Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

MIT ogłasza przełom. Za 4 lata może powstać pierwszy reaktor fuzyjny, który wytworzy energię netto

Rekomendowane odpowiedzi

Po trzech latach pracy inżynierom z MIT udało się zwiększyć moc wysokotemperaturowego nadprzewodzącego elektromagnesu dla reaktorów fuzyjnych do rekordowych 20 tesli. Tym samym stworzyli najpotężniejszy magnes tego typu. Osiągnięcie to pozwoli na zbudowanie pierwszej elektrowni fuzyjnej, zdolnej do wygenerowania większej ilości energii niż sama pobiera.

Przed zaledwie 3 miesiącami informowaliśmy, że po dziesięciu latach prac projektowych i produkcyjnych firma General Atomics jest gotowa do dostarczenia pierwszego modułu Central Solenoid, jednego z najpotężniejszych magnesów na świecie. Będzie on centralnym elementem reaktora fuzyjnego ITER. Central Solenoid to główny wkład USA w tę instalację. Będzie on generował pole magnetyczne o mocy 13 tesli, czyli 280 000 razy większe od ziemskiego pola magnetycznego. Magnes z MIT generuje pole magnetyczne silniejsze o 50%.

Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówi profesor Maria Zuber, wiceprezydent MIT ds. badawczych.

Osiągnięcie naukowców z MIT daje nadzieję na uzyskanie w laboratorium zysku energetycznego netto drogą fuzji jądrowej. To zaś znakomicie ułatwi i przyspieszy prace nad tą technologią. Teraz, gdy udało się przeprowadzić udane testy tak potężnego magnesu dla reaktorów fuzyjnych konsorcjum MIT-CMS będzie chciało wybudować pierwszą na świecie demonstracyjną elektrownię fuzyjną, zwaną SPARC, uzyskującą dodatni bilans energetyczny. Wspomniany magnes to krok milowy na drodze do jej budowy. Dzięki niemu jest szansa, że SPARC powstanie już za 4 lata.

CFS (Commonwealth Fusion Systems) to firma założona w 2018 roku w Plasma Science and Fusion Center na MIT. Jest finansowana m.in. przez włoski koncern ENI, założoną przez Billa Gatesa Breakthrough Energy Ventures  czy singapurską Temasek. Firma współpracuje z Departamentem Energii, MIT oraz Princeton Plasma Physics Laboratory, a jej celem jest wybudowanie kompaktowej elektrowni fuzyjnej opartej na stworzonej na MIT koncepcji tokamaka ARC.

Żeby zrozumieć, po co w reaktorach fuzyjnych tak potężne magnesy, trzeba wiedzieć, że do zaistnienia fuzji jądrowej potrzebne są olbrzymie temperatury, sięgające 100 milionów stopni Celsjusza i więcej. Takich temperatur nie wytrzyma żadne ciało stałe. Dlatego też plazmę, w której będzie zachodziła fuzja, trzeba utrzymać z dala od ścian reaktora. Można to zrobić za pomocą silnego pola magnetycznego. I właśnie temu – zawieszeniu plazmy w przestrzeni – służą potężne elektromagnesy.

Główna innowacja projektu ARC polega na wykorzystaniu wysokotemperaturowych nadprzewodników, które pozwalają na uzyskanie znacznie silniejszego pola magnetycznego w mniejszej przestrzeni. Materiały pozwalające na stworzenie takiego magnesu pojawiły się na rynku dopiero kilka lat temu. Koncepcja ARC powstała w 2015 roku. Demonstracyjny reaktor SPARC ma być o połowę mniejszy niż pełnowymiarowy ARC i ma posłużyć do przetestowania projektu.

Prace nad fuzją jądrową trwają na MIT od dawna. W ubiegłym roku pojawiło się kilka artykułów naukowych, których autorzy donosili, że jeśli uda się wyprodukować takie magnesy, jak założono, to reaktory typu ARC rzeczywiście powinny wytwarzać więcej energii niż zużyją.

Nasz projekt wykorzystuje standardową fizykę plazmy oraz projekt i założenia inżynieryjne konwencjonalnego tokamaka, ale łączy je z nową technologią wytwarzania magnesów. Zatem nie potrzebowaliśmy innowacji na kilku polach. Naszym celem było stworzenie odpowiedniego magnesu, a następnie zastosowanie w praktyce tego, czego nauczyliśmy się w ciągu ostatnich kilku dekad, mówi Martin Greenwald z Plasma Science and Fusion Center.

