-
Similar Content
-
By KopalniaWiedzy.pl
Jednym z największych problemów, z jakim stykają się specjaliści pracujący przy fuzji jądrowej, są swobodnie przyspieszające elektrony, które w końcu osiągają prędkości bliskie prędkości światła czyli stają się cząstkami relatywistycznymi. Tak szybkie elektrony uszkadzają tokamak, w których przeprowadzana jest reakcja termojądrowa.
Naukowcy z Princeton Plasma Physics Laboratory (PPPL) wykorzystali nowatorskie narzędzia diagnostyczne, dzięki którym są w stanie zarejestrować narodziny takich elektronów oraz liniowy i wykładniczy wzrost ich energii. Musimy być w stanie zarejestrować te elektrony przy ich początkowym poziomie energii, a nie dopiero wówczas, gdy mają maksymalną energię i przemieszczają się niemal z prędkością światła, wyjaśnia fizyk Luis Delgado-Aparicio, który stał na czele zespołu badawczego pracującego przy Madison Symmetric Torus (MST) na University of Wisconsin-Madison. Następnym krokiem będzie zoptymalizowanie sposobów na powstrzymanie tych elektronów, zanim ich liczba zacznie się lawinowo zwiększać, dodaje uczony.
Reakcja termojądrowa czyli fuzja jądrowa, zachodzi m.in. w gwiazdach. Gdyby udało się ją opanować, mielibyśmy dostęp do niemal niewyczerpanego źródła czystej i bezpiecznej energii. Zanim jednak to się stanie, konieczne jest pokonanie kilku poważnych przeszkód.
Dlatego też PPPL we współpracy z University of Wisconsin zainstalowało w MST specjalną kamerę, która już wcześniej sprawdziła się w tokamaku Alcator C-Mod w Massachusetts Institute of Technology. Kamera ta rejestruje nie tylko właściwości plazmy, ale również dystrybucję energii w czasie i przestrzeni. To pozwala uczonym obserwować m.in. wspomniane elektrony, które powstają przy niskich energiach.
Badania nad superszybkimi elektronami prowadzone są w MST, gdyż urządzenie to skonstruowane jest tak, że elektrony te nie zagrażają jego pracy. Możliwości, jakimi dysponuje Luis, odnośnie zlokalizowania miejsca narodzin i początkowego liniowego wzrostu energii tych elektronów, a następnie ich śledzenia, są fascynujące. Następnym etapem będzie porównanie uzyskanych wyników z modelami komputerowymi. To pozwoli nam na lepsze zrozumienie tego zjawiska i może prowadzić w przyszłości do opracowania metod zapobiegających tworzeniu się takich elektronów, mówi profesor Carey Forest z University of Wisconsin.
Chciałbym zebrać wszystkie doświadczenia, jakich nabyliśmy podczas pracy z MST i zastosować je w dużym tokamaku, stwierdza Delgado-Aparicio. Niewykluczone, że już wkrótce dwaj doktorzy, których mentorem jest Delgado-Aparicio, będą mogli wykorzystać te doświadczenia w Tungsten Einvironment in Steady-state Tokamak (WEST) we Francji. Chcę razem z nimi wykorzystać kamery do rejestrowania wielu różnych rzeczy, takich jak transport cząstek, ogrzewanie falami radiowymi, badanie szybkich elektronów. Chcemy dowiedzieć się, jak spowodować, by elektrony te stały się mniej szkodliwe. A to może być bardzo bezpieczny sposób pracy z nimi.
Z Delgado-Aparicio współpracuje kilkudziesięciu specjalistów, w tym naukowcy Uniwersytetu Tokijskiego, japońskich Narodowych Instytutów Badań i Technologii Kwantowych i Radiologicznych czy eksperci ze szwajcarskiej firmy Dectris, która wytwarza różnego typu czujniki.
« powrót do artykułu -
By KopalniaWiedzy.pl
Jackson Oswalt jest oficjalnie – czego dowodzi wpis do Księgi rekordów Guinnessa 2021 – najmłodszą osobą w historii, która przeprowadziła fuzję jądrową. Mieszkaniec Memphis w stanie Tennessee dokonał tego na kilka godzin przed swoimi... 13. urodzinami.
Osiągnięcie nastolatka zostało zweryfikowane przez Fusor.net, The Open Source Fusor Research Consortium oraz Richarda Hulla, który zajmuje się fuzją jądrową i prowadzi listę naukowców-amatorów, którzy przeprowadzili fuzję jądrową w domu.
Jackson zainteresował się fuzją w wieku 12 lat, gdy przeczytał o niej w internecie. Zainteresowała go też postać Taylora Wilsona, samouka w dziedzinie fizyki jądrowej, który przeprowadził fuzję w wieku 14 lat. W końcu nastolatek postanowił samodzielnie zbudować fuzor. Samodzielnie zaprojektował i zbudował odpowiednie urządzenie, fuzor, i połączył w nim dwa atomy deuteru.
Młody człowiek przyznaje, że czasami ogarniało go zwątpienie, a rodzina i przyjaciele nie do końca rozumieli, co robi i jak planuje przeprowadzić syntezę jądrowa w domu. W końcu jednak się udało i wydane na fuzor 10 000 dolarów nie poszło na marne. Dnia 19 stycznia 2018 roku na kilka godzin przed swoimi 13 urodzinami Oswalt wykorzystał napięcie 50 000 woltów i połączył dwa atomy deuteru. Kolejne miesiące zajęło mu sprawdzanie wszystkiego i potwierdzanie swojego osiągnięcia. Musiał czekać kolejne miesiące, zanim wyniki jego pracy zostały niezależnie zweryfikowane.
