Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' orbita'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Tytan, księżyc Saturna, to niezwykłe miejsce. Jest to jedyny księżyc w Układzie Słonecznym, który posiada atmosferę. Jest większy niż Merkury, a jego powierzchnię pokrywają rzeki i morza płynnych węglowodorów. Pod nimi znajduje się zamarznięta woda, a pod lodem być może jest wodny ocean, w którym potencjalnie może istnieć życie. Przed wieloma laty naukowcy zauważyli, że Tytan powiększa swoją orbitę. Teraz wiemy, że oddala się on od Saturna 100-krotnie szybciej niż sądzono. Najnowsze badania, których wyniki opublikowano na łamach Nature Astronomy, wskazują zatem, że księżyc narodził się znacznie bliżej planety. Obecnie oba obiekty dzielą 1,2 miliony kilometrów. To trzykrotnie większa odległość niż między Ziemią a Księżycem. Autorzy większości wcześniejszych prac przewidywali, że księżyce takie jak Tytan czy Kalisto, księżyc Jowisza, powstały mniej więcej w takiej odległości od planety, w której znajdują się obecnie, mówi współautor badań, profesor Jim Fuller z Caltechu. Jednak najnowsze odkrycie wskazuje, że system księżyców Saturna oraz – potencjalnie – jego pierścienie, tworzyły się i ewoluowały bardziej dynamicznie, niż się przypuszcza. Warto przypomnieć, że nasz Księżyc również oddala się od Ziemi. Księżyc ma bowiem wpływ grawitacyjny na naszą planetę, co wywołuje m.in. pływy morskie. Wpływa on też na wnętrze Ziemi. Zachodzą tam procesy tarcia, w wyniku których część energii wpływu Księżyca zamieniana jest na energię cieplną. To zaburza pole grawitacyjne Ziemi, które „popycha” Księżyc. Ten zyskuje dzięki temu dodatkową energię, która powoduje, że oddala się od Ziemi w tempie około 3,8 centymetra na rok. To bardzo powolny proces. Na tyle powolny, że Księżyc nie zdąży uciec od Ziemi zanim oboje za 6 miliardów lat nie zostaną wchłonięci przez rozszerzające się Słońce. Podobny proces zachodzi pomiędzy Saturnem a Tytanem. Jednak dotychczas szacowano, że Tytan oddala się od Saturna w tempie 1 milimetra rocznie. Teraz wiemy, że jest to proces znacznie szybszy. Jak dowiadujemy się z Nature Astronomy, dwa zespoły naukowe wykorzystały różne techniki do pomiaru orbity Tytana w czasie 10 lat. Pierwszy z nich użył astrometrii, badając pozycję Tytana względem gwiazd w tle. Do badań posłużyły fotografie wykonane przez sondę Cassini. Drugi z zespołów posłużył się radiometrią, badając prędkość Cassini gdy ta znajdowała się pod wpływem grawitacyjnym Tytana. Używając dwóch niezależnych zestawów danych – astrometycznych i radiometrycznych – oraz dwóch różnych metod analitycznych, otrzymaliśmy w pełni zgodne wyniki, mówi główny autor badań, Valery Lainey z Obserwatorium Paryskiego. Sam Lainey pracował w zespole astrometrycznym. Co więcej wyniki pomiarów zgadzają się z hipotezą Fullera, który w 2016 roku zaproponował teorię, zgodnie z którą tempo migracji Tytana jest znacznie szybsze niż przewidywane na podstawie teorii o siłach pływowych. Zgodnie z tą teorią wpływ grawitacyjny Tytana powoduje ściskanie Saturna i wprawa planetę w silne oscylacje, podczas których pojawia się tyle energii, że Tytan ucieka od Saturna znacznie szybciej niż sądzono. I rzeczywiście. Obecne badania wykazały, że księżyc oddala się od planety w tempie 11 centymetrów rocznie. « powrót do artykułu
  2. Wieloletnie obserwacje prowadzone za pomocą Very Large Telescope (VLT) potwierdzają, że gwiazda krążąca wokół supermasywnej czarnej dziury ulega precesji Schwarzschilda, zatem jej orbita jest zgodna z przewidywaniami ogólnej teorii względności Einsteina, a nie grawitacji Newtona. Jej kolejne orbity rysują rozetę. Ogólna teoria względności przewiduje, że związana orbita jednego obiektu krążącego wokół innego nie będzie zamknięta, jak wynikałoby z grawitacji newtonowskiej, ale będzie ulegała precesji w kierunku płaszczyzny ruchu. To słynne zjawisko, które po raz pierwszy zaobserwowano w przypadku orbity Merkurego wokół Słońca, było pierwszym dowodem na prawdziwość ogólnej teorii względności. Sto lat później obserwujemy ten sam efekt w ruchu gwiazdy wokół kompaktowego źródła sygnału radiowego Sagittarius A* w centrum Drogi Mlecznej. Te przełomowe badania potwierdzają, że Sagittarius A* musi być supermasywną czarną dziurą o masie 4 milionów mas Słońca, powiedział Reinhard Genzel, dyrektor Instytutu Fizyki Pozaziemskiej im Maxa Plancka i jeden z głównych autorów badań. Od 1992 roku międzynarodowy zespół naukowy prowadzony przez Franka Eisenhauera obserwuje gwiazdę S2 krążącą wokół czarnej dziury znajdującej się w centrum naszej galaktyki. W pobliżu Sagittarius A* znajduje się gęsta gromada gwiazd. Wyróżnia się w niej S2, która krąży wokół dziury, zbliżając się do nej na odległość