To wielka chwila, dodaje Bob Mumgaard, dyrektor wykonawczy CFS. Dysponujemy teraz platformą, która dzięki dziesięcioleciom badań nad tego typu rozwiązaniami jest bardzo zaawansowana z naukowego punktu widzenia i jednocześnie bardzo interesująca z komercyjnego punktu widzenia. To pozwoli nam szybciej budować mniejsze i tańsze reaktory. Trzy lata temu ogłosiliśmy, że zamierzamy zbudować magnes o mocy 20 tesli, który będzie potrzebny do przyszłych reaktorów fuzyjnych. Osiągnęliśmy nasz cel bez żadnych opóźnień, dodaje.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
12 godzin temu, KopalniaWiedzy.pl napisał:

Żeby zrozumieć, po co w reaktorach fuzyjnych tak potężne magnesy, trzeba wiedzieć, że do zaistnienia fuzji jądrowej potrzebne są olbrzymie temperatury, sięgające 100 milionów stopni Celsjusza i więcej. Takich temperatur nie wytrzyma żadne ciało stałe. Dlatego też plazmę, w której będzie zachodziła fuzja, trzeba utrzymać z dala od ścian reaktora. Można to zrobić za pomocą silnego pola magnetycznego. I właśnie temu – zawieszeniu plazmy w przestrzeni – służą potężne elektromagnesy.

hm... czyli taki reaktor zawieszony w przestrzeni kosmicznej już by takich silnych magnesów nie potrzebował? Czy jednak chodzi o co innego.

I drugie trochę żartem.
Jak ja bym nie miał tak silnych magnesów i chciał aby materiał nie dotykał ścianek, to bym zrobił całą maszynę bardzo wysoką (lub głęboką)  i materiał  by po prostu spadał(nie wiem jaka to szybka reakcja), bez dotykania ścianek.


 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
23 minuty temu, Astro napisał:

Potrzebowałby takich samych. Cząsteczki powietrza w Twoim pokoju nie leżą chyba na podłodze... Cały czas zderzają się ze ścianami, podłogą i sufitem. Stąd właśnie ciśnienie (mam nadzieję, że ta "analogia" pomoże ;)).

hm...nie napisałem, ze w ogóle by nie potrzebowali, tylko zastanawiam się czy nie potrzebowaliby słabszych. Aczkolwiek rozumiem, że tam panują wysokie ciśnienia i grawitacja jest nic nie znaczącym w tym aspekcie czynnikiem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, Astro napisał:

No właśnie ciśnienia nie są wcale takie duże, bo gęstości przy tych temperaturach raczej małe. Zwyczajnie cząstki plazmy poruszają się jak cząsteczki powietrza*, tyle że znacznie szybciej.

Przykładowy link z KW.

* czyli "chaotycznie", a zdecydowanie nie chcemy, żeby jednak docierały do ścian, sufitu i podłogi.

A to mnie zaskoczyłeś, spodziewałem się, że jest gorzej. Przyznaje się bez bicia, że nie zgłębiałem tematu.
Muszę poczytać o tym, bo prawdę mówiąc nawet nie wiem jakie to są masy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mówi się, że fuzja dostarczy "nieograniczoną" ilość CZYSTEJ energii elektrvcznej. Tak może i by było, ale gdyby sprawność takiej elektrowni była np. 80-90%. Przy sprawności 20% taka elektrownia była by gigantycznym źródłem ciepła. Polska potrzebuje ok. 20GW mocy, przy sprawności 20% 100GW trzeba by zamieć na ciepło. W perspektywie zapotrzebowanie wzrośnie kilkakrotnie, skutek byłby taki, że ogrzalibyśmy pospołu Bałtyk . Komercyjna fuzja to nadal obszar baśni z mchu i paproci, a bajka ta ciągnie się już ze 40lat, podczas których jesteśmy "tylko o krok od sukcesu".

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 hours ago, Astro said:

Potrzebowałby takich samych. Cząsteczki powietrza w Twoim pokoju nie leżą chyba na podłodze...

