Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Sztuczna inteligencja pomogła w rozwiązaniu jednej z zagadek zwojów znad Morza Martwego. Przeprowadzona przez algorytm analiza potwierdziła, że jeden z najstarszych zwojów z Qumran – Wielki Zwój Izajasza, pochodzący z ok. 125 roku p.n.e. – został spisany przez dwie osoby, a nie przez jedną.

Wielki Zwój Izajasza to kopia Księgi Izajasza. Zanim odkryto zwoje z Qumran historię tekstów biblijnych mogliśmy studiować praktycznie wyłącznie ze średniowiecznych manuskryptów z około 1000 roku. Zwoje znad Morza Martwego są jak kapsuła czasu. Pozwalają nam podróżować do czasów, w których Biblia dopiero powstawała. Dają nam więc wyjątkowy wgląd w kulturę i środowisko, które ją wytworzyło, mówi Mladen Popovic z Uniwersytetu w Groningen.

Wielki Zwój Izajasza jest naprawdę wielki. Ma 734 centymetry długości. To największy, jeden z najlepiej zachowanych i jedyny niemal kompletny zwój z Qumran. Dotychczas naukowcy nie byli pewni, czy spisała go jedna czy dwie osoby, gdyż charakter pisma na całym zwoju jest niezwykle podobny.

Popovic i jego zespół zaprzęgli sztuczną inteligencję do analizy zdjęć zwoju. Zadaniem algorytmu było przyjrzenie się literom, przeanalizowanie trudnych do wychwycenia dla człowieka zmian w kroju i stylu liter oraz stwierdzenie, czy Wielki Zwój wyszedł spod jednej ręki, czy też pracowało nad nim więcej osób o podobnym charakterze pisma.

Sztuczną inteligencję zaprzęgnęliśmy do pracy dlatego, że mamy tutaj podobny charakter pisma. Chcieliśmy dowiedzieć się, czy pisały dwie osoby czy jedna, która w pewnym momencie zmieniła narzędzie do pisania, wyjaśnia Charlotte Hempel z University of Birmingham. Teraz możemy zadać sobie jeszcze jedno fascynujące pytanie. Czy tak duże podobieństwo w charakterze pisma dwóch osób wynikało z faktu, iż mamy tutaj do czynienia z  wysokiej klasy profesjonalistą zdolnym do naśladowania charakteru pisma innej osoby i czy obaj skrybowie pochodzili z tego samego kręgu, w którym uczyli się swojej profesji, dodaje Hempel.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Posted (edited)

Nie sztuczna inteligencja bo takowe nie istnieją tylko algorytm komputerowy.
Gdyby powstała sztuczna inteligencja to kwestią czasu byłaby technologiczna osobliwość.
Gdzieś kiedyś jakieś sympozjum dotyczyło jednego z tych marketingowych słówek (zapomniałem którego): coś jak sztuczna inteligencja, innowacyjność i takie tam bla bla wymyślane przez teoretyków lub marketingowców.
Pierwszy prelegent zmieszał z błotem ten termin.
Wszyscy następni robili wszystko co mogli żeby zastąpić ten termin zbrukany z błotem jakimś zamiennikiem. Była zabawa, bo prawie każdy w co drugim zdaniu go pierwotnie użył :)
"Musimy innowacyjnie rozwijać innowacyjność naszej gospodarki. Będziemy tu siedzieli i pier**lili (za co nam płacą) chociaż nikt nigdy nie skorzysta w prawdziwej firmie z naszej wiedzy".

Edited by thikim
  • Haha 1
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

To się nazywa narrow AI po angielsku.

Quote

Narrow AI (ANI) is defined as “a specific type of artificial intelligence in which a technology outperforms humans in some very narrowly defined task. Unlike general artificial intelligence, narrow artificial intelligence focuses on a single subset of cognitive abilities and advances in that spectrum.”

https://www.springboard.com/blog/narrow-vs-general-ai/

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
7 godzin temu, thikim napisał:

Nie sztuczna inteligencja bo takowe nie istnieją tylko algorytm komputerowy.

To trochę nadużycie pojęcia algorytm. Cały algorytm to: tanh(sum(wi*xi)). W skrócie, ten sam 'algorytm' odróżnia jabłko od truskawki od pryszcza od raka. Zwykle różne algorytmy rozwiązują różne zadania.AI rozwiązuje różne zadania jednym (mniej więjcej)  algorytmem. Ale zgadzam się, ciągle jeszcze z AI nie pogadasz o życiu i śmierci, a rano nie zrobi jajecznicy. 

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
Posted (edited)

Kiedyś znajoma w pracy zrobiła krótki wykład o AI (2h). Sam nie jestem ekspertem w tej dziedzinie, to były podstawy podstaw, ale byłem pod wrażeniem ile można zdziałać stosunkowo prostą matematyką w klasyfikacji obiektów.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Jeszcze kilka lat temu nazywano te algorytmem maszynowym lub uczeniem maszynowym. Teraz wszędzie już sztuczną inteligencją się zwie, ponieważ to jest bardziej medialne określenie. Ludzie którzy nie siedzą w temacie pomyślą że takie coś już jest. Niestety. Ale cieszmy się że w końcu mamy coraz więcej zastosowań komputera.

