Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Fuzja jądrowa: padł ważny rekord. Stellarator, w który zainwestowała Polska, pokonał tokamaki

Recommended Posts

Wendelstein 7-X, największy stellarator na świecie, pobił światowy rekord w kluczowym parametrze fuzji jądrowej, potrójnym iloczynie (triple product). Stellaratory to, po tokamakach, najbardziej popularna architektura reaktorów fuzyjnych. Oba rodzaje mają swoje wady i zalety, jednak stellaratory są trudniejsze do zbudowania, dlatego też świat skupia się głównie na tokamakach. Obecnie istnieje około 50 tokamaków i 10 stellaratorów.

Znajdujący się w Greifswald w Niemczech Wendelstein 7-X został wybudowany przez Instytut Fizyki Plazmy im. Maxa Plancka. Zainwestowała w niego też Polska. Przed dwoma tygodniami, 22 maja zakończyła się tam kampania badawcza OP 2.3. W ostatnim dniu jej trwania międzynarodowy zespół pracujący przy W7-X utrzymał nową rekordową wartość potrójnego iloczynu przez 43 sekundy. Tym samym przebił najlepsze osiągnięcia tokamaków.

Dlaczego potrójny iloczyn jest tak ważny?

Potrójny iloczyn to jeden z kluczowych elementów opisujących wydajność i warunki potrzebne do osiągnięcia zapłonu, czyli do samopodtrzymującej się reakcji fuzji jądrowej. Jest to iloczyn trzech wielkości: gęstości plazmy (n), jej temperatury (T) oraz czasu uwięzienia energii w plazmie (τE). Żeby reakcja fuzji jądrowej była efektywna i samowystarczalna, potrójny iloczyn musi osiągnąć lub przekroczyć pewną minimalną wartość. W praktyce oznacza to konieczność osiągnięcia odpowiedniej temperatury plazmy, która jest konieczna do pokonania sił odpychających jądra atomów od siebie, osiągnięcia wysokiej gęstości, co zwiększa szanse na zderzenia między jądrami oraz osiągnięcia długiego czasu uwięzienia energii, gdyż jeśli energia ucieka zbyt szybko, plazma się schładza. Po przekroczeniu wartości granicznej iloczynu reakcja fuzji zaczyna samodzielnie się podtrzymywać, bez konieczności dogrzewania plazmy z zewnątrz.

Dotychczas minimalną wartość potrójnego iloczynu przekroczono – zatem osiągnięto zapłon – jedynie w impulsowym inercyjnym reaktorze laserowym NIF. O osiągnięciu tym było głośno przed ponad dwoma laty. Pisaliśmy o tym w tekście Fuzja jądrowa: co tak naprawdę osiągnięto w National Ignition Facility?

Rekordowy stellarator pokonał tokamaki

Tokamaki są prostsze w budowie i łatwiej w nich osiągnąć wysoką temperaturę plazmy. W bardziej skomplikowanych stellaratorach łatwiej zaś plazmę ustabilizować. Tokamaki są więc bardziej popularne wśród badaczy. Stellaratory pozostają w tyle, ale w ostatnich latach dokonano w badaniach nad nimi kilku znaczących przełomów, o których wcześniej informowaliśmy.

Czytaj:
Jak załatać magnetyczną butelkę? Rozwiązano problem, który od 70 lat trapił fuzję jądrową
Duży krok naprzód w dziedzinie fuzji jądrowej. Stellaratory mogą wyjść z cienia tokamaków 

Najwyższymi osiągnięciami potrójnego iloczynu wśród tokamaków mogą pochwalić się japoński JT60U (zaprzestał pracy w 2008 roku) i europejski JET w Wielkiej Brytanii (zaprzestał pracy w 2023 r.). Oba na kilka sekund zbliżyły się do minimalnej wartości granicznej. W7-X wydłużył ten czas do 43 sekund. Pamiętamy, co prawda, że niedawno Chińczycy pochwalili się utrzymaniem reakcji przez ponad 1000 sekund, jednak nie podali wartości potrójnego iloczynu, zatem nie wiemy, czy ten kluczowy parametr został osiągnięty.