Czasami, jak się kładę spać, to myślę czy nie odnaleźli mnie już ci, którym nie sprzyjam, to jest anty-szczepy lub bojówki Radia Maryja i czy we śnie nie zdarzy się sytuacja taka, że całe powietrze w pokoju będzie po drugiej stronie poduszki :) Z punktu widzenia entropii jest to skrajnie mało prawdopodobne, ale niejeden nicpoń gotowy szczęściu pomóc :)

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13 godzin temu, nurek napisał:

Przy sprawności 20% taka elektrownia była by gigantycznym źródłem ciepła.

I dobrze. Nie wiem na ile energetyka termojądrowa się nadaje do kogeneracji i abstrahując od poprawności tych liczb, to ta technologia, ciepła  z atomu ma wielką przyszłość.

Tylko z naszego podwórka:

1629320353320-png.1928447

 

Ciepło z atomówek to też mieszkalnictwo. Sporo w ostatnim czasie mówi się o SMR w pobliżu miast, Czesi pracują zaś nad projektem "Teplator", niskotemperaturowym reaktorem opalanym zużytymi prętami z reaktorów jądrowych:

https://www.cire.pl/artykuly/serwis-informacyjny-cire-24/183087-czescy-naukowcy-opracowuja-projekt-cieplowni-jadrowej

Ogólnie moce zainstalowane w Polsce do ciepłownictwa to aż 172GW. Większość to różnego rodzaju kopciuchy, mające,  nawet te na ekogroszek, bardzo niską sprawność cieplną.

Transformacja na całkowitą zeroemisyjność cieplną  bez atomu nie uda się. Ciepłownie, nawet te przydomowe, działają głównie w tę porę roku gdy sprawność np. fotowoltaiki w naszym klimacie jest bardzo niska, a ocieplenie klimatu u nas, będzie oznaczało zimą jeszcze więcej stratusów, czyli zgniłej, mrocznej pogody, z małą ilością światła słonecznego.  Potrzebujemy bardzo dużo  ciepła. 

Edytowane przez venator

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
22 hours ago, nurek said:

Mówi się, że fuzja dostarczy "nieograniczoną" ilość CZYSTEJ energii elektrvcznej.

Zupełnie czysta nigdy nie będzie. Zawsze trzeba pozyskać paliwo albo chociaż wylać beton na fundamenty. Łatwiejsze do wykorzystania są izotopy wodoru, które są trudniejsze do pozyskania. Ciekawe, jak wyjdzie kwestia ewentualnych emisji CO2 w porównaniu do energii nuklearnej? W Forbes widziałem niedawno artykuł z 2021 zestawiający emisje CO2 ze źródeł kopalnych, energii odnawialnej i nuklearnej:

Quote

More specifically, they figure that wind turbines average just 11 grams of CO2 emission per kilowatt-hour of electricity generated. That compares with 44 g/kwh for solar, 450 g for natural gas, and a whopping 1,000 g for coal. But beating them all is the original large-scale zero-carbon power source, nuclear power, at 9 g/kwh.

 

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 17.09.2021 o 14:33, l_smolinski napisał:

Nic z tego nigdy nie będzie. Mogę się założyć o swoją roczną pensje.  

No to chyba musisz zacząć odkładać na ten cel.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Kłamliwy artykuł.
Lata postępów sprawiły że współczynnik całkowitego zysku zwiększył się z 0,57 do 0,6.
W artykule chyba celowo jest mowa jedynie o energii netto w ramach fuzji w samej komorze. Z takim postępem to możecie czekać jeszcze 200 lat na pierwszą elektrownię która będzie miała znaczenie energetyczne a nie medialne.
No bo: 1,01 też nas nie zadowoli. Co z tego że wyprodukujemy więcej jak musimy ponieść masę wydatków na badania, inwestycje i budowę? Przy takim współczynniku - który i tak jest dalo poza naszymi możlwościami  - budowa elektrowni oznacza że jedziemy na stracie przez dziesiątki lat.
Ten współczynnik musi osiągnąć wielokrotność 1 a nie ledwo ją przekroczyć. Teraz jest 0,6 :D
W tej chwili tylko jedno źródło energii ma pomijalny wpływ na środowisko: energia atomowa. I przez dziesiątki lat nie zapowiadają się żadne zmiany.
Na chwilę obecną zielony ład polega na tym że zielone jest to co dają Niemcy z Rosją: czyli gaz :D który przypadkiem skoczył do góry :) 
Parafrazując znane powiedzenie:
gdybyśmy w samochodach na paliwo mieli taki postęp jak w energetyce termojądrowej to do dziś skręcanie sygnalizowalibyśmy machaniem ręki za oknem samochodu.

