Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Łazik Curiosity sfotografował marsjańską śreżogę i iryzację chmur

Recommended Posts

Weteran badań Marsa, łazik Curiosity, od pewnego czasu wykonuje zdjęcia chmur na Czerwonej Planecie. Niedawno przysłał na Ziemię wyjątkowe obrazy, w tym pierwszą sfotografowaną na Marsie tak wyraźną śreżogę, czyli promienie słoneczne przeświecające przez warstwę chmur.

Większość chmur na Marsie znajduje się na wysokości nie większej niż 60 km. Jednak chmury na najnowszych obrazach wydają się być znacznie wyżej, gdzie jest wyjątkowo zimno. Dlatego naukowcy przypuszczają, że tworzy je zamarznięty dwutlenek węgla.
Obserwując kiedy, gdzie i na jakich wysokościach formują się marsjańskie chmury, naukowcy mogą dowiedzieć się więcej na temat składu atmosfery Czerwonej Planety, jej temperatury oraz wiejących w niej wiatrów.

Przed kilkoma tygodniami łazik sfotografował nawet chmury iryzujące. Iryzacja oznacza, że cząstki znajdujące się w danej części chmury są identycznej wielkości. Patrząc na zmiany koloru, widzimy zmiany wielkości cząstek, a to pokazuje nam ewolucję chmury w czasie, wyjaśnia Mark Lemmon ze Space Science Institute w Boulder.

Łazik Curiosity trafił na Marsa w sierpniu 2012 roku. Pracuje w kraterze Gale i dotychczas przebył ponad 29 kilometrów po powierzchni Czerwonej Planety. Bada tam pierwiastki niezbędne do powstania życia, poszukuje śladów procesów biologicznych, przygląda się składowi powierzchni Marsa, prowadzi badania ewolucji atmosfery, obiegu wody i promieniowania na powierzchni planety. To czwarty z pięciu łazików, jakie NASA wysłała na Marsa i, obok Perseverance, jeden z dwóch obecnie działających.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Góra Jezero Mons, znajdująca się na obrzeżach krateru Jezero, w którym pracuje łazik Perseverance, to prawdopodobnie wulkan, donoszą naukowcy z Georgia Institute of Technology. Góra jest niemal połowy wielkości krateru Jezero, a jej zbadanie mogłoby nam wiele powiedzieć o wulkanizmie na Marsie i zdolności planety do potrzymania życia. Odkrycie dokonane przez naukowców z Georgii pokazuje, jak mało wiemy nawet o jednym z najlepiej zbadanych regionów Marsa.
      Badanie wulkanizmu Marsa to niezwykle interesujące zagadnienie. Możemy dzięki niemu poznać geologię i historię Czerwonej Planety. Krater Jezero to jedno z najlepiej zbadanych miejsc na Marsie. A jeśli dopiero teraz znaleźliśmy tam wulkan, to wyobraźmy sobie, jak dużo może ich być na Marsie. Być może jest ich więcej, niż kiedykolwiek sobie wyobrażaliśmy, mówi profesor James J. Wray.
      Wray zauważył górę w 2007 roku, gdy był świeżo upieczonym magistrem. Oglądałem zdjęcia tego regionu wykonane w niskiej rozdzielczości i zauważyłem górę na krawędziach krateru. Dla mnie wyglądała jak wulkan, ale trudno było zdobyć dodatkowe zdjęcia, mówi. Było to niedługo po odkryciu Jezero Crater i był on badany pod kątem obecności w przeszłości wody, wykonywano więc głównie fotografie innego obszaru, znajdującego się kilkadziesiąt kilometrów dalej.
      Później krater został wybrany celem misji Mars 2020 i wylądował w nim łazik Perseverance, poszukujący śladów dawnego życia na Marsie. Okazało się jednak, że jednymi z pierwszych próbek przeanalizowanych przez łazik, był nie materiał osadowy – jakiego należałoby się spodziewać po działalności wody – a wulkaniczny. Wray podejrzewał, skąd ten materiał mógł się wziąć, jednak najpierw musiał wykazać, że zauważona przed laty góra rzeczywiście jest wulkanem. Uczony wraz z zespołem wykorzystał wcześniejsze badania profesor Briony Horgan, która również sugerowała, że Jezero Mons to wulkan, oraz użył danych z orbiterów Mars Odyssey, Mars Reconnaissance, ExoMars Trace Gas i łazika Perseverance.
      Nie możemy odwiedzić Marsa i bezsprzecznie udowodnić, że to wulkan, ale możemy wykazać, na ile góra ta ma takie same właściwości jak inne wulkany na Ziemi i Marsie, wyjaśnia Wray. Udało się tego dokonać między innymi dzięki danym zebranym już wcześniej przez wspomniane orbitery. To pokazuje, że dane ze starszych pojazdów kosmicznych mogą być niezwykle cenne nawet długo po zakończeniu ich misji. Te dawne misje wciąż mogą przyczynić się do dokonywania nowych odkryć i pomogą nad udzielić odpowiedzi na trudne pytania, dodaje uczony.