Klucz do sukcesu: wstrzykiwanie kapsułek z wodorem

Kluczem do sukcesu W7-X było nowe urządzenie zasilające plazmę w paliwo, które specjalnie na potrzeby tego stellaratora zostało zbudowane prze Oak Ridge National Laboratory w USA. Urządzenie schładza wodór tak bardzo, że staje się on ciałem stałym, następnie tworzy z niego kapsułki o średnicy 3 mm i długości 3,2 mm i wystrzeliwuje je w kierunki plazmy z prędkością 300 do 800 metrów na sekundę. W ten sposób reakcja jest wciąż zasilana w nowe paliwo. W ciągu wspomnianych 43 sekund urządzenie wysłało do plazmy około 90 kapsułek. Dzięki precyzyjnej koordynacji grzania plazmy i wstrzeliwania kapsułek możliwe było uzyskanie optymalnej równowagi pomiędzy ogrzewaniem, a dostarczaniem paliwa. Podczas opisywanego przez nas eksperymentu temperatura plazmy została podniesiona do ponad 20 milionów stopni Celsjusza, a chwilowo osiągnęła 30 milionów stopni.

Ponadto wśród ważnych osiągnięć kampanii OP 2.3 warto wspomnieć o tym, że po raz pierwszy w całej objętości plazmy ciśnienie plazmy wyniosło 3% ciśnienia magnetycznego. Podczas osobnych eksperymentów ciśnienie magnetyczne obniżono do około 70%, pozwalając wzrosnąć ciśnieniu plazmy. Ocenia się, że w reaktorach komercyjnych ciśnienie plazmy w całej jej objętości będzie musiało wynosić 4–5% ciśnienia magnetycznego. Jednocześnie szczytowa temperatura plazmy wzrosła do około 40 milionów stopni Celsjusza.

Rekordy pobite podczas naszych eksperymentów to znacznie więcej niż cyfry. To ważny krok w kierunku zweryfikowania przydatności samej idei stellaratorów, posumował profesor Robert Wolf, dyrektor wydziału Optymalizacji i Grzania Stellaratora w Instytucie Fizyki Plazmy im. Maxa Plancka.

Czym jest fuzja jądrowa

Fuzja jądrowa – reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii w tym procesie. Taki proces produkcji energii ma bardzo dużo zalet. Nie dochodzi do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody, i litu, z których można pozyskać paliwo do fuzji, czyli, odpowiednio, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Fuzja jądrowa jest bowiem niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.

Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Fuzja jądrowa to jednak bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      We Wrocławskim Centrum Sieciowo-Superkomputerowym Politechniki Wrocławskiej uruchomiono pierwszy w Polsce i Europie Środkowo-Wschodniej komputer kwantowy, który wykorzystuje kubity nadprzewodzące w niskiej temperaturze. Maszyna Odra 5 została zbudowana przez firmę IQM Quantum Computers. Posłuży do badań w dziedzinie informatyki, dzięki niej powstaną nowe specjalizacje, a docelowo program studiów w dziedzinie informatyki kwantowej.
      Odra 5 korzysta z 5 kubitów. Waży 1,5 tony i ma 3 metry wysokości. Zwisający w sufitu metalowy walec otacza kriostat, który utrzymuje temperaturę roboczą procesora wynoszącą 10 milikelwinów (-273,14 stopnia Celsjusza).
      Rektor Politechniki Wrocławskiej, profesor Arkadiusz Wójs przypomniał, że sam jest fizykiem kwantowym i zajmował się teoretycznymi obliczeniami na tym polu. Idea, żeby w ten sposób prowadzić obliczenia, nie jest taka stara, bo to lata 80. XX w., a teraz minęło kilka dekad i na Politechnice Wrocławskiej mamy pierwszy komputer kwantowy nie tylko w Polsce, ale też
      w tej części Europy. Oby się po latach okazało, że to start nowej ery obliczeń kwantowych, stwierdził rektor podczas uroczystego uruchomienia Odry 5.
      Uruchomienie komputera kwantowego to ważna chwila dla Wydziału Informatyki i Telekomunikacji Politechniki Wrocławskiej. Jego dziekan, profesor Andrzej Kucharski, zauważył, że maszyna otwiera nowe możliwości badawcze, a w przyszłości rozważamy również uruchomienie specjalnego kierunku poświęconego informatyce kwantowej. Powstało już nowe koło naukowe związane z kwestią obliczeń kwantowych, a jego utworzenie spotkało się z ogromnym zainteresowaniem ze strony studentów. Mamy niepowtarzalną okazję znalezienia się w awangardzie jeśli chodzi o badania i naukę w tym zakresie i mam nadzieję, że to wykorzystamy.
      Odra 5 będzie współpracowała z czołowymi ośrodkami obliczeń kwantowych. Dzięki niej Politechnika Wrocławska zyskała też dostęp do 20- i ponad 50-kubitowych komputerów kwantowych stojących w centrum firmy IQM w Finlandii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Firma TAE Technologies, która od niemal 30 lat prowadzi badania nad fuzją jądrową, ogłosiła, że dokonała znaczącego postępu pod względem wydajności i sprawności reaktora fuzyjnego. Wyniki naszych eksperymentów, opublikowane na łamach recenzowanego pisma Nature Communications, dowodzą, że TAE opracowało taką metodę formowania i optymalizacji plazmy, która zwiększa wydajność, znacząco obniża złożoność i koszty oraz przyspiesza moment, w którym zademonstrujemy pozyskiwanie energii netto i komercyjną fuzję jądrową, czytamy w firmowym oświadczeniu.
      Firma twierdzi, że jej ostatnie pracy udowodniły, iż z reaktora, który rozwija, można będzie pozyskać 100-krotnie więcej energii niż z typowego tokamaka korzystającego z pola magnetycznego o tej samej sile, zdolnego do uwięzienia tej samej ilości plazmy. Dodatkowo jej system jest znacznie prostszy, dzięki czemu jest znacznie tańszy w budowie i utrzymaniu.