Share this post


Link to post
Share on other sites

Nie dostrzegałbym przesadnego spisku marketingowców. Wyjdź na ulicę, wytypuj ofiary i zapytaj co to "uczenie maszynowe" oraz co to "sztuczna inteligencja" ;)

Share this post


Link to post
Share on other sites
Posted (edited)

"Sztuczna inteligencja" chyba jednak bardziej powszechnie występuje w ludzkiej świadomości, niż "uczenie maszynowe", choćby nawet w dowcipach o blondynkach ;) A ile filmów hollywoodzkich o AI nakręcono w ciągu kilku-kilkunastu ostatnich lat w porównaniu z filmami o "uczeniu maszynowym".... :)

Edited by darekp
  • Haha 1

Share this post


Link to post
Share on other sites

Nawet statystyczny deweloper w IT niedawno się dowiedział co to ML i DL. Sam nie kojarzyłem tych określeń przed 2014, o ile mnie pamięć nie myli. Wtedy rozpocząłem pracę w firmie, gdzie była zatrudniona osoba od ML w sąsiednim teamie. W ciągu ostatnich 5 lat kilka osób się w tej samej firmie zainteresowało tematem. Zgadzam się, że jest tak napisane aby było bardziej zrozumiałe, a nie żeby tworzyć złudzenia. Nie wiem czy to wynika z mojej poprzedniej wypowiedzi.

Share this post


Link to post
Share on other sites
12 minut temu, cyjanobakteria napisał:

Nawet statystyczny deweloper w IT niedawno się dowiedział co to ML i DL. Sam nie kojarzyłem tych określeń przed 2014,

Bo moc i pamięć. Osiągnęliśmy wystarczający poziom i dziedzina zaczęła się rozwijać lawinowo.  Maleństwa typu Raspberry Pi mogą liczyć w czasie rzeczywistym.

Share this post


Link to post
Share on other sites
Posted (edited)
W dniu 22.04.2021 o 10:18, thikim napisał:

Nie sztuczna inteligencja bo takowe nie istnieją tylko algorytm komputerowy.

Jest nawet dowód na to, że sztuczna inteligencja nigdy nie powstanie. Bo dotychczas każdy rozwiązany problem z domeny AI stawał się "kolejnym zwykłym softem na komputer", jak dla przykładu szachy czy obecnie zagadnienia klasyfikacyjne. Gdy coś rozwiążemy kolejne, znowu staną się one "zwykłymi algorytmami".

 

W dniu 24.04.2021 o 10:21, cyjanobakteria napisał:

Sam nie kojarzyłem tych określeń przed 2014, o ile mnie pamięć nie myli.

Nic dziwnego, deep learning to była nowość. Teoretycznie badano bardzo głębokie sieci od dawna, ale dopiero niedawno udało się uzyskać "nadludzkie" rezultaty w bardzo szerokiej klasie problemów, głównie dzięki większej mocy obliczeniowej.
Sam nad tym przez krótką chwilę pracowałem, ale raczej od strony znalezienia zupełnie nowych algorytmów które pozwalałyby efektywnie uczyć bardzo głębokie sieci, i w czasie kiedy jeszcze nie było to modne.
Niestety wyszedłem z błędnego założenia, że mózg nie korzysta ze wstecznej propagacji błędów, dlatego żaden pomysł nie miał szansy zadziałać, choć pewne powinny mieć sens w znacznie większych skalach (np. mózg musi wykorzystywać permanentną konkurencję pomiędzy obwodami, i powinny istnieć mechanizmy przypominające wolny rynek)

 

 

W dniu 22.04.2021 o 10:09, KopalniaWiedzy.pl napisał:

Sztuczną inteligencję zaprzęgnęliśmy do pracy dlatego, że mamy tutaj podobny charakter pisma. Chcieliśmy dowiedzieć się, czy pisały dwie osoby czy jedna, która w pewnym momencie zmieniła narzędzie do pisania, wyjaśnia Charlotte Hempel z University of Birmingham. Teraz możemy zadać sobie jeszcze jedno fascynujące pytanie. Czy tak duże podobieństwo w charakterze pisma dwóch osób wynikało z faktu, iż mamy tutaj do czynienia z  wysokiej klasy profesjonalistą zdolnym do naśladowania charakteru pisma innej osoby i czy obaj skrybowie pochodzili z tego samego kręgu, w którym uczyli się swojej profesji, dodaje Hempel.

Wciąż może być to jedna osoba z osobowścią wieloraką :P

Edited by peceed
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
Posted (edited)
W dniu 22.04.2021 o 10:18, thikim napisał:

Nie sztuczna inteligencja bo takowe nie istnieją tylko algorytm komputerowy.

