Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Skała nie chciała współpracować, więc łazikowi nie udało się pobrać z niej rdzenia

Recommended Posts

NASA informuje, że przyczyną niepowodzenia pierwszej operacji pobrania próbek przez łazik Perseverance była niezwykle miękka skała, w której wykonano wiercenia. Przed tygodniem łazik miał pobrać próbki, które następnie miały trafić do specjalnego pojemnika i oczekiwać na powierzchni Marsa na przyszłą misję, która przywiezie je na Ziemię. Jednak z danych przysłanych przez Perseverance wynikało, że żadne próbki do pojemnika nie trafiły.

Po analizie dostępnych informacji inżynierowie z NASA poinformowali, że skała, w której wiercono, była zbyt miękka, by można było pobrać z niej rdzeń. Zdecydowano więc, że łazik przejedzie w inne miejsce, gdzie ponownie spróbuje pobrać próbki. Kolejna próba odbędzie się w przyszłym miesiącu. Louise Jandura, szefowa zespołu odpowiedzialnego za zbieranie próbek, mówi, że ze zdjęć wykonany przez łazik oraz śmigłowiec Ingenuity wynika, że w niedalekiej odległości znajduje się skałą osadowa, która powinna lepiej nadawać się do wykonania odwiertu i pobrania rdzenia.

Sprzęt działał jak należy, ale skała z nami nie współpracowała, stwierdziła Jandura. To przypomina, jak pełne niespodzianek są badania nieznanego terenu. Nigdy nie mamy gwarancji, że się uda. Niezależnie od tego, ile wysiłku włożymy w przygotowania, dodaje.

Jednym z zadań łazika Perseverance jest zebranie około 35 próbek, która mają trafić na Ziemię w ciągu dekady.


« powrót do artykułu

Share this post


Link to post
Share on other sites
1 hour ago, KopalniaWiedzy.pl said:

przyczyną niepowodzenia pierwszej operacji pobrania próbek przez łazik Perseverance była niezwykle miękka skała, w której wykonano wiercenia

Przypomina to próby odwiertu na Insight, które też się nie powiodły ze względu na miękkie skały. Ktoś by pomyślał, że takie skały ułatwią odwiert :) Aczkolwiek z opisu wynika, że łazik byłby w stanie wykonać odwiert, ale nie wyciągnąłby rdzenia.

Share this post


Link to post
Share on other sites

Po prostu się wysypało. Na prawdę nie mogli takiej sytuacji przewidzieć i dodać łyżkę z koparki? ;)

 

Share this post


Link to post
Share on other sites
W dniu 14.08.2021 o 02:05, radar napisał:

Po prostu się wysypało. Na prawdę nie mogli takiej sytuacji przewidzieć i dodać łyżkę z koparki? ;)

 

 

Zaraz znalazłby się nowy problem i konieczność projektowania kolejnego dodatkowego wiertła lub innej konstrukcji... prostej jak budowa łopaty :D

Ale przecież wg. zwolenników automatycznej eksploracji Czerwonej Planety, człowiek na powierzchni Marsa jest  zupełnie  niepotrzebny. Jak Perseverance nie pobierze tej próbki, to główną część misji można spisć na straty. Bo za bardzo  sypki piasek...:D

 

Share this post


Link to post
Share on other sites

Za cenę jednej misji załogowej na Marsa można mieć kilkadziesiąt, łazików klasy Curiosity czy Perseverance z dronem. Jedno lądowanie na Księżycu po uwzględnieniu inflacji to jest kilkanaście łazików. Odwiert wykonają prędzej czy później, bo muszą znaleźć skałę o odpowiedniej twardości. Oczywiście to nie jest idealne rozwiązanie, bo w idealnym świecie najlepiej było by pobrać próbki w każdych możliwych okolicznościach, jak najniższym kosztem i przy najniższym ryzyku, ale nie żyjemy w idealnym świecie.

 

Kilka odwiertów wykonanych przez Curiosity.

2018-106-3-148-technologue-2-natural.jpg

 

Nabijasz się z robotów, a jaki postęp się dokonał w ciągu zaledwie 15 lat eksploracji łazikami? Jaki postęp dokonał się w eksploracji biomasą? :) Dlaczego tak się stało? Na zdjęciu: Sojourner (1996), Spirit/Oppoortunity (2003), Cruriosity (2011).

800px-PIA15279_3rovers-stand_D2011_1215_

Edited by cyjanobakteria
  • Like (+1) 1

Share this post


Link to post
Share on other sites
10 godzin temu, venator napisał:

Zaraz znalazłby się nowy problem i konieczność projektowania kolejnego dodatkowego wiertła lub innej konstrukcji... prostej jak budowa łopaty 

Wygląda na to, że sprzęt był testowany w zupełnie innych warunkach. Na moje oko, pominięto kilka zbyt oczywistych do sprawdzania przypadków. 

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
5 godzin temu, Jajcenty napisał:

Na moje oko, pominięto kilka zbyt oczywistych do sprawdzania przypadków. 

Dokładnie to samo miałem na myśli. To jak, zakładali, że na Marsie są same skały? Nic nie zwietrzało? Rozumiem planowanie misji i wybór miejsca na podstawie zdjęć, chcieli skałę, etc. Tylko czy tam nie jest łatwiej trafić na pył niż na skałę? Może do wiertła-rurki wystarczylo dodać podciśnienie na końcu? Miękka czy twarda podciśnienie by trzymało/zassało i siup do pojemnika? :) Kto ma numer do NASA? ;)

Edited by radar

Share this post


Link to post
Share on other sites

Jeżdżą Curiosity po powierzchni od 2012 roku, więc ciężko zakładać, że nie wiedzą, co jest na powierzchni ;) Ale zawsze coś wyjdzie w praniu, zwłaszcza, że wylądowali w innym miejscu. Curiosity miało problem z kołami, które były mniej wytrzymałe w Marsjańskich warunkach niż zakładano i musiano ostrożniej planować misje.