Obecnie Jackson ma 15 lat i – jak sam przyznaje – nie ma już tyle czasu co kiedyś. Rozgląda się jednak za kolejnym ambitnym celem naukowym do osiągnięcia.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z University of Massachusetts Amherst zbudowali urządzenie, które generuje prąd elektryczny z... wilgoci w powietrzu. Technologia taka może mieć w przyszłości olbrzymie znaczenie w wytwarzaniu czystej energii.
Urządzenie to dzieło inżyniera Juna Yao i mikrobiologia Dereka Lovleya. Air-gen (air-powered generator) składa się 7-mikrometrowej warstwy proteinowych nanokabli złożonych z Geobacter sulfurreducens nałożonej na złotą elektrodę o powierzchni 25 mm2. Na warstwie nanokabli znajduje się druga elektroda o powierzchni około 1 mm2.
Dosłownie pozyskujemy elektryczność z powietrza. Air-gen wytwarza czystą energię przez 24 godziny na dobę, mówi Lovely. Uczony od ponad 30 lat pracuje nad materiałami elektronicznymi bazującymi na strukturach biologicznych. To najbardziej niezwykłe i ekscytujące zastosowanie dla proteinowych nanokabli, jakie widziałem, stwierdził.
Air-gen wytwarza czystą energię nawet w warunkach niskiej wilgotności, takich jakie panują na Saharze. Nie wymaga dostępu do światła, działa w pomieszczeniach.
Urządzenie wykazuje właściwości samoładowania się. Jest ono w stanie przez 20 godzin dostarczyć napięcie rzędu 0,5 V. Po tym czasie napięcie spada do 0,35 V, jednak po odłączeniu odbiornika prądu po 5 godzinach powraca ono do poziomu 0,5 V.
Naukowcy połączyli też wiele swoich urządzeń razem i 17 z nich dostarczyło napięcia 10 V. Były one w stanie zasilić LED lub niewielki wyświetlacz ciekłokrystaliczny.
G. sulfurreducens została odkryta przez Dereka Lovleya. Uczony mówi,że bakteria wykorzystuje przewodzące nanokable do kontaktu z innymi mikroorganizmami i minerałami. Na przykład w glebie i osadach Geobacter dostarcza w ten sposób elektrony do mikroorganizmów produkujących metan, a te wykorzystują je do zamiany dwutlenku węgla w metan. Geobacter wykorzystuje też energię elektryczną do połączenia się z minerałami zawierającymi żelazo i korzysta z nich w podobny sposób, w jaki my korzystamy z tlenu.
W Air-gen prąd pojawia się w dzięki gradientowi wilgotności, jaki pojawia się w nanokablowej warstwie po wystawieniu jej na wilgoć obecną w powietrzu. Kluczowa jest tu rola małej elektrody na górze urządzenia, gdyż to jej odsłonięta powierzchnia umożliwia pojawienie się gradientu. Badania wykazały też, że wraz ze wzrostem wilgotności otoczenia rośnie wytwarzana energia.
Szczegóły wynalazku zostały opisane na łamach Nature.
« powrót do artykułu -
By KopalniaWiedzy.pl
W III kwartale bieżącego roku 40% energii elektrycznej wykorzystanej w Wielkiej Brytanii pochodziło ze źródeł odnawialnych, a udział paliw kopalnych – tutaj niemal wyłącznie gazu – wyniósł 39%. Pozostałe 21% zapewniły głównie elektrownie atomowe. Zatem po raz pierwszy od czasu uruchomienia pierwszej brytyjskiej elektrowni, co miało miejsce w 1882 roku, paliwa kopalne nie były głównym źródłem energii elektrycznej. Sprawdziły się więc prognozy krajowego operatora sieci przesyłowej, National Grid, że w bieżącym roku źródła odnawialne dostarczą więcej energii niż paliwa kopalne.
Wspomniane osiągnięcie było możliwe dzięki uruchomieniu pomiędzy lipcem a wrześniem nowych farm wiatrowych. Dzięki większym, bardziej efektywnym turbinom farmy wiatrowe stają się coraz bardziej opłacalnym przedsięwzięciem, dzięki czemu przemysł ten intensywnie się rozwija.
Jednak w tej beczce miodu znajdziemy łyżkę dziegciu. Otóż 12% energii elektrycznej wyprodukowanej na Wyspach pochodziło z biomasy. Jest to co prawda paliwo odnawialne, ale emituje węgiel do atmosfery. Co więcej, w niektórych okolicznościach emisja z biomasy może być większa niż z paliw kopalnych. Dlatego też eksperci zalecają brytyjskiemu rządowi rezygnację z elektrowni na biomasę.
Widać zatem, że Wielka Brytania czyni wielkie postępy w odchodzeniu od paliw kopalnych. Jeszcze 10 lat temu z paliw takich pozyskiwała 80% energii.
Dla światowej emisji węgla do atmosfery najważniejsze jest jednak to, co dzieje się w Chinach i USA. Państwo Środka ze źródeł odnawialnych pozyskuje niemal 27% swojej energii elektrycznej, a w USA odsetek ten wynosi 18%.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.