Jak nie istnieje, jak istnieje? Gdyby to się nazywało "komputerowa inteligencja", to można byłoby się zgodzić z tym zdaniem. Ale nie, gdy mowa o sztucznej. Bo co to znaczy sztuczna? Intuicyjnie rozumiemy to jako nienaturalną. Ale też możemy rozumieć to słowo nieco szerzej, a mianowicie wychodząc od słowa "sztuczka", czyli iluzji, możemy przyjąć, że jest to synonim słowa nieprawdziwa, złudna, iluzoryczna inteligencja. Mamy sztuczny miód, a wy powiecie, że sztuczny miód to nie miód, tylko wygląda jak miód. I właśnie dlatego, że wygląda i trudno go odróżnić od miodu, nazywa się go miodem.

2 godziny temu, peceed napisał:

Jest nawet dowód na to, że sztuczna inteligencja nigdy nie powstanie. Bo dotychczas każdy rozwiązany problem z domeny AI stawał się "kolejnym zwykłym softem na komputer", jak dla przykładu szachy czy obecnie zagadnienia klasyfikacyjne. Gdy coś rozwiążemy kolejne, znowu staną się one "zwykłymi algorytmami".

I to właśnie stanowi jakby esencję sztucznej inteligencji. Efekt jest taki sam. Przecież CELEM inteligencji jest wygranie w szachy, a nie SAMO granie. To właśnie SZTUCZKA. I dlatego AI to JEST inteligencja. Na jakiej podstawie w ogóle twierdzisz, że inteligencja to nie jest jakiś algorytm?

Operujecie tzw. heurystykami, prowadzącymi często do błędnego rozumowania (dla programistów - douczyć się o słowie heurystyka, bo nie chodzi o definicję informatyczną). Macie słowo inteligencja i od razu wam się wydaje się, że to musi być zjawisko świadome, a nie zwykły algorytm.

Przypomina mi się ostatnio usłyszany dowcip. Przychodzi Polak do sklepu w Anglii, ale nie umie mówić po angielsku i próbuje wytłumaczyć sprzedawcy co chce kupić. I Polak do niego mówi: Chcę kupić ... i pokazuje mu rękami kształt kuli. Sprzedawca myśli i myśli i nagle wpada: You want to buy a ball? Polak zadowolony krzyczy: yes! Sprzedawca już chce ruszyć po jakąś piłkę, a wtedy Polak do niego: Czekaj. Teraz się skup.  Zaczyna mu pokazywać rękami jakby chciał coś przeciąć piłą. I dodaje: Chodzi o piłkę mechaniczną....

Edited by Antylogik

Share this post


Link to post
Share on other sites
Posted (edited)
3 godziny temu, Antylogik napisał:

Chodzi o piłkę mechaniczną...

do metalu.

 

Edited by Jajcenty

Share this post


Link to post
Share on other sites

Artykuł podsumowujący obecny etap funckjonowania AI vel modeli uczenia maszynowego:

https://mlodytechnik.pl/technika/30612-czego-ai-nie-moze-i-co-ja-blokuje

Jednak naukowcy Google’a wsadzili kij w mrowisko, udowadniając, że nawet najlepsze w swojej klasie metodologie testowania nie dają pewności co do wymaganej wydajności w świecie rzeczywistym. Po testach niektóre modele będą znakomite w świecie rzeczywistym, ale niektóre rozczarują, i nie można tego przewidzieć z wyprzedzeniem.[...]

Społeczność badaczy uczenia maszynowego głęboko poruszył opublikowany w listopadzie 2020 r. artykuł zespołu AI Google pt. "Underspecification Presents Challenges for Credibility in Modern Machine Learning". Dokument zwraca uwagę na szczególnie drażliwy problem polegający na tym, że nawet jeśli modele uczenia maszynowego przechodzą testy dobrze, nie radzą sobie równie dobrze w świecie rzeczywistym. Błędy modeli, które nie osiągają wydajności w testach w świecie rzeczywistym, są znane od dawna, ale ta praca jest pierwszą, która publicznie udowadnia i wymienia ową "underspecification" (co można tłumaczyć jako "niedookreślenie") w roli głównej przyczyny problemów.

Parę lat temu wydawało się, że rewolucja jest tuż za rogiem, co byłoby dla naszego kraju, trapionego głęboką niewydolnością systemu zdrowia, iskierką nadziei. Jednak:

Najbardziej chyba bolesną porażką AI, której nie omawia się i nie opisuje tak szeroko w mediach, jak jeszcze kilka lat temu szumnych zapowiedzi, jest to, co stało się ze sławnym Watsonem firmy IBM, który miał wspierać m.in. diagnostykę raka. Okazało się, że co innego wygrać z ludźmi teleturniej, a co innego dać sobie radę w roli lekarza. Jak pamiętamy, a pisał o tym także przed laty MT, system ten miał nawet "pozbawić lekarzy pracy".