Video o przygotowaniu próbówek do misji i standardzie czystości, jaki spełniają. Podobno NASA jeszcze nie wysłała w kosmos pojazdu bardziej wysterylizowanego niż Perseverance. Jednym z celów misji jest zabezpieczyć próbki zanim zostaną skażone przez astronautów hodujących ziemniaki :)

 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Filmiki fajne, ale to już lekka przesada:

Godzinę temu, cyjanobakteria napisał:

Jeżdżą Curiosity po powierzchni od 2012 roku, więc ciężko zakładać, że nie wiedzą, co jest na powierzchni

w porównaniu z https://mars.nasa.gov/msl/mission/where-is-the-rover/

Cytat

Distance Driven 16.24 miles / 26.13 km

:D

No, i nie zmienia to faktu, że:

12 godzin temu, Jajcenty napisał:

Na moje oko, pominięto kilka zbyt oczywistych do sprawdzania przypadków

;)

Share this post


Link to post
Share on other sites

Oczywiście, że nie mają pełnej wiedzy na temat geologi Marsa. Skały mają jednak określoną twardość w pewnym zakresie podobnie jak na Ziemi. Więc dopóki nie trafią na bloczki z diamentu nie będą zaskoczeni :) Jeżeli pominięto w testach przypadki, to nie były one oczywiste. O ile mnie pamięć nie myli przeprowadzono ponad 650 testowych lądowań nad różnymi terenami w USA i na świecie. Tak przynajmniej testowano Terrain Relative Navigation (TRN). Dalszych testów zaprzestano, bo ROI nie było korzystne, to jest nie wnosiły nic nowego, tylko rosły koszty. Nie wiem ile testowych odwiertów przeprowadzono, ale wykonanie odwiertu w kawałku skały w laboratorium jest tańsze.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

To nie jest tak, że ja ich jakoś krytykuję albo, że sam byłbym mądrzejszy, ale jednak na prawdę nikt nie zadał pytania "a co jeśli wywiercony rdzeń skały będzie luźny?". Nie mamy takich skal na Ziemi? Mówi się oczywiście trudno i jedzie, dosłownie i w przenośni, dalej w końcu wywiercą co chcą mam nadzieję :)

 

Edited by radar

Share this post


Link to post
Share on other sites

Może zadali sobie to pytanie i mieli odpowiedź? To że teraz nie udało się wyciągnąć, to nie znaczy, że z każdej miękkiej skały nie da się wyciągnąć i że nie wzięli tego pod uwagę ;) Jeżeli nie uda im się pobrać próbek kilka razy z rzędu, przynajmniej trzy razy, to się będę zastanawiał co sknocili ;) Obchodzą się z tym łazikiem jak z jajkiem, co jest naturalne. Jeden odwiert pewnie trwa kilka godzin. W artykule jest przytoczona wypowiedź, że nigdy nie mogą być pewni sukcesu podczas odwiertu, co wydaje się logiczne, bo nigdy nie wiedzą na co natrafią.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
W dniu 15.08.2021 o 10:05, cyjanobakteria napisał:

Za cenę jednej misji załogowej na Marsa można mieć kilkadziesiąt, łazików klasy Curiosity czy Perseverance z dronem.

Być może  tak. Ale jaka będzie gwarancja,że za te kilkadzeisiąt misji,  za kilkadzisiąt miliardów dolarów, kolejny łazik nie napotka "zbyt sypkiego piasku"?

Jakby co, nabieranie na łopate  sypkiego piasku, to jest coś co ludzkość robi całkiem dobrze od tysięcy lat. Na tyle, że obecnie tzw kopacz rowów, to tzw robtnik niewykwalifikowany. 

Ale i tak robi to zdecdowanie lepiej od najbardziej zawansowanych robotów marsjańskich. To tak pół żartem...

Ja się zgadzam co do automatycznej eksploracji Tytana i innych księżyców planet zewnętrznych. Załogowa eksploracja  tych rejonów US zdecdowanie przerasta, na obecną chwile,  ludzkie możliwości.  

Ale Mars?

 

W dniu 15.08.2021 o 10:05, cyjanobakteria napisał:

Jedno lądowanie na Księżycu po uwzględnieniu inflacji to jest kilkanaście łazików.

I co z tymi łazikami? 

 W misji Apollo 11, prosty eksperyment badania ściśliwości i gęstości grutnu wykonał Bazz Aldrin. 

Udało się bo naparł ciałem na rure. Grunt się okazał dużo bardziej twardy niż zakładano, rura zagłębiła się jedynie na 15 cm. . Na rurę napierał człowiek i przyłożył tzw niutona. 

Robot by sie zapewne zes....ł  Bo nie tak byłby zaprojektowany. Bo te niuanse w programie wynikające z teoretycznych założeń.....

Pomimo całego optymizmu nie widzę takiego postępu w robotyce, który byłby w stanie zastąpić człowieka nawet w takich  prostych działaniach. 

 

 

W dniu 15.08.2021 o 10:05, cyjanobakteria napisał:

Nabijasz się z robotów, a jaki postęp się dokonał w ciągu zaledwie 15 lat eksploracji łazikami? Jaki postęp dokonał się w eksploracji biomasą? :) Dlaczego tak się stało? Na zdjęciu: Sojourner (1996), Spirit/Oppoortunity (2003), Cruriosity (2011).

 

Absolutnie się nie nabijam. Roboty są przyszłością.