      Jeśli Jezero Mons jest wulkanem, to jego obecność zaraz przy kraterze Jezero, w którym znajdowała się niegdyś woda, może dostarczyć nam niezwykle istotnych informacji na temat źródła energii na Marsie, w tym na temat potencjalnego istnienia tam zjawisk hydrotermalnych. Perseverance zebrał próbki niezwykłych skał osadowych, które mogą pochodzić z regionu, gdzie w przeszłości mogło istnieć życie, oraz próbki skał magmowych o niezwykle dużej wartości naukowej, wyjaśnia Wray. Jeśli udałoby się te próbki przetransportować na Ziemię, skały magmowe można by niezwykle precyzyjnie datować. To zaś pozwoliłoby na skalibrowanie dat dla krateru Jezero i dałoby naukowcom niezwykły wgląd w przeszłość geologiczną Marsa.
      Źródło: Evidence for a composite volcano on the rim of Jezero crater on Mars, https://www.nature.com/articles/s43247-025-02329-7

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mars jest planetą szczególną. Od tysiącleci fascynuje ludzkość, setki lat temu pojawiły się przypuszczenia o istnieniu tam cywilizacji, a od bez mała stu lat ludzie chcą się tam wybrać. I o tym jest ta książka. O fascynacji i planach. Andrew May opisuje, co takiego jest w Marsie, że przykuwa uwagę kolejnych pokoleń, kultur i cywilizacji. Ale przede wszystkim mówi o tym, jak na Marsa się dostać. Jak można to zrobić w prosty sposób i dlaczego jest to tak trudne. Jak to się stało, że przez 60 lat od lądowania na Księżycu ludzka stopa wciąż nie stanęła na Marsie, kto się chce tam wybrać i po co.
      Osobiście jestem sceptykiem, nie widzę sensu misji załogowej na Marsa, nie mówiąc już o osadnictwie na Czerwonej Planecie. May jednak podaje rzeczowe argumenty, w prosty sposób wyjaśnia piętrzące się trudności i opisuje korzyści. Przekonać do wysłania tam ludzi mnie nie przekonał, jednak z pewnością pozwolił mi poszerzyć horyzonty i lepiej dojrzeć szanse – oraz problemy – kryjące się nie tylko za misjami marsjańskimi, ale misjami poza orbitą Księżyca.
      Załogowa wyprawa na Marsa będzie największą przygodą ludzkości od czasu wielkich odkryć geograficznych. Czy zmieni ona historię tak bardzo, jak wyprawy XV- i XVI-wiecznych żeglarzy? Wątpię. A czy jest sens w przygodę tę się angażować?
      Przeczytajcie sami i sami wyróbcie sobie opinię. "Mars: Nowa Ziemia. Historia eksploracji i plany podboju Czerwonej Planety” Andrew Maya to kolejny wydawniczy strzał w dziesiątkę Helionu. Mamy zaszczyt być patronem medialnym tej książki. I z tej okazji już jutro rozpoczniemy konkurs, w którym będziecie mogli wygrać jeden z jej 2 egzemplarzy.
    • By KopalniaWiedzy.pl
      W przeszłości Mars posiadał silne pole magnetyczne. Obecnie pozostały po nim ślady w marsjańskich skałach. Są to jednak ślady nietypowe. Sonda Mars Global Surveyor już w 1999 roku zauważyła, że skały na południowej półkuli Marsa noszą ślady silnego oddziaływania pola magnetycznego. Na półkuli północnej tak silnych sygnałów nie zauważono. Zjawisko to od dawna zastanawiało naukowców. Teraz uczeni z Instytutu Geofizyki University of Texas zaproponowali rozwiązanie zagadki.
      Ostatnie pomiary wykonane przez misję InSight pokazują, że jądro Marsa jest mniej gęste niż sądzono. To wskazuje, że Mars prawdopodobnie nigdy nie miał stałego jądra, czytamy na łamach Geophysical Research Letters. Zespół Chi Yana opisał wyniki swoich symulacji komputerowych, z których wynika, że całkowicie płynne jądro, bez części z ciała stałego, dobrze wyjaśnia widoczną różnicę w zapisie oddziaływania pola magnetycznego na różnych półkulach. Jeśli nie ma sztywnego wewnętrznego jądra, ze znacznie większą łatwością powstaje pole magnetyczne obejmujące tylko jedną półkulę. To zaś mogło mieć wpływ zarówno na działanie pola magnetycznego Marsa oraz jego możliwość utrzymania atmosfery, wyjaśnia Yan.
