, drugi zaś w Livingston z Luizjanie. Oba interferometry mają po 4 kilometry długości. LIGO pracowało w latach 2002–2010, następnie zostało zamknięte na czas rozbudowy i ponownie ruszyło w roku 2015. Wkrótce po tym dokonało odkrycia fal grawitacyjnych. Od tamtego czasu obserwatorium przechodziło mniejsze rozbudowy, dzięki którym jego czułość zwiększono o około 50%. Dotychczas LIGO zaobserwowało 10 połączeń czarnych dziur i jedno połączenie gwiazd neutronowych. Wynikiem tych zdarzeń było pojawienie się fal grawitacyjnych. ALIGO+ będzie jednak znacznie doskonalszym instrumentem niż dotychczas. Po rozbudowie LIGO będzie w stanie wykrywać połączenia gwiazd neutronowych z odległości 325 megaparseków, czyli około miliarda lat świetlnych od Ziemi. To znaczna różnica, gdyż zanim rozpocznie się ALIGO+ urządzenie nadal będzie udoskonalane, a bezpośrednio przed ALIGO+ osiągnie czułość pozwalającą na wykrywanie połączeń gwiazd neutronowych z odległości 173 megaparseków. Obecnie LIGO może wykrywać połączenia czarnych dziur z odległości miliardów parseków. Do roku 2022 urządzenie powinno rejestrować jedno takie wydarzenie dziennie. Po ALIGO+ będzie rejestrowało je co kilka godzin. Rozbudowa zwiększy nie tylko częstotliwość, ale i jakość obserwacji. Na przykład dzięki redukcji poziomu szumów naukowcy będą w stanie określić, jak czarna dziury obracały się przed połączeniem. Obecnie takich obserwacji nie jesteśmy w stanie wykonywać. Zasada działania LIGO jest dość prosta. Na obu końcach tuneli w kształcie litery L znajdują się lustra. W punkcie centralnym tuneli mamy laser, który wysyła wiązki w kierunku luster. Wiązki odbijają się, wracają do punktu centralnego, gdzie nakładają się na siebie niwelując wzajemnie swoje oscylacje. Jeśli jednak pojawi się fala grawitacyjna, która zaburza czasoprzestrzeń, zmienia się długość tuneli, dochodzi do zmiany częstotliwości wiązek i interferencji pomiędzy nimi. Tę właśnie interferencję można wykryć. W praktyce jednak lustra w interferometrze nie są całkowicie wolne od wpływów zewnętrznych. Co więcej, także lasery wytwarzają zakłócenia. Stopniowe udoskonalenia LIGO służą m.in. ich eliminacji. Komora próżniowa, która zostanie dodana w ramach ALIGO+ pozwoli na zredukowanie ciśnienia wywieranego na lustra oraz zmniejszenie fluktuacji fotonów. Ponadto lustra zyskają nową powłokę, która powinna czterokrotnie zmniejszyć szum termiczny. Pierwsze prace prowadzone w ramach ALIGO+ powinny ruszyć około 2023 roku. « powrót do artykułu
  2. Krowa, niezwykle jasne światło na niebie, wciąż dzieli naukowców, którzy nie wiedzą, jaka jest natura tajemniczego zjawiska. Obiekt AT2018cow, nazwany nieoficjalnie Krową (Cow) został po raz pierwszy zaobserwowany 16 czerwca 2018 roku. Pojawił się nagle i znikąd w niewielkiej galaktyce odległej o około 200 milionów lat świetlnych. Krowa jest bardzo jasna, a jej gwałtowne pojawienie się świadczy o tym, że nie jest to supernowa, gdyż te wolniej zyskują na jasności. Początkowo sądzono, że Krowa znajduje się znacznie bliżej, niewykluczone, że w Drodze Mlecznej. Pojawiły się przypuszczenia, że mamy do czynienia z białym karłem, który pochłania materiał pobliskiej gwiazdy i okresowo rozbłyska. Takie wydarzenia są częste w naszej galaktyce. Jednak analiza spektrum światła Krowy wykazała, że znajduje się ona znacznie dalej, w innej galaktyce, i to w odległości, z której rozbłyskujący biały karzeł nie byłby widoczny. Już pierwsze obserwacje pokazały, jak bardzo niezwykły jest to obiekt. Brak mu cech charakterystycznych supernowej. Ponadto zyskiwał na jasności i pozostał bardzo jasnym przez niemal 3 tygodnie. Supernowe zwykle się tak nie zachowują, mówi Daniel Perley, astronom z Liverpool John Moores University. Gdy tylko odkryto, w jakiej odległości leży Krowa, Liliana Rivera Sandoval z Texas Tech University postarała