A czemu taki postęp dokonał się biomasą?. Trochę wspomniałem o tym w sąsiednim wątku.

Wystarczy poczytać.

 

 

Share this post


Link to post
Share on other sites

No i będziesz miał swoje wykopki biomasą na Marsie w okolicach 2050, może trochę szybciej. Zadowolony? :) Będzie trzeba wystrzelić na LEO jakieś 20x SpaceX Starship, jak nie więcej, żeby móc wykonać tranzyt na Marsa połowy ze sprzętem i operatorami łopat, i żeby mieć jakiekolwiek szanse na powodzenie misji :)

Neil nie tylko się oparł, ale nawet z taśmy klejącej i kawałków plastiku zrobili błotniki :) Ale Curiosity waży tonę, więc też się może oprzeć. Spirit i Opportunity za to jeździły po Marsie chyba 15 lat łącznie. Porównwywanie do Insigth nie jest uczciwe, bo lądownik nie miał się oprzeć tylko wykonać odwiert na 3-5 metrów, co trwałoby wiele dni, więc astronauci na Księżycu by tego zadania nie mogli wykonać. Nie żartuj, że przeprowadzenie jednej misji z czterema sztukami biomasy w jednej rakiecie ma większe szanse powodzenia niż 50 łazików wysłanych oddzielnie.

Masz ciśnienie na te przewalanie łopatą. Pewnie to skrzywienie zawodowe, bo wypowiadasz się podejrzanie często w tematach zahaczających o archeologię :) Jeżeli takie jest kryterium powodzenia misji, to można zakontraktować mini koparkę JCB z jakiegoś lekkiego stopu i ją przystosować do pracy zdalnej na Marsie :) Biomasa w przewalaniu łopatą nie sprawdza się nawet na Ziemi, bo dawno została wyparta przez maszyny.

Edited by cyjanobakteria
  • Haha 1

Share this post


Link to post
Share on other sites
W dniu 20.08.2021 o 07:42, venator napisał:

Ja się zgadzam co do automatycznej eksploracji Tytana i innych księżyców planet zewnętrznych. Załogowa eksploracja  tych rejonów US zdecdowanie przerasta, na obecną chwile,  ludzkie możliwości.  

Ale Mars?

Mars (na moje wyczucie ma się rozmieć, nie jestem fachowcem od tego, tylko czytaczem artykułów na KW;) ) jest jak najbardziej do osiągnięcia dla ludzi, założenie na nim bazy naukowej (takiej powiedzmy podobnej trochę do stacji naukowych na Antarktydzie, tzn. jakieś pomieszczenia mieszkalne dla kilku osób, zawsze ktoś tam mieszka, co kilka lat wymienia się załoga, prowadzą jakieś badania) jest IMHO jak najbardziej pożądane itd. itp. Nawet gdyby rzeczywiście roboty wszystko robiły taniej, to ze względu powiedzmy na samopoczucie ludzi (tzn. poczucie, że yes, we did it, udało nam się osiągnąć kolejny sukces itd.;)) byłoby warto to zrobić. Podobnie zresztą jeśli chodzi o stację na Księżycu.

Jedyne "ale", to że przy obecnym tempie prac (i budżecie) osiągnięcie tego celu zajmie pewnie ze sto lat albo i dłużej ;) Jak dla mnie jest to do przyjęcia, rozumiem, że dla Ciebie nie, ale wydaje mi się, że nie ma jakiegoś prostego sposobu, żeby to przyspieszyć, tzn. (bez urazy) ale jesteś trochę takim trochę za dużym "hurra-optymistą" ;)

W dniu 20.08.2021 o 20:15, cyjanobakteria napisał:

No i będziesz miał swoje wykopki biomasą na Marsie w okolicach 2050, może trochę szybciej. Zadowolony?

Szanse na 2050 pewnie są praktycznie zerowe. Przed wylądowaniem ludzi trzeba na Marsie przygotować jakieś "zaplecze" umożliwiające przeżycie przez nich 1-2 lat na Marsie. A skoro roboty nie radzą sobie z zagadnieniem typu wywiercenie dziury w glebie plus wyciągnięcie z niej skały, to ja już widzę, jak "sprawnie" będzie szło przygotowywanie tego "zaplecza" ;)

 

P.S. Zamiast "roboty sobie nie radzą" powinno być "roboty słabo sobie radzą" (gorzej niż oczekiwano). Ale to nie zmienia sensu całości.

Share this post


Link to post
Share on other sites

Myślę, że 2050 jest do zrobienia, ale nie będzie to łatwe. Elon Musk dąży do misji na Marsa, ale potrzeba determinacji USA i NASA. Z drugiej strony Chiny nie będą czekały, więc to tylko kwestia czasu kiedy ktoś tam wyląduje.

Musk zrobił całkiem solidne postępy w ciągu ostatnich 10 lat. Nie dość, że mają czym wynosić rakiety, to lądują pionowo, a Starship nawet bokiem raz wylądował i nie wybuchł :) Oczywiście do certyfikowanego pojazdu jeszcze daleka droga, a testowe loty na 10 km to nie to samo co 3 letnia misja na Marsa. Lądowanie na Marsie w regolicie to inna bajka. Czy NASA dopuści w ogóle lądowanie bokiem z astronautami? Jest to dodatkowe ryzyko, a hamowanie aerodynamiczne na Marsie jest słabsze. Jeżeli nie, to SN będzie potrzebował więcej paliwa do wyhamowania.