      Dotychczas większość badaczy zakładała, że jądro Marsa jest podobne do ziemskiego i składa się ze stałego jądra wewnętrznego oraz otaczającego je płynnego jądra zewnętrznego. Badania misji InSight pokazały, że jądro Marsa składa się z lżejszych pierwiastków niż się spodziewano. To zaś oznacza, że jego temperatura topnienia jest inna niż temperatura topnienia jądra Ziemi i prawdopodobnie jest ono całkowicie płynne. Jeśli zaś jądro Czerwonej Planety jest płynne obecnie, to niemal na pewno było płynne 4 miliardy lat temu, gdy Mars posiadał silne pole magnetyczne, wyjaśnia profesor Sabine Stanley z Uniwersytetu Johnsa Hopkinsa.
      Uczeni postanowili przetestować tę hipotezę i stworzyli model, który symulował całkowicie płynne jądro Marsa. Uruchomili go kilkanaście razy, za każdym tak ustawiając parametry symulacji, by płaszcz planety na półkuli północnej był nieco cieplejszy niż na półkuli południowej. Okazało się, że przy pewnej różnicy temperatur ciepło uciekające z jądra było uwalniane tylko przez chłodniejszą półkulę południową, co powodowało pojawienie się na niej silnego pola magnetycznego. Nie wiemy, czy to wyjaśnia historię pola magnetycznego Marsa, ale niezwykle ekscytujące jest samo stwierdzenie, że na planecie może istnieć pole magnetyczne obejmujące tylko jej część, a struktura symulowanego jądra pasuje do badań przeprowadzonych przez InSight, mówi Stanley.
      Zdaniem naukowców, ich badania to przekonująca alternatywa dla hipotezy mówiącej, że ślady działania pola magnetycznego na półkuli północnej zostały zniszczone przez uderzenia asteroid.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W 2023 roku średnia temperatura była niemal o 1,5 stopnia wyższa od średniej sprzed rewolucji przemysłowej. Jednak naukowcy próbujący wyjaśnić ten wzrost, mają kłopoty z określeniem jego przyczyn. Gdy bowiem biorą pod uwagę emisję gazów cieplarnianych, zjawisko El Niño czy wpływ erupcji wulkanicznych, wciąż niewyjaśnione pozostaje około 0,2 stopnia wzrostu. Uczeni z Instytutu Badań Polarnych i Morskich im. Alfreda Wegenera (AWI) zaproponowali na łamach Science wyjaśnienie tego zjawiska. Według nich te brakujące 0,2 stopnia to skutek zmniejszającego się albedo – zdolności do odbijania światła – Ziemi.
      Uczeni z AWI, we współpracy ze specjalistami od modelowania klimatu z European Centre for Medium-Range Weather Forecasts (ECMWF), przeanalizowali dane satelitarne z NASA oraz ponownie przyjrzeli się danym ECMWF. Niektóre z nich pochodziły nawet z roku 1940. Na ich podstawie sprawdzili jak przez ostatnie dziesięciolecia zmieniał się globalny budżet energetyczny oraz pokrywa chmur na różnych wysokościach. Zarówno w danych NASA, jak i ECMWF, rok 2023 wyróżniał się jako ten o najniższym albedo planetarnym. Od lat obserwujemy niewielki spadek albedo. Ale dane pokazują, że w 2023 roku albedo było najniższe od co najmniej roku 1940, mówi doktor Thomas Rackow.
      Zmniejszanie się albedo Ziemi naukowcy obserwują od lat 70. Częściowo za zjawisko to odpowiadało zmniejszanie się pokrywy lodowej oraz ilości lodu pływającego w Arktyce. Mniej śniegu i lodu oznacza, że mniej promieniowania słonecznego jest odbijane przez Ziemię. Od 2016 roku efekt ten został wzmocniony przez zmniejszanie się zasięgu lodu pływającego w Antarktyce. Jednak nasze analizy pokazywały, że spadek albedo w regionach polarnych odpowiada jedynie za 15% całkowitego spadku albedo, dodaje doktor Helge Goessling. Albedo zmniejszyło się też jednak w innych regionach planety i gdy naukowcy wprowadzili dane do modeli budżetu energetycznego stwierdzili, że gdyby nie spadek albedo od grudnia 2020, to średni temperatury w roku 2023 byłyby o 0,23 stopnie Celsjusza niższe.
      Na zmniejszenie albedo wpłynął przede wszystkim zanik nisko położonych chmur z północnych średnich szerokości geograficznych i z tropików. Szczególnie silnie zjawisko to zaznaczyło się na Atlantyku, co wyjaśniałoby, dlaczego był on tak niezwykle gorący. Pokrywa chmur na średnich i dużych wysokościach nie uległa zmianie lub zmieniła się nieznacznie.