Edytowane przez thikim
  • Pozytyw (+1) 2

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
On 10/9/2021 at 11:17 AM, thikim said:

Lata postępów sprawiły że współczynnik całkowitego zysku zwiększył się z 0,57 do 0,6.

Wiem, że postęp badań nad fuzją nuklearną nie powala, ale zakładasz postęp liniowy :)

On 10/9/2021 at 11:17 AM, thikim said:

Parafrazując znane powiedzenie:
gdybyśmy w samochodach na paliwo mieli taki postęp jak w energetyce termojądrowej to do dziś skręcanie sygnalizowalibyśmy machaniem ręki za oknem samochodu.

To starożytne chińskie przysłowie czy z greki?

On 10/9/2021 at 11:17 AM, thikim said:

W tej chwili tylko jedno źródło energii ma pomijalny wpływ na środowisko: energia atomowa.

Energia atomowa ma złą reputację niestety. Szkoda, że doszło do wypadków, których można było uniknąć. Teraz to jest prawie jak religia, więc ciężko kogokolwiek do czegokolwiek przekonać. Zawsze będzie ktoś protestował. Inna rzecz, że pamiętam protesty o Polsce przeciwko projektowi elektrowni w Żarnowcu, ale też pamiętam protesty przeciwko elektrowni wiatrowej :) Z każdej strony d*pa. Najlepiej nic nie robić, ale jak zaczną się blackouty, to tez będą protesty jak teraz Libanie, gdzie nie ma od kilku dni prądu, bo w dwóch elektrowniach skończyła się zupa a w państwowej kasie waluta :)

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 9.10.2021 o 12:17, thikim napisał:

Kłamliwy artykuł.