Co do zapasów, to każdy z astronautów potrzebuje 1000 kg jedzenia i wody na rok, czyli dla 4 osób na 3 lata to 12 ton minimum. Inaczej podupadną na zdrowiu i nie będą mieć sił kopać rowów :) To przy założeniu, że nie będą kopać na Marsie ziemniaków. Oczywiście można się bawić w odzyskiwanie wody, co już teraz ma miejsce na ISS. Do tego obowiązkowo zestaw profesjonalnych szpadli i łopat FISKARS® Pro dla każdego :)

index.php?f=58808&token=3f9f46b445735f3c

Realistycznie pewnie 10x tyle lub więcej po uwzględnieniu innych komponentów misji, elementów strukturalnych, ale nie wliczając paliwa. Eksperyment MOXIE jest teraz testowany na Marsie, ale zakładam, że dadzą radę produkować tlen. Nie wspominając o tym, że trzeba to na Marsie wyhamować. Może część ekwipunku zostanie na orbicie, a paliwo i zapasy można dosłać później. Paliwo można też produkować na powierzchni na co najmniej 2 sposoby, z których jeden wymaga dostarczenia lub znalezienia wodoru. Curiosity dostarczył na Marsa Atlas V we wcale nie najgorszej konfiguracji, ale są dostępne mocniejsze rakiety, jak Falcon Heavy czy Delta 4 Heavy, a na horyzoncie New Glenn i Starship, który jednak będzie wymagał tankowania na LEO, więc każdy tranzyt na Marsa to dwa starty - jeden z ładunkiem a drugi z paliwem i tankowanie na orbicie!

Przypomniało mi się, że widziałem niedawno to video:

 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Takie "najmniejsze minimum" jakie mi przychodzi do głowy,  a które jest potrzebne niezbędne na Marsie, to źródło energii do podtrzymywania systemów, produkcji paliwa, o której piszesz itd. itp. Jedyne co mi przychodzi do głowy to mały reaktor atomowy, a nad tym chyba nikt nie pracuje. Kilka lat temu były pomysły, plany, żeby takie reaktory produkować i wykorzystywać na Ziemi, pojawiały się na ten temat artykuły na KW, teraz jest cicho. Z tego co pamiętam, zaangażował się w to nawet Bill Gates, chciał podjąć współpracę z Chińczykami, w celu produkcji takich reaktorów, potem sprawa została "zabita" przez wojnę ekonomiczną USA-Chiny (źródło: film dokumentalny o Billu na Netflixie, nie sprawdzałem, czy jest jeszcze dostępny). Więc... nawet zakładając, że jest to technologia na tyle dokładnie opanowana, że wystarczy wziąć projekt, wybudować fabrykę i produkować (a nie jestem pewien, czy tak jest), takie reaktory gotowe do użytku pojawią się pewnie na Ziemi nie wcześniej niż za kilka lat, a na Marsie bardzo optymistycznie szacując za 10 lat (btw, z tego co pamiętam, to statek, który ma przywieźć z Marsa próbki skał, które teraz próbuje się odwiercić, też ma przybyć na Marsa najwcześniej za 10 lat, chyba była kiedyś taka informacja na KW, a przecież to o wiele prostsze zagadnienie niż w przypadku "biomasy"). Zostaje mniej niż 20 lat na inne sprawy. Dodajmy do tego, że na Ziemi będzie coraz więcej "zamieszania" wskutek ocieplania się klimatu (był artykuł z przewidywaniami na ten temat), dojdzie jakiś kryzys gospodarczy w międzyczasie (coś czuję, że jeśli będzie to taki jak z 2008 roku albo i trochę gorszy). Poza tym jakieś nie przewidziane zdarzenia (11-tego września nikt nie przewidywał, epidemii koronawirusa też nie) i już czuć, że w ciągu tych 30 lat pewnie nie uda się wyrobić;)

Edited by darekp

Share this post


Link to post
Share on other sites

Skycrane i osłona termiczna Curiosity ważyły prawie 2500 kg i to jest masa potrzebna, aby bezpiecznie wylądować łazikiem o masie prawie 1000 kg na Marsie. Porównuje wszystko do lądowania Curiosty, bo to najlepsze dane jakie mam. Nowszy łazik to świeże dane, ale nie nauczyłem się jeszcze literować :)

Co do zasilania, może ten system orbitalnych luster czy paneli z przesyłem mikrofalami na powierzchnię, który jest dyskutowany w sąsiednim wątku, by się sprawdzi? Ewentualnie panele słoneczne ze zmniejszoną masą tak, jak napisali w artykule, do 100 g/m2 lub mniej. Każda tona, której nie trzeba dostarczyć na powierzchnię, to mniej paliwa potrzebnego na wyhamowanie i lądowanie, a to jeszcze mniej palia potrzebnego na wystrzelenie w pierwszej kolejności.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
W dniu 20.08.2021 o 20:15, cyjanobakteria napisał:

Masz ciśnienie na te przewalanie łopatą.

Autentycznie rozbawił mnie ten komentarz. Niech będą i roboty, ale takie:

https://techcrunch.com/2021/08/19/musk-the-tesla-bot-is-coming/

Oczywiście jako pomocnicy ludzi ;). Ale jeśli obserwujemy taki rozwój technologii:

https://dzienniknaukowy.pl/nowe-technologie/dwunozny-robot-tworzy-historie-biegiem-pokonal-dystans-5-km

to możemy dać wiarę w to, że wkrótce oprócz sprawnej dwunożności, doczekamy się odpowiednio sprawnych manualnie biomechanicznych rąk. 

Choćby do wykonania podstawowych badań geologicznych, jak choćby przekroju stratygraficznego. Taki przekrój, choć z pozoru wydaje się prosty do wykonania, może nastręczyć jednak sporo trudności, jeśli sprawia on kłopoty nawet studentom. A  co dopiero robotom. Choć tu mogę się mylić..;) Może być w niedalekiej przyszłości  na odwrót :) Oczywiście takie ręczne robótki geologiczne (dosyć istotne dla archeologów) nie zastąpia najdogładniejszych metod badań wgłębnych czyli opartych o sejsmikę 3D. 