      Chmury na wszystkich wysokościach odbijają światło słoneczne, przyczyniając się do ochłodzenia planety. Jednak te, które znajdują się w wysokich, chłodnych warstwach atmosfery, tworzą rodzaj otuliny, który zapobiega ucieczce w przestrzeń kosmiczną ciepła wypromieniowywanego przez Ziemię. Zatem utrata chmur położonych niżej oznacza, że tracimy część efektu chłodzącego, wpływ ocieplający chmur pozostaje.
      Rodzi się więc pytanie, dlaczego niżej położone chmury zanikły. Częściowo przyczyną może być mniejsza antropogeniczna emisja aerozoli, szczególnie z powodu narzucenia bardziej restrykcyjnych norm na paliwo używane przez statki. Aerozole z jednej strony biorą udział w tworzeniu się chmur, z drugiej zaś – same odbijają promieniowanie słoneczne. Jednak badacze uważają, że czystsze powietrze to nie wszystko i mamy do czynienia z bardziej niepokojącym zjawiskiem.
      Ich zdaniem to sama zwiększająca się temperatura powoduje, że na mniejszych wysokościach formuje się mniej chmur. Jeśli zaś znaczna część spadku albedo to – jak pokazują niektóre modele klimatyczne – skutek sprzężenia zwrotnego pomiędzy globalnym ociepleniem a nisko położonymi chmurami, to w przyszłości powinniśmy spodziewać się jeszcze bardziej intensywnego ocieplenia. Średnia temperatura na Ziemi może przekroczyć granicę wzrostu o 1,5 stopnia Celsjusza w porównaniu z epoką przedprzemysłową wcześniej, niż sądziliśmy, dodaje Goessling.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed 11 milionami lat w Marsa uderzyła asteroida, która wyrzuciła w przestrzeń kosmiczną fragmenty Czerwonej Planety. Jeden z tych fragmentów trafił na Ziemię i jest jednym z niewielu meteorytów, których pochodzenie można powiązać bezpośrednio z Marsem. Kto znalazł ten kawałek Marsa, nie wiadomo. Odkryto go w 1931 roku w jednej szuflad na Purdue University i nazwano Lafayette Meteorite, od miasta, w którym znajduje się uniwersytet. Nie wiadomo bowiem nawet, gdzie dokładnie meteoryt został znaleziony. Jednak jego stan zachowania wskazuje, że nie leżał na ziemi zbyt długo.
      Na kawałek skały jako pierwszy zwrócił uwagę dr O.C. Farrington, który zajmował się klasyfikacją kolekcji minerałów z uniwersyteckich zbiorów geologicznych. I to właśnie Farrington stwierdził, że skała uznana wcześniej za naniesioną przez lodowiec, jest meteorytem.
      Już podczas jednych z pierwszych badań Lafayette Meteorite naukowcy zauważyli, że na Marsie miał on kontakt z wodą w stanie ciekłym. Od tamtego czasu nie było jednak wiadomo, kiedy miało to miejsce. Dopiero teraz międzynarodowa grupa naukowa określiła wiek znajdujących się w meteorycie minerałów, które powstały w wyniku kontaktu z wodą. Wyniki badań zostały opublikowane na łamach Geochemical Perspective Letters.
      Profesor Marissa Tremblay z Purdue University wykorzystuje gazy szlachetne, jak hel, neon i argon, do badania procesów chemicznych i fizycznych kształtujących powierzchnię Ziemi. Uczona wyjaśnia, że niektóre meteoryty z Marsa zawierają minerały, które powstawały na Marsie w wyniku interakcji z wodą. Datowanie tych minerałów pozwoli nam więc stwierdzić, kiedy woda w stanie ciekłym istniała na powierzchni lub płytko pod powierzchnią Marsa. Datowaliśmy te minerały w Lafayette Meteorite i stwierdziliśmy, że powstały one 742 miliony lat temu. Nie sądzimy, by wówczas na powierzchni Marsa było zbyt dużo wody. Uważamy, że pochodziła ona z roztapiania się marsjańskiej wiecznej zmarzliny, a roztapianie się było spowodowane aktywnością magmy, do której sporadycznie dochodzi i dzisiaj, stwierdza uczona.
      Co ważne, naukowcy w trakcie badań wykazali, że ich datowanie jest wiarygodne. Na wiek minerałów mogło wpłynąć uderzenie asteroidy, która wyrzuciła z Marsa nasz meteoryt, ogrzewanie się meteorytu podczas pobytu przez 11 milionów lat w przestrzeni kosmicznej, czy też podczas podróży przez ziemską atmosferę. Wykazaliśmy, że żaden z tych czynników nie miał wpływu minerały w Lafayette, zapewnia Tremblay.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...