Więcej:

https://mlodytechnik.pl/technika/30614-watson-nie-wygryzl-lekarza-i-bardzo-dobrze

Okazało się jednak, że Watson nie potrafi samodzielnie uzyskać wglądu do literatury medycznej ani też nie może wydobywać informacji z elektronicznej dokumentacji zdrowotnej pacjentów. Jednak najcięższy zarzut wobec niego opierał się na konstatacji, że nie umie sprawnie porównać nowego pacjenta z innymi starszymi przypadkami chorych na raka i odkryć symptomów, które są na pierwszy rzut oka niewidoczne.

Jednak nie wszystko stracone ponieważ:  

są dziedziny, w których okazał się niezwykle przydatny. Produkt Watson for Genomics, który został opracowany we współpracy z Uniwersytetem Karoliny Północnej, Uniwersytetem Yale i innymi instytucjami, jest wykorzystywany przez laboratoria genetyczne do generowania raportów dla onkologów. Watson pobiera plik z listą mutacji genetycznych u pacjenta i w ciągu kilku minut potrafi wygenerować raport, który zawiera sugestie dotyczące wszystkich ważnych leków i badań klinicznych. Watson stosunkowo łatwo radzi sobie z informacjami genetycznymi, ponieważ są prezentowane w ustrukturyzowanych plikach i nie zawierają dwuznaczności - albo mutacja jest, albo jej nie ma.

Ale największa rewolucja to chyba modelowanie  białek. Tu jest pole do popisu co zresztą ma swój praktyczny wymiar w walce z sars-cov-2.

Z obu artykułów wynika, że "sztuczna inteligencja" najbardziej obecnie sprawdza się wycinkowo, co bardziej pasuje do definicji algorytmu. Aczkolwiek taki GPT-3 firmy OpenAi wygląda obiecująco: Tu warto wtrącić, iż akurat GPT-3 może być wyjątkiem, czyli pierwszym przykładem sztucznej inteligencji, która, choć nie jest "ogólna", przekroczyła definicję "wąskiej". Algorytm, choć był szkolony do pisania tekstów, ostatecznie potrafi także tłumaczyć między językami, pisać kod, autouzupełniać obrazy, wykonywać zadania matematyczne i inne zadania związane z językiem

 Z artykułu wynika, że GPT-3  jest "mniejszy" tysiąc razy niż ludzki mózg, to jest kwestią czasu gdy te parametry się zrównają. 

Share this post


Link to post
Share on other sites
6 godzin temu, venator napisał:

Dokument zwraca uwagę na szczególnie drażliwy problem polegający na tym, że nawet jeśli modele uczenia maszynowego przechodzą testy dobrze, nie radzą sobie równie dobrze w świecie rzeczywistym.