 

14 godzin temu, cyjanobakteria napisał:

Do tego obowiązkowo zestaw profesjonalnych szpadli i łopat FISKARS® Pro dla każdego :)

Gdzie tam. Do geologii to są dedykowane narzędzia geologiczne - młotki, łopatki, kilofy. W kosmos będą odpowiednio certyfikowane. I odpowiednio drogie ;)

 

14 godzin temu, darekp napisał:

Jedyne co mi przychodzi do głowy to mały reaktor atomowy, a nad tym chyba nikt nie pracuje.

https://www.nasa.gov/directorates/spacetech/kilopower

https://en.wikipedia.org/wiki/Kilopower

Krytyczne testy naziemne  w ramach projektu KRUSTY zostały już zakończone. Kilopower wykorzystuje wzbogacany uran (HEU) i już się podniósł rwetest pierdolców, że na potrzeby tych  niewielkich reaktorków  na nowo rozkręcą produkcje   uranu, któy służy również do budowy broni jądrowej. Daltego NASA zleciła badania nad podobnym  reaktorem  wykorzystująccym uran niskowzbogacany (LEU). Wg. obecnych planów ok. 2027 r taki reaktor ma być zainstalowany na Księżyu. Natomiast kilopower oparty o HEU ma być wyniesiony w przestrzeń kosmiczną wstępnie w 2022 r. 

Szacuje się, że 40 kliowatowy zespół Kilopower zapewni energię na 12-15 lat dla bazy na Marsie dla 4-6 ludzi. Także nie jest tak, że nikt nad tym nie pracuje. 

Ps. Tak bardziej poważnie, jestem pewien, że NASA i współpracujące agencje rządowe w załogowej misji marsjańskiej zadbają o aspekt badań geologicznych. Czy to robotycznych, ludzkich, czy też ludzko-robotycznych.  W takim dosyć powszechnym przekonaniu progam Apollo był kowbojską wyprawą mającą za zadanie wetknąć flagę Stanów, udwodonić wyższość na Sowietami.

W cieniu stoją badania powierzchni Księżyca, zwłaszcza, że jedynym astonautą nie-pilotem był Harisson Schmit, geolog, wciśnięty po interwencji środowiska naukowców na wieść o nagłym zamknieciu porgramu Apollo. Jednak każdy astronauta-pilot przechodził żmudne ale też i ciekawe szkolenia geologiczne. Tak to wygląało:

https://www.smithsonianmag.com/travel/going-moon-apollo-11-astronauts-trained-these-five-sites-180972452/

Nie wszyscy się przykładali. Prymusem, jak niemal we wszystkim był Armstrong,  który choć był najkrócej na Księżycu, wybrał bardzo ciekawe okazy.

 

Edited by venator

Share this post


Link to post
Share on other sites
2 hours ago, venator said:

Taki przekrój, choć z pozoru wydaje się prosty do wykonania, może nastręczyć jednak sporo trudności, jeśli sprawia on kłopoty nawet studentom.

Oj tam, oj tam. Każdego specjalistę można zastąpić skończoną liczbą studentów :lol: Boston Dynamics opublikował to wideo niecały tydzień temu, o czym przypomniał mi Jarek Duda na sąsiednim wątku. Postępy jakie dokonali w ciągu ostatnich 5 lat są niesamowite.

 

2 hours ago, venator said:

W cieniu stoją badania powierzchni Księżyca, zwłaszcza, że jedynym astonautą nie-pilotem był Harisson Schmit, geolog, wciśnięty po interwencji środowiska naukowców na wieść o nagłym zamknieciu porgramu Apollo. Jednak każdy astronauta-pilot przechodził żmudne ale też i ciekawe szkolenia geologiczne.

Widziałem kila dni temu o tym film od Veritasium. Pamiętam, że astronauci spędzili sporo czasu na poligonie nuklearnym w Nevadzie w kraterze po podziemnej eksplozji, szukając tam fantów :) Uderzenia meteorytów i dezintegracje w atmosferze przypominają i mają podobne skutki, co detonacje bomb atomowych, z wyjątkiem opadu promieniotwórczego oczywiście.

Share this post


Link to post
Share on other sites
18 minut temu, cyjanobakteria napisał:

Pamiętam, że astronauci spędzili sporo czasu na poligonie nuklearnym w Nevadzie w kraterze po podziemnej eksplozji, szukając tam fantów :) Uderzenia meteorytów i dezintegracje w atmosferze przypominają i mają podobne skutki, co detonacje bomb atomowych, z wyjątkiem opadu promieniotwórczego oczywiście.

sedan_crater.jpg

 

Właśnie. Krater Sedan po próbnej eksplozji jądrowej. Nevada, zdj. z 1962 r. astronauci programu Gemini-Apollo.