się o dostęp do należącego do NASA Neil Gehrels Swift Observatory, by zobaczyć, jak obiekt wygląda w ultrafiolecie i promieniach rentgenowskich. Okazało się, że emisja w obu zakresach jest bardzo jasna. Ponadto, chociaż jasność promieniowania rentgenowskiego początkowo się zmieniała, to jego spektrum nie ulegało zmianie, nie ewoluowało, co jest czymś niezwykłym, stwierdziła Sandoval. Po 3 tygodniach zakres zmian promieniowania X zwiększył się i spadła też jego jasność. Naukowcy zgadzają się, że długotrwałość tego wydarzenia wskazuje, że po początkowym rozbłysku coś je napędzało. Nie wiadomo jednak co. Niektórzy uważają, że mogła być to niezwykła supernowa, której jądro zapadło się już po eksplozji. Zdaniem innych, byliśmy świadkami rozerwania gwiazdy przez czarną dziurę Jednak takie wydarzenie zwykle wymaga obecności supermasywnej czarnej dziury, takiej, jakie znajdują się w centrach galaktyk, tymczasem Krowa pojawiła się w ramieniu galaktyki spiralnej. Część uczonych stwierdziła więc, że znajduje się tam średnio masywna czarna dziura. Jednak brak jednoznacznych dowodów na istnienie takich dziur. Każda z hipotez ma swoje słabe strony, przyznaje Sandoval. Jakby jeszcze tych tajemnic było mało, warto wspomnieć o obserwacjach przeprowadzonych przez Annę Ho z California Institute of Technology. Pani Ho użyła Submilimeter Array na Mauna Kea. Obiektów eksplodujących zwykle nie obserwuje się w zakresie fal milimetrowych, gdyż fale zanikają krótko po eksplozji i zwykle nie udaj się ich uchwycić. Tym razem było inaczej. Po kilkunastu dniach Krowa nadal jasno świeciła w tym zakresie. Po raz pierwszy udało mi się zaobserwować takie fale z takiego źródła, mówi Ho. Podobnie do innych zakresów, Krowa długo świeciła w spektrum milimetrowym, a później emisja zaczęła zanikać. Ho uważa, że emisja pochodziła z fali uderzeniowej wywołanej przez obiekt eksplodujący w otoczeniu pyłu i gazu. Nagły spadek emisji był spowodowany wyjściem fali poza granicę gazu i pyłu. Naukowcy nie potrafią więc jednoznaczne wyjaśńić, czym była Krowa. Mają więc nadzieję, że trafią na więcej takich zdarzeń, dzięki czemu uda się je zbadać. « powrót do artykułu
  3. Nigdy bym się nie spodziewał, że w jakikolwiek sposób przyczynimy się do badania ciemnej materii. To niesamowite, stwierdził Alan Cummings, który od 1973 roku pracuje przy misji Voyager 1. Dane z Voyagera 1 wykluczyły właśnie jedną z hipotez dotyczących natury ciemnej materii. Hipoteza ta mówi, że ciemna materia może składać się z czarnych dziur. Czarne dziury powstają wskutek zapadnięcia się gwiazd. Jednak, jako że masa ciemnej materii jest 6-krotnie większa od materii widocznej, w dziejach wszechświata nie mogło być aż tyle gwiazd, które by utworzyły czarne dziury tworzące ciemną materię. Dlatego też, jak mówi wspomniana hipoteza, ciemna materia składa się z czarnych dziur, które powstały wskutek zapadania się fluktuacji w pierwotnej materii powstałej wskutek Wielkiego Wybuchu, jeszcze zanim pojawiły się pierwsze gwiazdy. Jak mówi kosmolog Bernard Carr z Queen Mary University of London, który pracuje nad tą hipotezą od 40 lat, obliczenia doprowadziły do wniosku, że takie pierwotne czarne dziury mogą mieć jedną z trzech mas. Albo ich masa wynosi od 1 do 10 mas Słońca, albo jedną miliardową mas Słońca, albo mniej niż jedną biliardową mas Słońca, czyli około 10 miliardów ton. Czarna dziura o najmniejszej ze wspomnianych mas miałaby średnicę jądra atomu. Jednak, jak zauważają autorzy najnowszych badań, Mathieu Boudaud i Marco Cirelli z Sorbony, najmniejsze z tych dziur emitowałyby promieniowanie (promieniowanie Hawkinga), które Voyager 1 powinien zarejestrować. Urządzenia na Ziemi go nie rejestrują, gdyż składa się ono z cząstek o niskiej energii, które są odbijane przez pole magnetyczne Słońca. Jednak tam, gdzie obecnie znajduje się