Tak, jeszcze nie wymyśliłem jak to obejść. Dobry model to 95% poprawnych rozpoznań, oczywiście jest w stanie ocenić gazylion zdjęć. z fałszywymi rozpoznaniami nie ma dużego problemu - te kilka sztuk wyłapie człowiek. Ale co 5% przypadków nierozpoznanych? Wychodzi na to, że i tak człowiek musi zobaczyć wszystkie obrazki. Zatem musi zostać jak jest, robotę robi człowiek, a robota można jedynie użyć do sprawdzenia po człowieku.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Algorytmy sztucznej inteligencji mogą skrócić czas badań cytologicznych i tym samym pozwolić na szybsze diagnozowanie nowotworów u zwierząt. Narzędzie CyfroVet powstaje właśnie w Akademickim Centrum Komputerowym CYFRONET AGH.
      Jak podano w przesłanym PAP komunikacie, obecnie czas oczekiwania na wynik badania cytologicznego wynosi od kilku dni do 2 tygodni, a jego cena to około kilkaset złotych.
      Naukowcy z AHG przekonują, że istnieje możliwość znaczącego skrócenia tego czasu poprzez zastosowanie zautomatyzowanego systemu. Narzędzie takie pozwala na wykonanie zdjęcia próbki materiału cytologicznego, a następnie przeanalizowanie go z wykorzystaniem algorytmów sztucznej inteligencji. Dzięki temu można ocenić zmiany patologiczne w preparacie.
      Dyrektor ACK Cyfronet AGH prof. Kazimierz Wiatr wskazał, że wyzwaniem jest zgromadzenie odpowiedniej liczby zdjęć preparatów cytologicznych o różnorodnym charakterze, które pozwolą na wytrenowanie algorytmu sztucznej inteligencji do rozpoznawania zmian nowotworowych z dużą dokładnością.
      Czasochłonny jest również proces oznaczania tzw. danych uczących, który wiąże się z ręcznym oznaczeniem zmian patologicznych przez lekarza eksperta oraz ich weryfikacji przez dyplomowanego patologa.
      Obecnie w ramach prac prowadzonych w projekcie CyfroVet opracowane zostało rozwiązanie pozwalające na klasyfikację wybranych zmian patologicznych z wykorzystaniem sieci neuronowych. Opracowane zostały również architektury sieci pozwalające na szczegółową detekcję pojedynczych komórek nowotworowych, która pozwala na bardziej dokładną analizę zachodzących zmian patologicznych. Zaprojektowane rozwiązanie pozwala uzyskać dokładności klasyfikacji na poziomie nawet 96 proc. System działa dla wybranych trzech zmian nowotworowych: mastocytomy, histiocytomy oraz chłoniaka – wskazał inicjator prac dr hab. inż. Maciej Wielgosz.
      W ostatnim czasie zespół prowadzi również badania nad holistycznym podejściem do diagnostyki weterynaryjnej, które dotyczy nie tylko zbadania zmian na zdjęciach preparatów cytologicznych pod mikroskopem, ale również informacji o zwierzęciu zebranych przez weterynarza w trakcie wstępnego wywiadu. Wywiad taki dotyczy wieku zwierzęcia, chorób czy lokalizacji zmian na powierzchni skóry. Są to tak zwane dane kategoryczne, które mogą w znaczący sposób wpłynąć na podjęcie przez lekarza decyzji diagnostycznej. Uwzględnienie tych danych w algorytmie sztucznej inteligencji pozwoli potencjalnie podnieść skuteczność jego działania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rak prostaty to obecnie jeden z dwóch najczęściej rozpoznawanych nowotworów złośliwych u mężczyzn. Zapadalność na raka gruczołu krokowego rośnie z wiekiem. To poważna choroba, jednak wcześnie wykryta jest uleczalna. Szybka, właściwa diagnostyka pozwala odpowiednio dobrać terapię i zwiększyć szansę pacjenta na przeżycie.
      Najdokładniej zmiany nowotworowe powala zobrazować rezonans magnetyczny (MRI). Niestety, badanie raka prostaty za pomocą tej metody jest skomplikowane. Niezbędne jest badanie wielu cech nowotworu, co utrudnia i znacznie wydłuża interpretację wyniku. Każdy otrzymany obraz musi być przeanalizowany osobno. Diagnostyka ta jest skomplikowana i trudniejsza niż w przypadku większości nowotworów złośliwych. Otrzymane wyniki są oceniane według skali PI-RADS (Prostate Imaging-Reporting and Data System), która umożliwia rozróżnienie zmian istotnych klinicznie. Analiza ta wymaga specjalistycznej wiedzy radiologów, którzy stanowią w Polsce zaledwie ok. 2 proc. lekarzy, co dodatkowo wydłuża czas oczekiwania na badanie i właściwą diagnozę. Interpretacja wyników jest subiektywna i zauważalne są różnice pomiędzy specjalistami doświadczonymi a początkującymi. Badania wykazały, że radiolodzy różnie interpretują, czy potencjalna zmiana nowotworowa jest inwazyjna.