      TAE Technologies powstała w 1998 roku. Przez wiele lat firma unikała rozgłosu, nie zdradzając o sobie zbyt wielu informacji. Witrynę internetową uruchomiła dopiero w 2015 roku. Wiadomo, że w 2021 roku zatrudniała ponad 250 pracowników i zebrała finansowanie w wysokości 880 milionów USD. Jej głównymi sponsorami są Goldman Sachs, Vulcan Inc. (firma założyciela Microsoftu Paula Allena) czy fundusze venture capital jak Venrock i New Enterprise Associates.
      TAE Technologies rozwija technologię fuzji aneutronowej za pomocą techniki FRC (Field-Reversed Configuration). Fuzja aneutronowa to rodzaj syntezy termojądrowej, w której bardzo mało energii jest unoszonej przez neutrony. Jest ona znacznie bezpieczniejsza od tradycyjnej fuzji jądrowej, nie wymaga tak dobrego ekranowania, a pozyskana z niej energia jest łatwiejsza do przetworzenia na użyteczny dla nas prąd. Nie ma też ryzyka, że poszczególne elementy reaktora staną się radioaktywne, więc trzeba będzie je w specjalny sposób zabezpieczać, gdy przestaną być używane. Jednak uzyskanie fuzji aneutronowej jest znacznie trudniejsze, wymaga bardziej ekstremalnych warunków, niż w przypadku tradycyjnej fuzji z wykorzystaniem deuteru i trytu.
      TAE Technologies ma zamiar wykorzystać w swoim reaktorze paliwo wodorowo-borowe (p-B11). To, zdaniem firmy, najczystsze, najbezpieczniejsze i najbardziej przyjazne środowisku paliwo, jakie można wykorzystać w czasie fuzji.
      W technice FRC plazma samodzielnie się organizuje i generuje własne pole magnetyczne wewnątrz reaktora, co znacząco zmniejsza zapotrzebowanie na zewnętrzne magnesy i ułatwia działanie reaktora. Sam reaktor jest też prostszy, więc tańszy i łatwiejszy w budowie czy utrzymaniu. Przełom, ogłoszony przez TAE Technologies, polega na rozwiązaniu wcześniejszych problemów z wygenerowaniem i utrzymaniem plazmy, co osiągnięto dzięki wstrzyknięciu wiązki neutralnej wiązki cząstek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed dziewięcioma dniami, 12 lutego, tokamak WEST z francuskiego centrum badawczego Cadarache utrzymał plazmę przez 1337 sekund, bijąc w ten sposób niedawny chiński rekord 1066 sekund. Ostatecznym celem tego typu badań jest opracowanie metod długotrwałego utrzymania plazmy oraz stworzenie materiałów zdolnych wytrzymania niezwykle wysokich temperatur i dawek promieniowania.
      Badacze z CEA (Komisja energii atomowej), do którego należy Cadarache zapowiadają, że w najbliższych miesiącach znacząco zwiększą zarówno czas utrzymania plazmy, jak i jej temperaturę. Podczas rekordowego eksperymentu plazma w tokamaku była grzana falami radiowymi z pojedynczej anteny o mocy 2 MW. Badacze postawili sobie ambitny cel. Chcą zwiększyć moc grzewczą do 10 MW, wciąż utrzymując plazmę przez ponad 1000 sekund. Jeśli im się uda, będzie to odpowiadało uzyskaniu mocy rzędu gigawatów w dużych reaktorach, takich jak ITER. A to z kolei pozwoli sprawdzić żywotność wolframowych elementów wystawionych na oddziaływanie plazmy w tak ekstremalnych warunkach. Francuscy eksperci wchodzą w skład wielu zespołów pracujących nad opanowaniem fuzji jądrowej. Można ich spotkać przy projektach JT-60SA w Japonii, EAST w Chinach, KSTAR w Korei Południowej oraz, oczywiście, ITER.
      Badania prowadzone we wspomnianych tutaj urządzeniach maja na celu opanowanie fuzji jądrowej i zapewnienie nam w przyszłości niezbędnej energii. Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy.  Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.