Wręcz przeciwnie. Artykuł precyzyjnie mówi, że za kilka lat powstanie pierwszy reaktor fuzyjny z zyskiem netto i że będzie to reaktor badawczy, a nie komercyjny. W reaktorze badawczym wystarczy te wspomniane przez ciebie 1,01. To przełom i niezbędny punkt wyjścia do dalszych badań. Tym razem już nie nad uzyskaniem dodatniego wyniku netto, a nad znalezieniem rozwiązania, dzięki któremu będzie mógł powstać reaktor w pełni komercyjny.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z amerykańskich Ames National Laboratory i Iowa State University stoją na czele konsorcjum, które pracuje nad nowymi materiałami dla reaktorów fuzyjnych. Stworzenie odpowiednich materiałów to niezbędny krok, które mają umożliwić komercyjne wykorzystywanie energii z fuzji jądrowej. Badania prowadzone są w ramach programu CHADWICK (Creating Hardened And Durable fusion first Wall Incorporating Centralized Knowledge) ogłoszonego niedawno przez Advanced Research Projects Agency–Energy (ARPA-E).
      Celem agencji jest promocja i finansowanie zaawansowanych badań nad technologiami pozyskiwania energii. Przed 2 miesiącami ARPA-E ogłosiła warty 30 milionów USD program CHADWICK, do którego zakwalifikowało się 13 projektów.
      Jedną z głównych trudności w pozyskiwaniu energii w procesie fuzji jądrowej jest odpowiednie uwięzienie plazmy, w której odbywa się reakcja. Uwięziona plazma jest jak miniaturowe Słońce zamknięte w pojemniku, który musi wytrzymać oddziaływanie niezwykle wysokiej temperatury, silne promieniowanie i pola magnetyczne, a jednocześnie efektywnie przekazywać ciepło, które jest zamieniane w elektryczność.
      Projekt CHADWICK skupia się na pierwszej ścianie reaktora, tej, która otacza plazmę uwięzioną za pomocą silnego pola magnetycznego. Pierwsza ściana składa się z dwóch warstw materiału. Ta wewnętrzna jest blisko plazmy, zewnętrzna pomaga przekazać energię do innych części reaktora.
      Pierwsza warstwa musi być wytrzymała, odporna na pęknięcia i erozję. Nie może też być przez długi czas radioaktywna, by po wyłączeniu reaktora można było bezpiecznie przeprowadzić prace w jego wnętrzu. Nicolas Arbigay z Ames National Laboratory kieruje pracami nad udoskonaleniem pierwszej warstwy.
      Głównym materiałem, jaki badamy, jest wolfram. Nie licząc węgla, a właściwie jego niektórych form – jak diament – ma on najwyższą temperaturę topnienia ze wszystkich pierwiastków, stwierdził uczony.
      Jego laboratorium kupiło ostatnio specjalną platformę do wytwarzania i testowania nowych materiałów. Możemy robić proszki i odlewy różnych stopów, w tym czystego wolframu, wyjaśnia Argibay i dodaje, że w ciągu kilku najbliższych miesięcy laboratorium wzbogaci się w nowe urządzenia, które pozwolą na uzyskiwanie materiałów również w ilości wystarczającej do prowadzenia programów pilotażowych.
      Ames Lab zainwestowało też w rzadki system pozwalający na badanie materiałów ogniotrwałych w temperaturze znacznie powyżej 1000 stopni Celsjusza i posiada jedyny w USA komercyjny system testowania takich materiałów w temperaturze do 1500 stopni. To niezwykle ważny element prac nad pierwszą ścianą reaktora fuzyjnego.
      Materiał pierwszej ściany jest tym, co utrzymuje całość. Musi być wytrzymały. W ścianie muszą być zintegrowane różne elementy, jak kanały chłodzące, pozwalające na pozyskiwanie ciepła, wyjaśnia Jordan Tiarks. Pracuje on nad kolejnym aspektem reaktora fuzyjnego. Tiarks specjalizuje się w stalach ODS (stale dyspersyjnie umacniane tlenkami) przyszłej generacji. Stale ODS są wzbogacone ceramicznymi nanocząstkami, co poprawia ich właściwości mechaniczne i pozwala przetrwać wysokie promieniowanie. To, czego się dotychczas nauczyliśmy, chcemy wykorzystać do stworzenia nowego materiału, stopu bazującego na wanadzie, który będzie dobrze sprawdzał się w reaktorach fuzyjnych, mówi Tiarks.