      W Ośrodku Przetwarzania Informacji – Państwowym Instytucie Badawczym (OPI PIB) prowadzimy interdyscyplinarne badania, których wyniki mają praktyczne zastosowanie w wielu dziedzinach. Jednym z obszarów jest wykorzystanie najnowszych technologii IT w medycynie i ochronie zdrowia. Z naszych badań wynika, że sztuczna inteligencja może skutecznie usprawnić pracę lekarzy. Rezultaty są bardzo obiecujące i jestem przekonany, że także pomogą one innym naukowcom opracować nowoczesne narzędzia technologiczne, mające zastosowanie w diagnostyce nie tylko raka prostaty, ale także i innych chorób – mówi dr inż. Jarosław Protasiewicz, dyrektor Ośrodka Przetwarzania Informacji – Państwowego Instytutu Badawczego (OPI PIB).
      Ograniczenie liczby bolesnych biopsji
      Naukowcy z Laboratorium Stosowanej Sztucznej Inteligencji w OPI PIB opracowali platformę badawczą eRADS, która służy do standaryzacji opisów raportów medycznych. Narzędzie to pozwala obiektywnie ocenić istotność kliniczną zmiany na podstawie pięciostopniowej skali PI-RADS. Platforma umożliwia także zbieranie danych z badań, co w przyszłości pomoże stworzyć rozwiązania, które automatycznie będą szacowały cechy istotne klinicznie. W tym przypadku sztuczną inteligencję zastosowano do wspomagania procesów decyzyjnych.
      Badacze OPI PIB przeprowadzili badania pilotażowe z udziałem 16 pacjentów, diagnozowanych przez dwóch radiologów podczas ich dyżuru w Centralnym Szpitalu Klinicznym MSWiA w Warszawie. Specjaliści ci różnili się stażem pracy w zawodzie. Ich celem była ocena rzetelności oraz wstępnej użyteczności klinicznej systemu eRADS. Wyniki badania pilotażowego są obiecujące. Oceny istotności klinicznej zmiany przez radiologów z wykorzystaniem narzędzia opracowanego przez naukowców OPI PIB są bardziej zgodne, niż gdy dokonują oni analizy bez użycia platformy. Zastosowanie eRADS pomaga zmniejszyć różnice między jakością diagnozy lekarzy doświadczonych i niedoświadczonych. Precyzyjna ocena zmian pozwoli znacznie ograniczyć liczbę pacjentów, którzy są wysyłani na biopsję. W przypadku badania prostaty wiąże się ona z dyskomfortem pacjenta. Polega na pobraniu materiału z kilku do kilkunastu wkłuć.
      Sieci neuronowe zastąpią lekarzy?
      W naszym laboratorium badaliśmy także wykorzystanie w diagnostyce raka prostaty innych obszarów sztucznej inteligencji. Analizowaliśmy zastosowanie narzędzi wykorzystujących uczenie maszynowe i głębokie. Naszym celem było porównanie otrzymanych wyników z diagnozami postawionymi przez doświadczonych i niedoświadczonych radiologów. Model predykcyjny istotności klinicznej zmian, oparty o narzędzia uczenia maszynowego, bazował na cechach obrazu (np. jednorodności) w badanych komórkach i ich otoczeniu. Uzyskaliśmy model trafnie klasyfikujący istotne klinicznie zmiany z prawdopodobieństwem 75 proc., co można porównać do diagnozy niedoświadczonego lekarza. Najbardziej obiecujące rezultaty otrzymaliśmy jednak z zastosowania wiedzy domenowej w architekturze sieci neuronowych. Opracowane modele dają lepszą jakość diagnozy zmian nowotworowych w porównaniu z ocenami niedoświadczonych i doświadczonych radiologów, stawiając trafną diagnozę z prawdopodobieństwem 84 proc. – mówi Piotr Sobecki, kierownik Laboratorium Stosowanej Sztucznej Inteligencji w OPI PIB.
      Podsumowując, zastosowanie wiedzy domenowej w architekturze sieci neuronowych wpływa na szybkość uczenia modelu w przypadku diagnostyki raka prostaty. Analizowano efekt lokalizacji zmiany w prostacie i niezależnie od tego czynnika, wyniki otrzymane za pomocą modeli wykorzystujących sieci neuronowe były takie same lub lepsze od diagnozy postawionej przez doświadczonych radiologów. Potwierdziły to wyniki badania OPI PIB z użyciem danych historycznych od 6 radiologów oceniających 32 zmiany nowotworowe.
      Sztuczna inteligencja wykorzystująca uczenie głębokie nie zastąpi jednak lekarzy, ale ułatwi im pracę i przyspieszy rozpoczęcie leczenia pacjenta. Wciąż jednak mało jest otwartych zbiorów baz danych, które można wykorzystać do usprawnienia algorytmów sztucznej inteligencji. Należy pamiętać, że modele te są tak dobre, jak dane, na których zostały wyuczone. Chodzi zarówno o ich liczebność, jak i o jakość.
      1) W Polsce z powodu raka prostaty codziennie umiera około 15 pacjentów, a choroba ta jest diagnozowana u co 8. mężczyzny
      2) Ważne jest szybkie wykrycie choroby i podjęcie odpowiedniego leczenia.
      3) Niestety, diagnostyka raka prostaty jest skomplikowana i trudna w porównaniu do metod wykrywania innych nowotworów.
      4) Badacze z Laboratorium Stosowanej Sztucznej Inteligencji w Ośrodku Przetwarzania Informacji – Państwowym Instytucie Badawczym (OPI PIB) wykorzystali sztuczną inteligencję (SI) do usprawnienia diagnostyki obrazowej raka prostaty.