Share this post


Link to post
Share on other sites

Ja bym jednak zaczął od eksploracji Księżyca i windy kosmicznej (z Księżyca, wg. artykułu na KW i https://en.wikipedia.org/wiki/Lunar_space_elevator). Opanować produkcję elementów, tlenu i paliwa na Księżycu (

https://en.wikipedia.org/wiki/Lunar_soil), przy pomocy windy opanować L1 (EDIT: i L2, bo daje to "darmowy" wystrzał w stronę US) i wybudować tam bazę/stocznię/gateway, i dopiero stamtąd na Marsa. Wcześniej, startując tylko z Ziemi jest to żmudne, trudne, drogie i niezdrowe ekologicznie. Tak, opanowanie Księżyca też wymagałoby mnóstwa startów, ale jednak stosunek masy potrzebnego paliwa, zapasów tlenu i jedzenia jest niewspółmiernie niższy niż na bezpośrednio na Marsa. No i krótsze misje, mniejsza ekspozycja na promieniowanie, łatwiejszy powrót, zaopatrzenie i misje ratunkowe. Same plusy :)

 

 

Edited by radar

Share this post


Link to post
Share on other sites

Cwany plan, ale opóźni to misję na Marsa o 200 lat :)

Na Księżycu można zorganizować mass driver czyli maglev/pendolino na sterydach, które by wystrzeliwało ładunki na orbitę, bo nie ma tam atmosfery. Wydaje mi się, że to jest znacznie prostsze rozwiązanie niż kosmiczne windy, które wymagają egzotycznych materiałów i technologii oraz ryzykownych i kosztownych projektów. Można rozpędzić konwencjonalnie ładunek do prędkości kosmicznych blisko poziomu gruntu i wprowadzić na orbitę. Na Ziemi jest to skomplikowane ze względu na atmosferę, bo pojazd uległ by zniszczeniu. Musiałby poruszać się w tunelu próżniowym oraz opuścić go na dużej wysokości.

Edited by cyjanobakteria
  • Like (+1) 1

Share this post


Link to post
Share on other sites

I masz rację i nie, i myślę, że nie o 200 lat tylko maks 15 :)

Po pierwsze mass driver jest jak najbardziej ok, a dodatkowo to nie planowano go stricte na poziomie gruntu, ale na zboczu krateru, co by było odpowiednio pod kątem do góry, ale przeciążenia są bardzo duże. Można też zrobić bardzo długi tor na poziomie gruntu, ale to już bardzo duży koszt i inne problemy.

Co do windy, to nie masz racji, że "egzotycznych materiałów", bo już teraz są odpowiednie w masowej produkcji. Jak sam stwierdziłeś, brak atmosfery, mniejsza grawitacja. Nawet jest to opisane widzę w tym linku na wiki. Na KW też było o pracy naukowej na ten temat. Tu plusem jest nie tylko łatwe wystrzeliwanie w kosmos, ale również łatwa/tania podróż z Ziemi na Księżyc (obyś zaczepił się za linę i "już"), tylko, że podróż może potrwać kilka dni/tygodni?.

Co do 200 lat, zdecydowana większość tych technologii byłaby użyteczna też w misji na Marsa, więc podróż tam byłaby na gotowo (tyle, że taniej). Z planem obecnym obawiam się, że będzie to wyglądało jak z programem Apollo, hurra, daliśmy radę, a potem 50 lat zastoju, bo za drogo. No, ale może się mylę. Sam mam nadzieję zobaczyć jak ludzie lądują na Marsie, ale obecny kierunek (narzucony przez Muska) jest moim zdaniem błędny.

 

 

Edited by radar

Share this post


Link to post
Share on other sites

Liczbę podałem z czapy, więc nie będę się upierał :) Największe ryzyko i niewiadoma jest moim zdaniem związana z windą kosmiczną. Jeżeli projekt jest możliwy do zrealizowania, a technologia nie jest totalnie abstrakcyjna, czego nie chce mi się teraz sprawdzać, to mogę się zgodzić na 100 lat :) Nie oczekiwałbym błyskawicznych sukcesów w tego typu projektach. Popatrz w jakich bólach rodzi się JWST. Księżyc ma mniejszą grawitację, więc na pewno będzie łatwiej niż na Ziemi, ale z drugiej strony obraca się powoli.

Nigdy nie byłem zwolennikiem wind kosmicznych. Na pewno to jest dobre rozwiązanie na małe obiekty z mniejszą siłą przyciągania, które obracają się szybko jak asteroidy. Te z kolei to jednak często luźno związana kupa gruzu i mają tak słabą grawitację, że można się odepchnąć ręką i wejść na orbitę :)

Nie chce mi się sprawdzać krzywizny Księżyca, ale tor musi mieć odpowiednią długość uzależnioną od maksymalnych, dopuszczalnych przeciążeń, większe dla cargo, mniejsze dla biomasy, mocy systemu przyśpieszenia oraz zakresu oczekiwanych prędkości. Jak tor byłby w płaszczyźnie ekliptyki to można strzelać w większość obiektów Układu Słonecznego. Im dłuższy tor tym mniejsze przeciążenia i większe maksymalne, osiągalne prędkości, ale krzywizna zaczyna przeszkadzać no. Ogólnie ciekawy temat, bo technologię już mamy.

Ja mam mieszane podejście do misji załogowej na Marsa, bo z jednej strony chętnie bym zobaczył tam bazę albo na Księżycu. Szczególnie interesujące są lava tubes, zdjęcia poniżej. Z drugiej strony wołałbym więcej tanich misji automatycznych jak Osiris Rex, łazikami jak Perseverance czy więcej instrumentów jak Starshade. Starshade, swoją drogą będzie miał rozdzielczość umożliwiającą bezpośrednią obserwację exoplanet wielkości Ziemi. Inne ciekawe misje to eksploracja księżyców Jowisza czy Saturna. Misja na Marsa pożre koszmarne ilości pieniędzy.