      Problem w tym, że wanad zachowuje się inaczej niż stal. Ma znacznie wyższą temperaturę topnienia i jest bardziej reaktywny. Nie można go łączyć z ceramiką, więc zespół Tiarksa szuka innych sposobów na tworzenie stopów wanadu. Wykorzystujemy gaz pod wysokim ciśnieniem, by rozbić roztopiony materiał na niewielkie kropelki, które gwałtownie schładzamy i uzyskujemy proszek. Tutaj nie możemy użyć żadnej ceramiki, stwierdza uczony. Dodatkowym problemem jest reaktywność wanadu. Już same proszki są bardzo reaktywne. Jeśli tworzymy z nich aerozol, mogą eksplodować. Na szczęście duża część metali tworzy cienką warstwę tlenu na takich cząstkach, która zapobiega kolejnym reakcjom. Ta warstewka chroni resztę cząstki przed dalszym utlenianiem się. Znaczna część prowadzonych przez nas badań polega na opracowaniu metod zapobiegania gwałtownym reakcjom. Jest to konieczne, by bezpiecznie używać proszku. Jednocześnie zaś nie możemy zbytnio ich utlenić, bo to negatywnie wpłynie na ich właściwości. Opracowanie odpowiednich metod przetwarzania sproszkowanych materiałów opartych na wanadzie pozwoli lepiej kontrolować strukturę drugiej warstwy pierwszej ściany reaktora.
      Gdy już odpowiedni materiał zostanie uzyskany, jego testowaniem zajmie się zespół profesora Sida Pathaka z Iowa State University. Uczeni nałożą proszek na odpowiednie powierzchnie i będą badali przede wszystkim odporność tak stworzonych paneli na silne promieniowanie reaktora fuzyjnego. Uważają, że nowy materiał będzie bardziej odporny niż dotychczas używane. Jednak, jak zauważa uczony, negatywne skutki promieniowania ujawniają się w materiale ścian reaktora po 10-20 latach. Projekt badawczy będzie trwał 3 lata, więc nie jest możliwe odtworzenie odpowiednich warunków. Dlatego badania będą prowadzone w Ion Beam Laboratory, gdzie materiał będzie bombardowany za pomocą jonów, a nie neutronów, jakby to miało miejsce w reaktorze. Dodatkową zaletą jest fakt, że materiał potraktowany jonami nie będzie radioaktywny, co ułatwi badania. Z kolei negatywną stroną użycia jonów jest bardzo płytka penetracja. Uszkodzenia materiału pojawią się na głębokości 1-2 mikrometrów, więc ich badanie będzie wymagało użycia wyspecjalizowanych narzędzi.
      Opracowanie komercyjnej fuzji jądrowej stawia przed nami jedne z największych wyzwań technologicznych naszych czasów, jednocześnie jednak niesie ze sobą obietnicę olbrzymich korzyści, w postaci nieograniczonego źródła czystej energii, podsumowuje Tiarks.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy.  Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaledwie kilka tygodni po tym, jak National Ignition Facility doniosło o przełomowym uzyskaniu w reakcji termojądrowej większej ilości energii niż wprowadzono jej do paliwa, największy projekt energii fuzyjnej – ITER – informuje o możliwym wieloletnim opóźnieniu. International Thermonuclear Experimental Reactor (ITER) to międzynarodowy projekt, w ramach którego na południu Francji powstaje największy z dotychczas zbudowanych reaktorów termojądrowych. Ma to być reaktor eksperymentalny, który dostarczy około 10-krotnie więcej energii niż zaabsorbowana przez paliwo. Dla przypomnienia, NIF dostarczył jej 1,5 raza więcej.
      Budowa ITER rozpoczęła się w 2013 roku, a w roku 2020 rozpoczęto montaż jego reaktora, tokamaka. Pierwsza plazma miała w nim powstać w 2025 roku. Jednak Pietro Barabaschi, który od września jest dyrektorem projektu, poinformował dziennikarzy, że projekt będzie opóźniony. Zdaniem Barabaschiego, rozpoczęcie pracy reaktora w 2025 roku i tak było nierealne, a teraz pojawiły się dwa poważne problemy. Pierwszy z nich, to niewłaściwe rozmiary połączeń elementów, które należy zespawać, by uzyskać komorę reaktora. Problem drugi to ślady korozji na osłonie termicznej. Usunięcie tych problemów "nie potrwa tygodnie, ale miesiące, a nawet lata", stwierdził menedżer. Do końca bieżącego roku poznamy nowy termin zakończenia budowy reaktora. Barabaschi pozostaje jednak optymistą i ma nadzieję, że opóźnienia uda się nadrobić i w roku 2035 reaktor będzie – jak się obecnie planuje – pracował z pełną mocą.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Jest ona niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. W końcu, nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Amerykańscy eksperci z National Ignition Facility poinformowali o uzyskaniu z fuzji jądrowej wyraźnie więcej energii niż wprowadzono w paliwo. Uzyskano tym samym punkt tzw. breakeven. Po kilkudziesięciu latach badań pojawiła się realna nadzieja na uzyskanie niemal niewyczerpanego źródła czystej energii.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy.  Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