      5) Najlepsze rezultaty uzyskali z zastosowaniem sieci neuronowych. Jakość otrzymanej diagnozy była na poziomie doświadczonego lekarza specjalisty lub wyższa.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed rokiem firma Cerebras Systems zaprezentowała największy w historii procesor o gigantycznej mocy obliczeniowej, który pokonał najpotężniejszy superkomputer, symulując procesy fizyczne szybciej, niż odbywają się one w rzeczywistości. Teraz firma ogłosiła, że stworzyła drugą wersję swojego procesora i udostępni go w 3. kwartale bieżącego roku. Wafer Scale Engine 2 (WSE 2) ma ponaddwukrotnie więcej tranzystorów, rdzeni i pamięci niż WSE 1.
      Trenowanie systemów sztucznej inteligencji trwa wiele tygodni. To zdecydowanie zbyt długo, gdyż w takiej sytuacji można wytrenować tylko kilka sieci rocznie. Jeśli zaś moglibyśmy wytrenować sieć neuronową w ciągu 2-3 godzin, to rocznie możemy przetestować tysiące rozwiązań, mówi Andrew Feldman, dyrektor i współzałożyciel Cerebras.
      Mogą w tym pomóc właśnie olbrzymie procesory WSE. Ich twórcy zauważyli, że rozwiązaniem problemu wąskiego gardła, którym jest konieczność ciągłego przesyłania danych pomiędzy procesorem a układami pamięci, będzie zbudowanie wielkiego procesora, który będzie w stanie przechować wszystkie potrzebne dane w swoich rdzeniach.
      Oba procesory WSE mają powierzchnię 46 255 mm2. Dla porównania procesor Nvidia A100 ma powierzchnię 826 mm2. WSE 2 korzysta z 2,6 biliona tranzystorów (WSE 1 z 1,2 biliona, a A100 z 54,2 miliardów). Najnowszy procesor Cerebras składa się z 850 000 rdzeni (WSE 1 ma ich 400 000, A100 – 7344). W WSE 2 zastosowano 40 gigabajtów pamięci. TO aż 1000-krotnie więcej niż w A100 i ponaddwukrotnie więcej niż w WSE 1. Ponadto rdzenie WSE 2 wymieniają między sobą dane z prędkością 200 PB/s, podczas gdy A100 przekazuje dane z prędkością 155 GB/s, a WSE 1 z prędkością 9 PB/s. Najnowszy procesor Cerebras został wykonany w technologii 7nm, czyli tej samej co A100. WSE 1 korzystał z 16nm.
      Cerebras zapewnia, że udoskonalił również samą mikroarchitekturę WSE 2 tak, by jeszcze lepiej spełniał on zadania stawiane przed systemami sztucznej inteligencji.
      Firma może pochwalić się rosnącą liczbą klientów, którzy prowadzą na WSE 1 i mają zamiar prowadzić na WSE 2 niezwykle złożone obliczenia. Wśród klientów tych jest Argonne National Lab, które wykorzystuje WSE do prac nad lekami na nowotwory, badania COVID-19, badania fal grawitacyjnych czy badań nad nowymi materiałami. Z kolei Edinburgh Parallel Computing Centre używa WSE do przetwarzania języka naturalnego i badań genetycznych. Koncern farmaceutyczny GlaxoSmithKline poszukuje nowych leków za pomocą WSE 1, a Lawrence Livermore National Lab symuluje fuzję jądrową, prowadzi badania nad traumatycznymi uszkodzeniami mózgu.
      Wśród klientów Cerebras jest też wiele firm z przemysłu ciężkiego, wojskowego czy wywiadu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Niemczech stworzono algorytm, który identyfikuje geny biorące udział w powstawaniu nowotworów. Naukowcy zidentyfikowali dzięki niemu 165 nieznanych dotychczas genów zaangażowanych w rozwój nowotworu. Co bardzo istotne, algorytm ten identyfikuje również geny, w których nie doszło do niepokojących zmian w DNA. Jego powstanie otwiera nowe możliwości w walce z nowotworami i personalizowanej medycynie.
      W nowotworach komórki wyrywają się spod kontroli. Rozrastają się i rozprzestrzeniają w niekontrolowany sposób. Zwykle jest to spowodowane mutacjami w DNA. Jednak w przypadku niektórych nowotworów mamy do czynienia z bardzo małą liczbą zmutowanych genów, co sugeruje, że w grę wchodzą tutaj inne przyczyny.
      Naukowcy z Instytutu Genetyki Molekularnej im. Maxa Plancka oraz Instytut Biologii Obliczeniowej Helmholtz Zentrum München opracowali algorytm maszynowego uczenia się, który zidentyfikował 165 nieznanych dotychczas genów biorących udział w rozwoju nowotworów. Wszystkie nowo odkryte geny wchodzą w interakcje z dobrze znanymi genami pronowotworowymi.
      Algorytm EMOGI (Explainable Multi-Omics Graph Integration) potrafi też wyjaśnić związki pomiędzy elementami odpowiedzialnymi za powstanie nowotworu. Powstał on na podstawie dziesiątków tysięcy danych zgromadzonych w ramach badań nad nowotworami. Są tam informacje o metylacji DNA, aktywności poszczególnych genów, mutacjach, interakcji białek itp. itd. Na podstawie tych danych algorytm głębokiego uczenia się opracował wzorce oraz nauczył się rozpoznawania sygnałów molekularnych prowadzących do rozwoju nowotworu.