4WQ3L.jpg

Jak ktoś chce bazy, na wypadek uderzenia asteroidy, to dla przypomnienia, w zeszłym roku pozwoliliśmy się zawalić Arecibo, który to precyzyjnie pomierzył orbity większości NEO i radarowo zmapował ich powierzchnię :) Poniżej projekt Starshade, to jest wyższą szkoła jazdy :)

scientificamerican0716-11-I1.jpg

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Właściciele psów z Béziers w regionie Oksytania we Francji będą zobowiązani do przeprowadzenia testów genetycznych swoich pupili. Zwierzętom zostaną pobrane próbki śliny, które posłużą do wystawienia paszportów genetycznych. W ten sposób tutejszy mer, Robert Ménard, chce walczyć z plagą niesprzątania psich odchodów. Jak policzono, w samym centrum służby sprzątają miesięcznie ponad 1000 kup. Zdarza się, że jest ich znacznie więcej.
      Ménard, były dziennikarz, współzałożyciel organizacji Reporterzy bez Granic, podkreśla, że zarówno mieszkańcy, jak i turyści mają już dość takich widoków. Zamierza przeprowadzić 2-letni eksperyment, który potrwa do lipca 2025 r., by wyśledzić i karać osoby niesprzątające po swoich psach.
      Zgodnie z planem, właściciele psów będą musieli zabrać je do weterynarza lub umówić się z którymś z miejskich lekarzy. Pobranie próbki śliny ma być darmowe. Na podstawie badań genetycznych zostanie wydany dokument. Jeśli ktoś zostanie zatrzymany w centrum bez paszportu, zapłaci mandat w wysokości 38 euro.
      Nieposprzątane odchody będą zbierane i testowane. Wyniki trafią do policji, która porówna wyniki z danymi z bazy. Zidentyfikowany właściciel zwierzęcia otrzyma rachunek za sprzątanie ulicy w wysokości nawet 122 euro.
      Po raz pierwszy Ménard proponował zebranie danych genetycznych ok. 1500 psów z centrum Béziers już w 2016 r. Jego wniosek został jednak odrzucony przez miejscowy sąd administracyjny jako atak na wolność osobistą.
      Tym razem przedstawiony lokalnej prefekturze projekt paszportu genetycznego nie wzbudził obiekcji (w ciągu 2 miesięcy nie złożono zażaleń).
      Ménard uważa, że podobne rozwiązania powinny zostać wprowadzone poza Béziers. Wg niego, należy karać osoby, które nie potrafią się zachować. Mer dodał, że głównym problemem nie są turyści, ale mieszkańcy miasta.
      Przez pierwsze 3 miesiące ma obowiązywać taryfa ulgowa (mogą na nią liczyć również przyjezdni) - władze zapowiadają elastyczne podejście i pouczenia dla nieprzestrzegających zasad.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Analiza danych z misji InSight wykazała, że jądro Marsa jest całkowicie płynne. Ma więc inną budowę niż jądro Ziemi, gdzie stałe jądro wewnętrzne otoczone jest przez płynne jądro zewnętrzne. Dotychczas nikt nie był w stanie stwierdzić, jaki jest stan skupienia jądra Czerwonej Planety. Udało się to dopiero uczonym z USA, Belgii, Niemiec i Francji, którzy podczas swoich badań wykorzystali dane z InSight.
      Zrozumienie struktury wewnętrznej oraz atmosfery Marsa jest niezbędne do opisania historii tworzenia się i ewolucji planety. Wysłana w 2018 roku InSight zebrała unikatowe dane na temat jej budowy zewnętrznej. Misja zakończyła się w grudniu ubiegłego roku, ale naukowcy z całego świata wciąż analizują przysłane przez nią dane.
      Na ich podstawie badacze stwierdzili, że pod płaszczem, które w całości jest ciałem stałym, znajduje się jądro o średnicy 1835 ± 55 km i średniej gęstości 5955–6290 kg/m3. Nasze analizy danych z InSight stanowią argument przeciwko istnieniu stałego jądra wewnętrznego i pokazują kształt jądra wskazując, że głęboko w płaszczu istnieją wewnętrzne anomalie masy. Znaleźliśmy też dowody na powolny wzrost tempa ruchu obrotowego Marsa, który może być powodowany długoterminowym trendem w wewnętrznej dynamice Marsa lub wpływem jego atmosfery i pokryw lodowych, czytamy w artykule opublikowanym na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Weteran badań Marsa, łazik Curiosity, od pewnego czasu wykonuje zdjęcia chmur na Czerwonej Planecie. Niedawno przysłał na Ziemię wyjątkowe obrazy, w tym pierwszą sfotografowaną na Marsie tak wyraźną śreżogę, czyli promienie słoneczne przeświecające przez warstwę chmur.
      Większość chmur na Marsie znajduje się na wysokości nie większej niż 60 km. Jednak chmury na najnowszych obrazach wydają się być znacznie wyżej, gdzie jest wyjątkowo zimno. Dlatego naukowcy przypuszczają, że tworzy je zamarznięty dwutlenek węgla.
      Obserwując kiedy, gdzie i na jakich wysokościach formują się marsjańskie chmury, naukowcy mogą dowiedzieć się więcej na temat składu atmosfery Czerwonej Planety, jej temperatury oraz wiejących w niej wiatrów.
      Przed kilkoma tygodniami łazik sfotografował nawet chmury iryzujące. Iryzacja oznacza, że cząstki znajdujące się w danej części chmury są identycznej wielkości. Patrząc na zmiany koloru, widzimy zmiany wielkości cząstek, a to pokazuje nam ewolucję chmury w czasie, wyjaśnia Mark Lemmon ze Space Science Institute w Boulder.