      Fuzja jądrowa jest od wielu dekad przedmiotem zainteresowania naukowców na całym świecie. Problem w tym, że aby pokonać siły elektrostatyczne odpychające od siebie atomy potrzeba albo ekstremalnie wysokich temperatur, albo potężnych impulsów laserowych. To zaś wymaga budowy olbrzymich, bardzo skomplikowanych i kosztownych instalacji.
      Istnieją różne pomysły na przeprowadzeni fuzji jądrowej, a najpopularniejszym z nich jest próba wykorzystania tokamaków. Optymalna temperatura, w której dochodzi do reakcji połączenia się deuteru z trytem w tokamaku wynosi od ok. 100 do ok. 200 milionów stopni Celsjusza. Tak rozgrzana materia znajduje się w stanie plazmy. Trzeba ją uwięzić w jakiejś niematerialnej pułapce. Może być nią np. silne pole magnetyczne. I to właśnie rozwiązanie stosowane jest w tokamakach i będzie je wykorzystywał słynny budowany we Francji reaktor badawczy ITER. Uwięzienie jest konieczne zarówno dlatego, by plazma się nie rozpraszała i nie chłodziła, jak i dlatego, by utrzymać ją z dala od ścian reaktora, które zostałyby uszkodzone przez wysokie temperatury.
      Innym pomysłem jest zaś inercyjne uwięzienie plazmy. Z tej technologii korzysta właśnie National Ignition Facility (NIF). NIF otwarto w 2009 roku w w Kalifornii. To laboratorium badawcze, w którym zespół 192 laserów skupia wiązki na niewielkiej kapsułce zawierającej paliwo. Jest ono zgniatane prze światło lasera, a zapłon następuje w wyniku transformacji promieniowania laserowego w promieniowanie rentgenowskie. To efekt prac prowadzonych od dziesięcioleci. W latach 60. zespół fizyków z Lawrence Livermore National Laboratory – do którego należy NIF – pracujący pod kierunkiem Johna Nuckollsa, wysunął hipotezę, że zapłon fuzji jądrowej można by uzyskać za pomocą laserów. Właśnie poinformowano, że 5 grudnia bieżącego roku uzyskano długo oczekiwany zapłon.
      Zapłon ma miejsce, gdy ciepło z cząstek alfa powstających w wyniku fuzji termojądrowej w centrum kapsułki z paliwem jest w stanie przezwyciężyć efekt chłodzący wywołany m.in. stratami promieniowania rentgenowskiego czy przewodnictwem elektronowym, zapewniając samopodtrzymujący mechanizm ogrzewania i gwałtowny wzrost ilości uzyskanej energii, czytamy na stronach NIF. Podczas eksperymentu do paliwa dostarczono 2,05 megadżula (MJ) energii, a w wyniku reakcji uzyskano 3,15 MJ.
      Zapłon uzyskano w niewielkim cylindrze zwanym hohlraum, wewnątrz którego znajdowała się kapsułka z paliwem. Wewnątrz niej energia światła laserowego zmieniła się w promieniowanie rentgenowskie, doszło do kompresji kapsułki, jej implozji i pojawienia się wysokotemperaturowej plazmy, wewnątrz której panowało wysokie ciśnienie.
      To ważny krok, jednak zanim do naszych domów popłynie czysta energia uzyskana drogą fuzji jądrowej, musimy nauczyć się uzyskiwać wielokrotnie więcej energii niż kosztowało nas doprowadzenie do reakcji. Do tego zaś potrzeba wielu naukowych i technologicznych przełomów. Ich osiągnięcie może potrwać całe dekady.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W National Ignition Facility dokonano przełomowego kroku na drodze ku uzyskiwaniu energii z fuzji jądrowej. Po raz pierwszy w historii w tego typu systemie udało się uzyskać porównywalną ilość energii jak ta, która została zaabsorbowana przez paliwo podczas inicjowania reakcji. Jednak do uzyskania większej ilości energii niż włożono do całego systemu jeszcze daleka droga. Ostatni eksperyment wykazał też, że naukowcom z Lawrence Livermore National Laboratory udało się zwiększyć wydajność systemu o cały rząd wielkości.
      Przełom dokonał się, gdy cząsteczki alfa, jądra helu powstałe w wyniku fuzji deuteru i trytu, oddały swoją energię do paliwa, zamiast, jak zwykle, wydostać się z niego. Ta dodatkowa energia przyspieszyła fuzję, prowadząc do jeszcze większej produkcji cząsteczek alfa. Taki samonapędzający się mechanizm to początek fuzji jądrowej.