Voyager 1 powinno być ono widoczne dla instrumentów sondy. Faktem jest, że od roku 2012, kiedy to Voyager 1 opuścił heliosferę, jego urządzenia rejestrują niewielki stały przepływ pozytonów i elektronów. Jeśli jednak nawet pochodzą one z niewielkich czarnych dziur, to dziur takich jest zbyt mało, by stanowiły więcej niż 1% ciemnej materii w Drodze mlecznej, wyliczyli Boudaud i Cirelli. Cummings stwierdza, że spektrum energetyczne tych cząstek wskazuje, że pochodzą one z innego źródła, jak np. wybuchów supernowych. Praca Boudauda i Cirellego wyklucza więc ze wspomnianej hipotezy czarne dziury o najmniejszej masie, przyznaje Carr. Uczony dodaje, że jego faworytami zawsze były czarne dziury o kilku masach Słońca. Voyager 1 nie jest w stanie ich zarejestrować. Są one bowiem na tyle zimne i masywne, że z ich istnieniem nie jest związana emisja elektronów i pozytonów. Mogą one emitować jedynie niezwykle słabe światło. « powrót do artykułu
  4. Naukowcy z dwóch japońskich instytucji – RIKEN i JAXA – jako pierwsi zmierzyli natężenie pól magnetycznych w pobliżu dwóch supermasywnych czarnych dziur. Ku swojemu zdziwieniu stwierdzili, że siła pól magnetycznych jest niewystarczająca, by zasilać koronę czarnych dziur, czyli otaczające je chmury niezwykle gorącej plazmy. Od dawna wiadomo, że supermasywne czarne dziury są otoczone chmurami plazmy, której temperatura może sięgać miliarda stopni Celsjusza. Specjaliści od dawna też podejrzewają, że plazma ta jest podgrzewana przez pole magnetyczne wokół czanej dziury. Jednak dotychczas nigdy tych pól nie zmierzono, więc pozostawała niepewność. Japońscy uczeni przyjrzeli się dwóm aktywnym czarnym dziurom. IC 4329A, która znajduje się w odległości 200 milionów lat świetlnych oraz NGC 958 oddalonej od nas o 580 milionów lat świetlnych. Pomiary wykonali za pomocą teleskopu ALMA, a następnie  potwierdzili je za pomocą VLA z USA i ATCA z Australii. Z pomiarów wynika, że korony obu czarnych dziur mają średnice 40 promieni Schwarzschilda. W przypadku czarnych dziur jest to powierzchnia ograniczona horyzontem zdarzeń. Natężenie pola magnetycznego wyliczono na 10 gausów. Mimo, że potwierdziliśmy istnienie promieniowania synchrotronowego z obu obiektów, okazuje się jednak, że zmierzone pole magnetyczne jest zbyt słabe, by podgrzać korony wokół czarnych dziur, mówi główny autor badań Yoshiyuki Inoue. Jako, że te same wnioski wyciągnięto z badania obu czarnych dziur, można przypuszczać, iż jest to zjawisko uniwersalne. « powrót do artykułu
  5. Wielu astronomów zapamięta rok 2018 jako Rok Krowy, od nazwy spektakularnej eksplozji, którą specjaliści na całym świecie badają od czerwca. Teraz dwa zespoły badaczy sugerują, że mamy tutaj do czynienia z zapadnięciem się gwiazdy i niezwykłą okazją do obserwacji tego zjawiska na bieżąco. W przeciwieństwie do powoli rozwijającej się typowej supernowej Krowa rozbłysła w przeciągu kilkunastu godzin. Pojawiła się znikąd, mówi jej odkrywca Stephen Smartt z Queen's University Belfast. Dla ekspertów badających eksplozje gwiazd Krowa to wymarzone wydarzenie. Dwa niezależne zespoły doszły do tego samego wniosku. Obserwowane światło musi pochodzić albo z nowo powstałej czarnej dziury pochłaniającej materię, albo z gwiazdy neutronowej. Obie struktury powstają, gdy masywne gwiazdy kończą swój żywot. Pojawienie się AT2018cow to bezprecedensowa okazja do zbadania takiego zjawiska. Dzięki temu możemy zrozumieć najbardziej ekstremalne zjawiska zachodzące podczas eksplozji masywnych gwiazd, stwierdza Mansi Kasliwal z California Institute of Technology. Niemal wszystko, co możemy obserwować, to zjawiska, których nigdy wcześniej nie widzieliśmy, dodaje Iar Arcavi, astrofizyk z Instytutu Kalifornijskiego w Santa Barbara. Historia odkrycia Krowy rozpoczęła się 16 czerwca, gdy jeden z kolegów zwrócił Smarttowi uwagę