      Łazik Curiosity trafił na Marsa w sierpniu 2012 roku. Pracuje w kraterze Gale i dotychczas przebył ponad 29 kilometrów po powierzchni Czerwonej Planety. Bada tam pierwiastki niezbędne do powstania życia, poszukuje śladów procesów biologicznych, przygląda się składowi powierzchni Marsa, prowadzi badania ewolucji atmosfery, obiegu wody i promieniowania na powierzchni planety. To czwarty z pięciu łazików, jakie NASA wysłała na Marsa i, obok Perseverance, jeden z dwóch obecnie działających.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Systemy podtrzymywania życia, woda, żywność, habitaty, instrumenty naukowe i wiele innych elementów będzie niezbędnych do przeprowadzenia załogowej misji na Marsa. Jednym z najważniejszych z nich są systemy produkcji energii. Te obecnie stosowane w misjach kosmicznych są albo niebezpieczne – wykorzystują rozpad pierwiastków promieniotwórczych – albo też niestabilne wraz ze zmianami pór dnia i roku, bo korzystają z energii słonecznej.
      Wybór miejsca lądowania każdej z misji marsjańskich to skomplikowany proces. Eksperci muszą bowiem określić miejsca, których zbadanie może przynieść jak najwięcej korzyści i w których w ogóle da się wylądować. W przypadku misji załogowych sytuacja jeszcze bardziej się skomplikuje, gdyż dodatkowo będą musiały być to miejsca najlepiej nadające się do życia, np. takie, w których można pozyskać wodę.
      Grupa naukowców pracujących pod kierunkiem Victorii Hartwick z NASA wykorzystała najnowsze modele klimatyczne Marsa do przeanalizowania potencjału produkcji energii z wiatru na Czerwonej Planecie. Dotychczas podczas rozważań nad produkcją energii na Marsie nie brano pod uwagę atmosfery. Jest ona bowiem bardzo rzadka w porównaniu z atmosferą Ziemi.
      Ku swojemu zdumieniu naukowcy zauważyli, że pomimo rzadkiej marsjańskiej atmosfery wiejące tam wiatry są na tyle silne, by zapewnić produkcję energii na dużych obszarach Marsa.
      Badacze odkryli, że w niektórych proponowanych miejscach lądowania prędkość wiatru jest wystarczająca, by stanowił on jedyne lub uzupełniające – wraz z energią słoneczną bądź jądrową – źródło energii. Pewne regiony Marsa są pod tym względem obiecujące, a inne – interesujące z naukowego punktu widzenia – należałoby wykluczyć biorąc pod uwagę jedynie potencjał energii wiatrowej lub słonecznej. Okazało się jednak, że energia z wiatru może kompensować dobową i sezonową zmienność produkcji energii słonecznej, szczególnie na średnich szerokościach geograficznych czy podczas regionalnych burz piaskowych. Co zaś najważniejsze, proponowane turbiny wiatrowe zapewnią znacznie bardziej stabilne źródło energii po połączeniu ich z ogniwami fotowoltaicznymi.
      Naukowcy przeanalizowali hipotetyczny system, w którym wykorzystane zostają panele słoneczne oraz turbina Enercon E33. To średniej wielkości komercyjny system o średnicy wirnika wynoszącej 33 metry. Na Ziemi może ona dostarczyć 330 kW mocy. Z analiz wynika, że na Marsie dostarczałaby średnio 10 kW.
      Obecnie szacuje się, że 6-osobowa misja załogowa będzie potrzebowała na Marsie minimum 24 kW mocy. Jeśli wykorzystamy wyłącznie ogniwa słoneczne, produkcja energii na potrzeby takiej misji będzie większa od minimum tylko przez 40% czasu. Jeśli zaś dodamy turbinę wiatrową, to odsetek ten wzrośnie do 60–90 procent na znacznych obszarach Marsa. Połączenie wykorzystania energii słonecznej i wiatrowej mogłoby pozwolić na przeprowadzenie misji załogowej na tych obszarach Czerwonej Planety, które wykluczono ze względu na słabą obecność promieniowania słonecznego. Te regiony to np. obszary polarne, które są interesujące z naukowego punktu widzenia i zawierają wodę.
      Autorzy badań zachęcają do prowadzenia prac nad przystosowaniem turbin wiatrowych do pracy w warunkach marsjańskich. Tym bardziej, że wykorzystanie wiatru może wpłynąć na produkcję energii w wielu miejscach przestrzeni kosmicznej. Hartwick mówi, że jest szczególnie zainteresowana potencjałem produkcji energii z wiatru w takich miejscach jak Tytan, księżyc Saturna, który posiada gęstą atmosferę, ale jest zimny. Odpowiedź na tego typu pytania będzie jednak wymagała przeprowadzenia wielu badań interdyscyplinarnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance rozpoczął tworzenie na Marsie zapasowego magazynu próbek. W miejscu zwanym Three Forks złożona została tytanowa tuba z próbkami marsjańskich skał. W ciągu najbliższych 2 miesięcy łazik pozostawi tam w sumie 10 pojemników, tworząc pierwszy w historii skład próbek na innej planecie.
      Za 10 lat próbki mają trafić na Ziemię w ramach misji Mars Sample Return. Plan ich przywiezienia zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas śmigłowce zabiorą próbki ze składu zapasowego i dostarczą je do pojazdu. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który zawiezie je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przetransportuje próbki na Ziemię. W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033.
      Obecnie Perseverance ma na pokładzie 17 pojemników z próbkami, w tym 1 z próbką atmosfery. Pierwszy pojemnik złożony w Three Forks zawiera skały pobrane 31 stycznia 2022 roku na obszarze South Séítah w Kraterze Jezero.
      Cały proces składowania próbki trwał godzinę. Po tym, gdy pojemnik wypadł spod podwozia łazika, inżynierowie musieli sprawdzić, czy nie znajdzie się pod kołami Perseverance, gdy ten będzie odjeżdżał, ani czy nie ustawił się pionowo. Pojemniki na jednym końcu są płaskie, co ma ułatwić ich przyszłe zebranie. Jednak przez to istnieje ryzyko, że ustawią się pionowo. Podczas testów naziemnych działo się tak w 5% przypadków.


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...