      Ostatecznym celem takiego algorytmu byłoby stworzenie dla każdego pacjenta całościowego obrazu wszystkich genów zaangażowanych w danym momencie w rozwój nowotworu. W ten sposób położylibyśmy podwaliny pod zindywidualizowaną terapię przeciwnowotworową, mówi Annalisa Marsico, która stoi na czele zespołu badawczego. Jej celem jest wybranie najlepszej terapii dla każdego pacjenta czyli takiego leczenia, które u konkretnej osoby da najlepsze wyniki i będzie miało najmniej skutków ubocznych. Co więcej, pozwoli nam to identyfikować nowotwory na wczesnych fazach rozwoju dzięki ich charakterystyce molekularnej.
      Dotychczas większość badaczy skupia się na patologicznych zmianach w sekwencjach genetycznych. Tymczasem w ostatnich latach coraz bardziej oczywiste staje się, że do rozwoju nowotworów mogą prowadzić również zaburzenia epigenetyczne czy rozregulowanie aktywności genów, stwierdza Roman Schulte-Sasse, doktorant współpracujący z Marsico.
      Dlatego właśnie naukowcy połączyli informacje o błędach w genomie z informacjami o tym, co dzieje się wewnątrz komórek. W ten sposób najpierw zidentyfikowali mutacje w genomie, a później znaleźli geny, które mają mniej oczywisty wpływ na rozwój nowotworu.
      Na przykład znaleźliśmy geny, których DNA jest niemal niezmienione, ale mimo to geny te są niezbędne do rozwoju guza, gdyż regulują dostarczanie mu energii, dodaje Schulte-Sasse. Tego typu geny działają poza mechanizmami kontrolnymi, gdyż np. doszło w nich do chemicznych zmian w DNA. Zmiany te powodują, że co prawda sekwencja genetyczna pozostaje prawidłowa, ale gen zaczyna inaczej działać. Takie geny to bardzo obiecujący cel dla terapii przeciwnowotworowych. Problem jednak w tym, że działają one w tle i do ich zidentyfikowania potrzebne są złożone algorytmy, dodaje uczony.
      Obecnie naukowcy wykorzystują swój algorytm do przeanalizowania związku pomiędzy proteinami a genami. Związki te można przedstawić w formie matematycznych grafów, stwierdza Schulte-Sasse. Dopiero współczesna technika pozwala na prowadzenie tego typu analiz. Schulte-Sasse już uruchomił algorytm, który analizuje dziesiątki tysięcy takich grafów z 16 różnych typów nowotworów. Każdy z grafów składa się z od 12 000 do 19 000 punktów z danymi.
      Już teraz zaczynamy zauważać pewne wzorce zależne od typu nowotworu. Widzimy dowody na to, że rozwój guzów jest uruchamiany za pomocą różnych mechanizmów molekularnych w różnych organach, wyjaśnia Marsico.
      Szczegóły badań zostały opublikowane na łamach Nature Machine Intelligence.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Massachusetts Institute of Technology (MIT) powstał system sztucznej inteligencji (SI), który wykrywa czerniaka. System analizuje zdjęcia skóry pacjenta i wskazuje na podejrzane zmiany, dzięki czemu specjalista łatwiej może postawić diagnozę. Czerniak to niebezpieczny nowotwór odpowiedzialny za 70% przypadków zgonów z powodu nowotworów skóry. Od lat lekarze polegają na własnym wzroku i doświadczeniu, wyszukując podejrzane zmiany. Dzięki pomocy SI diagnoza ma być szybsza i skuteczniejsza.
      Szybkie wykrycie podejrzanych zmian pigmentacji skóry nie jest proste. Łatwo też, przy nowotworze na wczesnym etapie, pominąć którąś ze zmian. Podejrzane zmiany są następnie poddawane biopsji i badane.
      Naukowcy z MIT wykorzystali technikę głębokich konwolucyjnych sieci neutronowych (DCNN) i zaprzęgnęli ją do analizy obrazów wykonywanych za pomocą zwykłych aparatów cyfrowych, takich jak te obecne w telefonach komórkowych.
      Luis L. Soenksen, ekspert z Artificial Intelligence and Healthcare na MIT mówi, że dzięki temu możliwe jest szybkie i efektywne wykrywanie czerniaka na wczesnym etapie rozwoju. Wczesne wykrycie podejrzanych zmian może ocalić życie. Jednak obecnie systemy opieki zdrowotnej nie mają dostępu do systemu pozwalającego na badania przesiewowe skóry, stwierdza ekspert. Na łamach Science Translational Medicine wyjaśnia on w jaki sposób działa nowy system.
      Sztuczną inteligencję do wykrywania czerniaka trenowano za pomocą 20 388 zdjęć od 133 pacjentów madryckiego Hospital Hospital Gregorio Marañón oraz na publicznie dostępnych fotografiach. Zdjęcia były wykonana za pomocą różnych, łatwo dostępnych aparatów cyfrowych. Z twórcami systemu współpracowali też dermatolodzy, który klasyfikowali podejrzane zmiany tradycyjną metodą. Okazało się, że system z 90,3-procentową skutecznością odróżnia podejrzane zmiany skórne od zmian, które nie są problematyczne.
      Nasze badania wskazują, że system wykorzystujący system komputerowego widzenia oraz głębokie sieci neuronowe osiąga podobną skuteczność, co doświadczony dermatolog. Mamy nadzieję, że nasze badania pomogą w lepszej diagnostyce w punktach podstawowej opieki zdrowotnej, mówi Soenksen.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...