na gwiazdę, której wcześniej nie było. Smartt początkowo uznał to za nic nieznaczący rozbłysk gwiazdy w Drodze Mlecznej. Jednak szybko zdał sobie sprawę, że zjawisko to znajduje się prawdopodobnie znacznie dalej, a konkretnie w galaktyce CGCG 137-068 oddalonej od Ziemi o około 200 milionów lat świetlnych. To była 11 w nocy w niedzielę gdy pomyślałem, że powinienem wszystkich o tym powiadomić, mówi Smartt. Wysłał więc informację za pomocą Astronomer's Telegram, usługi służącej do raportowania i komentowania przejściowych zjawisk astronomicznych. Bardzo szybko inni astronomowie potwierdzili, że świecący obiekt znajduje się w znaczniej odległości i jest na tyle jasny, iż mogą go obserwować nawet amatorzy. Oczywistym się też stało, że nie mamy do czynienia ze zwykłą supernową. Obiekt osiągnął szczyt jasności w ciągu kilku dni, nie tygodni. W tym momencie wszyscy odłożyli to, co dotychczas robili i zaczęli obserwować Krowę, mówi Daniel Perley z Liverpool John Moores University. Zespół Perleya wykorzystał do obserwacji teleskop na Wyspach Kanaryjskich oraz wiele innych teleskopów. Obserwowali Krowę przez 6 tygodni. Na podstawie zebranych danych stwierdzili, że mamy do czynienia z gwiazdą rozrywaną przez czarną dziurę. W tym samym czasie zjawisko obserwowała Anna Ho z Caltechu. Badania prowadziła w spektrum radiowym. Zauważyła emisję w krótkich zakresach fal, która trwała całymi tygodniami. To zaś wskazywało, że istnieje mechanizm, który tę emisję napędza – czarna dziura lub obracająca się gwiazda neutronowa. Wykazaliśmy, że nie mamy tu do czynienia z żadnym standardowym zjawiskiem, mówi Ho. Jeszcze więcej szczęścia miała Raffaella Margutti z Northwestern University, autorka jednego z dwóch wspomnianych na wstępie artykułów. Już wcześniej zarezerwowała ona sobie czas obserwacyjny na teleskopie rentgenowskim NuSTAR. Teraz mogła wykorzystać jego możliwości. Za pomocą NuSTAR i innych urządzeń wraz z zespołem potwierdziła, że mamy do czynienia z niezwykłym zjawiskiem. Wskazywała na to przede wszystkim emisja w zakresie promieniowania rentgenowskiego, która wskazywała, że cząstki są ogrzewane od wewnątrz rozbłysku. To również wskazywało, że silnikiem napędowym Krowy jest czarna dziura lub gwiazda neutronowa. Obserwowaliśmy tworzenie się kompaktowego obiektu w czasie rzeczywistym, mówi uczona. Zwykle takich zjawisk się nie obserwuje, gdyż całość jest początkowo zakryta chmurą materiału pochodzącego z eksplozji. Zaletą Krowy jest fakt, że jej główny mechanizm napędowy był niemal całkowicie odsłonięty, cieszy się Margutti. « powrót do artykułu
  6. Po 10 latach badań naukowcy potwierdzili istnienie 2-letniego cyklu promieniowania gamma w blazarze. Blazary, czyli galaktyki z supermasywnymi czarnymi dziurami, to najbardziej energetyczne i najjaśniejsze obiekty we wszechświecie. Po raz pierwszy w aktywnej galaktyce potwierdziliśmy regularne okresowe emisje promieniowania gamma, mówi Stefano Ciprini z INFN Tor Vergata w Rzymie. Fakt, że emisja rośnie i zanika w przewidywalnych interwałach jest znakiem, że w centrum badanej galaktyki może znajdować się więcej niż jedna supermasywna czarna dziura. Naukowcy sądzą, że blazar PG 1553+113 może zawierać parę supermasywnych czarnych dziur. To wyjaśniałoby periodyczność. W takiej koncepcji jedna z tych dziur emituje promieniowanie gamma i inny materiał, a druga dziura, okrążając ją, regularnie zakłóca tę emisję. Po raz pierwszy na wyjaśnienie niezwykłego cyklu naukowcy wpadli w 2015 roku. Zaczęli wówczas podejrzewać, że mamy do czynienia z blazarem, u którego cykl emisji może być liczony w latach. Po kolejnych latach badań potwierdzono przypuszczenia. Takie wyniki uzyskaliśmy po 10 lat ciągłych badań za pomocą Fermi's Large Area Telescope, mówi Sara Cutini z Włoskiego Instytutu Fizyki Nuklearnej w Perugii. « powrót do artykułu
×