      Najnowszy eksperyment został bardzo szczegółowo zaprojektowany tak, by nie doszło do pęknięcia plastikowych osłon, w których znajduje się paliwo. Prawdopodobnie to właśnie degradacja osłoń spowodowała, że poprzednie eksperymenty były nieudane. Osiągnięcie celu było możliwe dzięki zmodyfikowaniu impulsu laserowego, za pomocą którego paliwo jest kompresowane.
      W National Ignition Facility używa się 192 laserów, które kompresują miniaturowe pigułki z paliwem deuterowo-trytowym do tego stopnia, iż w wyniku fuzji jądrowej dochodzi do uwolnienia dodatkowej energii. Kapsułki mają średnice mniejszą niż połowa średnicy ludzkiego włosa. Wewnątrz znajdują się tryt i deuter, które przez mniej niż miliardową część sekundy zostają poddane olbrzymiemu ciśnieniu i temperaturze.
      Obecnie naukowcy starają się wykorzystać dwie różne koncepcje rozpoczęcia fuzji jądrowej. Jedna, z której korzysta National Ignition Facility, zakłada użycie laserów do skompresowania paliwa i utrzymania go na miejscu za pomocą inercyjnego uwięzienia. Z kolei w Europie próbuje się innego podejścia. W Joint European Torus w Wielkiej Brytanii oraz w reaktorze ITER we Francji próbuje się utrzymać plazmę na miejscu za pomocą uwięzienia magnetycznego.
      Celem wszystkich tych prac jest rozpoczęcie fuzji jądrowej i uzyskanie z niej energii.
      Po dziesiątkach latach badań i niezwykle powolnego rozwoju techniki fuzji jądrowej w końcu udało się uzyskać nadmiarową energię. Przełom dokonany w otwartym w 2009 NIF powinien bardziej przychylnie nastawić doń krytyków tego eksperymentu. Warto przypomnieć, że NIF bił rekordy impulsu i uzyskanej mocy laserowej. Duże koszty związane z utrzymaniem NIF skłoniły jednak Kongres USA do podjęcia decyzji, iż ośrodek ma w większym niż wcześniej stopniu zajmować się badaniami nad bronią jądrową. To jednak, jak widzimy, nie przeszkodziło w osiągnięciu sukcesu na pierwotnym polu zainteresowań NIF.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa amerykańskich, brytyjskich i japońskich badaczy pracujących w National Ignition Facility (NIF) odkryła, że pokrycie cewką magnetyczną cylindra zawierającego paliwo wodorowe podnosi temperaturę paliwa i trzykrotnie zwiększa wydajność reakcji. To kolejny krok ku kontrolowanej praktycznej reakcji termonuklearnej.
      National Ignition Facility otwarto w 2009 roku. To laboratorium badawcze, w którym zespół 192 laserów skupia wiązki na niewielkiej kapsułce zawierającej wodór, wykorzystując technikę inercyjnego uwięzienia plazmy. To alternatywny wobec znanych tokamaków, sposób na fuzję jądrową. Już w 2014 roku z systemu uzyskano więcej energii niż weń włożono. Natomiast w sierpniu ubiegłego roku udało się osiągnąć uzysk energii rzędu 1,3 MJ i poinformowano, że naukowcy z NIF są bliżej zainicjowania stabilnej samopodtrzymującej się reakcji termojądrowej niż ktokolwiek inny. Od tamtej pory eksperci z NIF próbują powtórzyć swoje osiągnięcie, ale wciąż im się to nie udało. Niedawno na przykład odkryli, że jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń.
      Grupa fizyków z NIF, poszukując przyczyny niepowodzeń, przeanalizowała starsze prace naukowe i zauważyła w nich coś intrygującego. Autorzy niektórych z nich twierdzili, że przeprowadzone symulacje komputerowe wykazały, iż zamknięcie cylindra z paliwem w polu magnetycznym powinno znacznie zwiększyć produkcję energii. Postanowiono więc sprawdzić, czy tak jest w rzeczywistości.
      Jednak do przeprowadzenia eksperymentów konieczna była modyfikacja samego cylindra. Jest on zbudowany ze złota. Umieszczenie go w silnym polu magnetycznym spowodowałoby pojawienie się silnego prądu elektrycznego, który rozerwałby cylinder. Dlatego też uczeni zbudowali nowy cylinder, ze stopu złota i tantalu. Zmienili też paliwo w kapsułce z wodoru na jeden z jego izotopów, deuter. Następnie całość zapakowali w cewkę i wystrzelili wiązki laserowe. Zastosowanie zewnętrznego osiowego pola magnetycznego o natężeniu 26 tesli [...] zwiększyło temperaturę jonów o 40%, a uzysk neutronów o 3,2 razy, czytamy w Physical Review Letters.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...