      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z amerykańskich Ames National Laboratory i Iowa State University stoją na czele konsorcjum, które pracuje nad nowymi materiałami dla reaktorów fuzyjnych. Stworzenie odpowiednich materiałów to niezbędny krok, które mają umożliwić komercyjne wykorzystywanie energii z fuzji jądrowej. Badania prowadzone są w ramach programu CHADWICK (Creating Hardened And Durable fusion first Wall Incorporating Centralized Knowledge) ogłoszonego niedawno przez Advanced Research Projects Agency–Energy (ARPA-E).
      Celem agencji jest promocja i finansowanie zaawansowanych badań nad technologiami pozyskiwania energii. Przed 2 miesiącami ARPA-E ogłosiła warty 30 milionów USD program CHADWICK, do którego zakwalifikowało się 13 projektów.
      Jedną z głównych trudności w pozyskiwaniu energii w procesie fuzji jądrowej jest odpowiednie uwięzienie plazmy, w której odbywa się reakcja. Uwięziona plazma jest jak miniaturowe Słońce zamknięte w pojemniku, który musi wytrzymać oddziaływanie niezwykle wysokiej temperatury, silne promieniowanie i pola magnetyczne, a jednocześnie efektywnie przekazywać ciepło, które jest zamieniane w elektryczność.
      Projekt CHADWICK skupia się na pierwszej ścianie reaktora, tej, która otacza plazmę uwięzioną za pomocą silnego pola magnetycznego. Pierwsza ściana składa się z dwóch warstw materiału. Ta wewnętrzna jest blisko plazmy, zewnętrzna pomaga przekazać energię do innych części reaktora.
      Pierwsza warstwa musi być wytrzymała, odporna na pęknięcia i erozję. Nie może też być przez długi czas radioaktywna, by po wyłączeniu reaktora można było bezpiecznie przeprowadzić prace w jego wnętrzu. Nicolas Arbigay z Ames National Laboratory kieruje pracami nad udoskonaleniem pierwszej warstwy.
      Głównym materiałem, jaki badamy, jest wolfram. Nie licząc węgla, a właściwie jego niektórych form – jak diament – ma on najwyższą temperaturę topnienia ze wszystkich pierwiastków, stwierdził uczony.
      Jego laboratorium kupiło ostatnio specjalną platformę do wytwarzania i testowania nowych materiałów. Możemy robić proszki i odlewy różnych stopów, w tym czystego wolframu, wyjaśnia Argibay i dodaje, że w ciągu kilku najbliższych miesięcy laboratorium wzbogaci się w nowe urządzenia, które pozwolą na uzyskiwanie materiałów również w ilości wystarczającej do prowadzenia programów pilotażowych.
      Ames Lab zainwestowało też w rzadki system pozwalający na badanie materiałów ogniotrwałych w temperaturze znacznie powyżej 1000 stopni Celsjusza i posiada jedyny w USA komercyjny system testowania takich materiałów w temperaturze do 1500 stopni. To niezwykle ważny element prac nad pierwszą ścianą reaktora fuzyjnego.
      Materiał pierwszej ściany jest tym, co utrzymuje całość. Musi być wytrzymały. W ścianie muszą być zintegrowane różne elementy, jak kanały chłodzące, pozwalające na pozyskiwanie ciepła, wyjaśnia Jordan Tiarks. Pracuje on nad kolejnym aspektem reaktora fuzyjnego. Tiarks specjalizuje się w stalach ODS (stale dyspersyjnie umacniane tlenkami) przyszłej generacji. Stale ODS są wzbogacone ceramicznymi nanocząstkami, co poprawia ich właściwości mechaniczne i pozwala przetrwać wysokie promieniowanie. To, czego się dotychczas nauczyliśmy, chcemy wykorzystać do stworzenia nowego materiału, stopu bazującego na wanadzie, który będzie dobrze sprawdzał się w reaktorach fuzyjnych, mówi Tiarks.
      Problem w tym, że wanad zachowuje się inaczej niż stal. Ma znacznie wyższą temperaturę topnienia i jest bardziej reaktywny. Nie można go łączyć z ceramiką, więc zespół Tiarksa szuka innych sposobów na tworzenie stopów wanadu. Wykorzystujemy gaz pod wysokim ciśnieniem, by rozbić roztopiony materiał na niewielkie kropelki, które gwałtownie schładzamy i uzyskujemy proszek. Tutaj nie możemy użyć żadnej ceramiki, stwierdza uczony. Dodatkowym problemem jest reaktywność wanadu. Już same proszki są bardzo reaktywne. Jeśli tworzymy z nich aerozol, mogą eksplodować. Na szczęście duża część metali tworzy cienką warstwę tlenu na takich cząstkach, która zapobiega kolejnym reakcjom. Ta warstewka chroni resztę cząstki przed dalszym utlenianiem się. Znaczna część prowadzonych przez nas badań polega na opracowaniu metod zapobiegania gwałtownym reakcjom. Jest to konieczne, by bezpiecznie używać proszku. Jednocześnie zaś nie możemy zbytnio ich utlenić, bo to negatywnie wpłynie na ich właściwości. Opracowanie odpowiednich metod przetwarzania sproszkowanych materiałów opartych na wanadzie pozwoli lepiej kontrolować strukturę drugiej warstwy pierwszej ściany reaktora.
      Gdy już odpowiedni materiał zostanie uzyskany, jego testowaniem zajmie się zespół profesora Sida Pathaka z Iowa State University. Uczeni nałożą proszek na odpowiednie powierzchnie i będą badali przede wszystkim odporność tak stworzonych paneli na silne promieniowanie reaktora fuzyjnego. Uważają, że nowy materiał będzie bardziej odporny niż dotychczas używane. Jednak, jak zauważa uczony, negatywne skutki promieniowania ujawniają się w materiale ścian reaktora po 10-20 latach. Projekt badawczy będzie trwał 3 lata, więc nie jest możliwe odtworzenie odpowiednich warunków. Dlatego badania będą prowadzone w Ion Beam Laboratory, gdzie materiał będzie bombardowany za pomocą jonów, a nie neutronów, jakby to miało miejsce w reaktorze. Dodatkową zaletą jest fakt, że materiał potraktowany jonami nie będzie radioaktywny, co ułatwi badania. Z kolei negatywną stroną użycia jonów jest bardzo płytka penetracja. Uszkodzenia materiału pojawią się na głębokości 1-2 mikrometrów, więc ich badanie będzie wymagało użycia wyspecjalizowanych narzędzi.
      Opracowanie komercyjnej fuzji jądrowej stawia przed nami jedne z największych wyzwań technologicznych naszych czasów, jednocześnie jednak niesie ze sobą obietnicę olbrzymich korzyści, w postaci nieograniczonego źródła czystej energii, podsumowuje Tiarks.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy.  Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...