około 120 jednostek astronomicznych. To jedna z gwiazd najbliższych tej czarnej dziurze. W miejscu, gdzie S2 podlatuje najbliżej Sagittarius A* prędkość gwiazdy wynosi niemal 3% prędkości światła (ok. 9000 km/s). Gwiazda okrąża dziurę w ciągu 16 lat. Orbity większości planet i gwiazd nie są kołowe, zatem raz są bliżej, a raz dalej od obiektu, wokół którego krążą. Orbita S2 ulega precesji, co oznacza, że z każdym okrążeniem zmienia się punkt, w którym gwiazda jest najbliżej czarnej dziury. W ten sposób gwiazda kreśli wokół niej kształt rozety. Ogólna teoria względności bardzo precyzyjnie przewiduje takie zmiany orbity, a przeprowadzone właśnie obserwacje dokładnie zgadzają się z teorią, dowodząc jej prawdziwości. To pierwszy przypadek zmierzenia precesji Schwarszschilda w przypadku gwiazdy krążącej wokół supermasywnej czarnej dziury. To bardzo ważne obserwacje, gdyż, jak mówią Guy Perrin i Karine Perrault z Francji, pasują do ogólnej teorii względności tak dobrze, że możemy ustalić ścisłe granice dotyczące ilości niewidocznego materiału, jak rozproszona ciemna materia czy mniejsze czarne dziury, znajduje się wokół Sagittarius A*. Ze szczegółami badań można zapoznać się na łamach Astronomy & Physics. « powrót do artykułu
  3. Northrop Grumman i Intelsat poinformowały o pierwszym w historii udanym połączeniu się dwóch satelitów przebywających w przestrzeni kosmicznej. Na wysokości 36 000 kilometrów nad naszymi głowami Mission Extension Vehicle (MEV-1) produkcji Notrhropa Gummana połączył się z 19-letnim satelitą Intelsat 901 i dał mu drugie życie. Na Intelsat 901 wyczerpywało się paliwo, został więc w ubiegłym roku wysłany na orbitę cmentarną i stał się bezużyteczny. Dzięki połączeniu z MEV-1 będzie pracował jeszcze przez 5 lat. Co interesujące, Intelsat 901 nie był zaprojektowany do przeprowadzania podobnych operacji i nie budowano go z myślą, że będzie można przedłużyć czas jego pracy. Udana operacje jest więc tym większym osiągnięciem i zapowiada ona nadejście nowej epoki w wykorzystaniu satelitów. Za miesiąc lub dwa połączone MEV-1 i Intelsat 901 trafią na orbitę roboczą i Intelsat 901 ponownie zacznie pracować. Za pięć lat Intelsat ponownie zostanie wysłany na orbitę cmentarną, a MEV-1 podleci do innego satelity w potrzebie. Przedstawiciele obu firm odmówili poinformowania o kosztach całej operacji. Jednak dyrektor Intelsat, Stephen Spengler, zapewnił, że zdecydowały właśnie względy ekonomiczne. Firmie opłacało się przedłużyć pracę satelity na kolejnych 5 lat. Northrop Grumman przewiduje, że usługi tankowania satelitów i ich naprawiania w przestrzeni kosmicznej rozpowszechnią się w ciągu najbliższych 5–10 lat. Firma planuje wystrzelenie kolejnego satelity ratunkowego jeszcze w bieżącym roku. « powrót do artykułu
  4. Oddziaływania pomiędzy obiektami na granicy Układu Słonecznego, a nie obecność Dziewiątej Planety, mogą wyjaśniać tajemnicze orbity niektórych obiektów, uważają autorzy najnowszych badań. Przed dwoma laty profesorowie Batygin i Brown przedstawili hipotezę, zgodnie z którą niezwykłe orbity kilkunastu obiektów z Pasa Kuipera, w tym orbitę Sedny, wyjaśnia obecność w Układzie Słonecznym nieznanej dotychczas Dziewiątej Planety. Teraz profesor Ann-Marie Madigan i jej zespół z Colorado University w Boulder twierdzą, że te niezwykłe orbity to skutek oddziaływań pomiędzy samymi obiektami. Tam jest tyle różnych obiektów. Jak działa ich ich wspólna grawitacja? Możemy rozwiązać wiele problemów biorąc ją pod uwagę, mówi Madigan. Jednym z tajemniczych obiektów Pasa Kuipera jest Sedna. To nieco mniejsza od Plutona planeta karłowata, której czas obiegu wokół Słońca wynosi ponad 11 000 lat. Orbita Sedny i jej podobnych obiektów przebiega tak, że nigdy nie znajdują się one w pobliżu Neptuna. Wszystkie inne obiekty Pasa Kuipera zbliżają się do tej planety. Madigan i jej zespół chcieli początkowo zbadań dynamikę tych obiektów. Jacob Fleisig, którego zadaniem było stworzenie modelu komuputerowego, przyszedł do Madigan i poinformował ją, że zauważył coś interesującego. Z wyliczeń Fleisiga wynikało, że wspomniane obiekty okrążają Słońce na podobieństwo wskazówek zegara. Część z nich porusza się szybciej i w tandemie, zaś większe obiekty, jak Sedna, wędrują wolniej. Czasami obiekty te spotykają się. Można zauważyć nagromadzenie tych obiektów po jednej stronie Słońca. Ich orbity łączą się, a interakcje pomiędzy obiektami powodują, że zmieniają one orbitę na bardziej kołową, stwierdził młody naukowiec. Innymi słowy, orbity wspominanych obiektów mogą zmieniać się z eliptycznych na kołowe wyłącznie wskutek oddziaływań pomiędzy samymi obiektami. Do ich wyjaśnienia nie jest potrzebne istnienie Dziewiątej Planety. « powrót do artykułu
×
×
  • Create New...