Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

CERN chce wybudować 100-kilometrowy akcelerator cząstek. Ma być 6-krotnie potężniejszy od LHC

Rekomendowane odpowiedzi

Rada CERN jednogłośnie przyjęła dzisiaj plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Plan zakłada m.in. wybudowanie 100-kilometrowego akceleratora cząstek. O stworzeniu wstępnego raportu projektowego budowy Future Circular Collider (FCC) informowaliśmy na początku ubiegłego roku.

The European Strategy for Particle Physics został po raz pierwszy przyjęty w 2006 roku, a w roku 2013 doczekał się pierwszej aktualizacji. Prace nad jego obecną wersją rozpoczęły się w 2018 roku, a w styczniu ostateczna propozycja została przedstawiona podczas spotkania w Niemczech. Teraz projekt zyskał formalną akceptację.

CERN będzie potrzebował znaczniej międzynarodowej pomocy, by zrealizować swoje ambitne plany. Stąd też w przyjętym dokumencie czytamy, że Europa i CERN, za pośrednictwem Neutrino Platform, powinny kontynuować wsparcie dla eksperymentów w Japonii i USA. W szczególności zaś, należy kontynuować współpracę ze Stanami Zjednoczonymi i innymi międzynarodowymi partnerami nad Long-Baseline Neutriono Facility (LBNF) oraz Deep Underground Neutrino Experiment (DUNE).

Obecnie szacuje się, że budowa nowego akceleratora, który byłby następcą Wielkiego Zderzacza Hadronów, pochłonie co najmniej 21 miliardów euro. Instalacja, w której dochodziłoby do zderzeń elektronów z pozytonami, miała by zostać uruchomiona przed rokiem 2050.

Zatwierdzenie planów przez Radę CERN nie oznacza jednak, że na pewno zostaną one zrealizowane. Jednak decyzja taka oznacza, że CERN może teraz rozpocząć pracę nad projektem takiego akceleratora, jego wykonalnością, a jednocześnie rozważać inne konkurencyjne projekty dla następcy LHC. Myślę, że to historyczny dzień dla CERN i fizyki cząstek, zarówno w Europie jak i poza nią, powiedziała dyrektor generalna CERN Fabiola Gianotti po przyjęciu proponowanej strategii.

Z opinią taką zgadzają się inni specjaliści. Dotychczas bowiem CERN rozważał wiele różnych propozycji. Teraz wiadomo, że skupi się przede wszystkim na tej jednej.

Przyjęta właśnie strategia zakłada dwuetapowe zwiększanie możliwości badawczych CERN. W pierwszym etapie CERN wybuduje zderzacz elektronów i pozytonów, którego energia zostanie tak dobrana, by zmaksymalizować produkcję bozonów Higgsa i lepiej zrozumieć ich właściwości.

Później instalacja ta zostanie rozebrana, a w jej miejscu powstanie potężny zderzacz protonów. Urządzenie będzie pracowało z energiami rzędu 100 teraelektronowoltów (TeV). Dla porównania, LHC osiąga energie rzędu 16 TeV.
Zadaniem nowego zderzacza będzie poszukiwanie nowych cząstek i sił natury. Większość technologii potrzebna do jego zbudowania jeszcze nie istnieje. Będą one opracowywane w najbliższych dekadach.

Co ważne, mimo ambitnych planów budowy 100-kilometrowego zderzacza, nowo przyjęta strategia zobowiązuje CERN do rozważenia udziału w International Linear Collider, którego projekt jest od lat forsowany przez japońskich fizyków. Japończycy są zadowoleni z takiego stanowiska, gdyż może pozwoli to na przekonanie rządu w Tokio do ich projektu.

W przyjętej właśnie strategii czytamy, że CERN będzie kontynuował rozpoczęte już prace nad High Luminosity LHC (HL-LHC), czyli udoskonaloną wersją obecnego zderzacza. Budowa 100-kilometrowego tunelu i zderzacza elektronów i pozytonów ma rozpocząć się w roku 2038. Jednak zanim ona wystartuje, CERN musi poszukać pieniędzy na realizację swoich zamierzeń. Chris Llewellyn-Smith, były dyrektor generalny CERN, uważa, że do europejskiej organizacji mogłyby dołączyć Stany Zjednoczone, Japonia i Chiny, by powołać nową globalną organizację fizyczną.

Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN. Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek. Z opinią tą zgadza się Tara Shears z University of Liverpool. Uczona zauważa, że o ile powodem, dla którego budowano LHC było poszukiwanie bozonu Higgsa i urządzenie spełniło stawiane przed nim zadanie, to obecnie brak dobrze umotywowanych powodów naukowych, by budować jeszcze potężniejszy akcelerator. Nie mamy obecnie żadnych solidnych podstaw. A to oznacza, że cały projekt obarczony jest jeszcze większym ryzykiem, mówi. Dodaje jednak, że jednocześnie wiemy, że jedynym sposobem na znalezienie odpowiedzi są eksperymenty, a jedynymi miejscami, gdzie możemy je znaleźć są te miejsca, w które jeszcze nie zaglądaliśmy.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
6 godzin temu, KopalniaWiedzy.pl napisał:

Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN.

Inwestycje w naukę zawsze przynoszą korzyści. Dziwne, że nie którzy naukowcy to podważają.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
6 godzin temu, KopalniaWiedzy.pl napisał:

Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek.

Nazwać tą panią fizykiem teoretycznym to tak jakby określić blogową szafiarkę projektantką mody.
Chyba że "fizyk teoretyczny" to nie był związek frazeologiczny, a  teoretyczny ma tutaj znaczenie potoczne, jak  w "państwie teoretycznym".

Widać u niej całkowite niezrozumienie podstawowych zasad rządzących nauką i badaniami podstawowymi, zwłaszcza to, że badania nie są od tego aby potwierdzać lub obalać teorie, ale aby zwiększać zakres poznania.
Do tego widać gigantyczną niechęć wobec badań które dają odpowiedzi w naiwnym sensie "negatywne" (bo "znak" zależy od parametryzacji językowej). Brak nowych cząstek to nie porażka, to bardzo ważna informacja że żadnych cząstek tam nie ma.
Widać tutaj naiwne porównanie badań naukowych do wypraw geograficznych: sukcesem jest znalezienie lądu z którego można czerpać korzyści. Tutaj sukcesem ma być znalezienie cząsteczek, o których można będzie pisać nic nie znaczące dla nauki wpisy na swoim blogu. Z punktu widzenia nauki informacja że gdzieś jest ocean jest równie wartościowa i istotna, zwłaszcza że pozwala skończyć intensywne poszukiwania.
Krytyka wobec akceleratora jest tym głupsza, że już wiadomo że te cząsteczki na pewno są, nie wiadomo tylko jak daleko.
To tak jakby krytykować wyprawę na ocean, bo nie ma gwarancji że się coś się znajdzie w sytuacji, gdy może wyrzuciło statek należący do innej cywilizacji.
Na postęp techniczny nie da się "zaczekać", znamy cywilizacje które czekały kilka tysięcy lat i się nie doczekały. Strategia przeczekania kilku generacji akceleratorów nie jest opłacalna, przy wykładniczo rosnących mocach i kosztach oszczędności są iluzoryczne gdy od nowa będzie trzeba budować kadry które wiedzą o co chodzi w tym biznesie.
 

  • Haha 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przy okazji - co się stało z akceleratorami mionowymi? Naprawdę znowu będziemy się musieli babrać w tej hadronowej brei po upgradzie?

 

 

Edytowane przez peceed

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wczoraj podeslano mi ten filmik, związane z tematem:

https://m.youtube.com/watch?v=raXKqIapTHU

Co o tym myślicie?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Każdy oszołom i propagator ezoteryzmu wykorzystuje te same dwa chwyty: Kopernika i odkrycie Ameryki - w celu udowodnienia że jeśli ktoś mówi coś durnego to na pewno jest odkrywcą niezrozumiałym przez ograniczoną gawiedź.
Otóż nie. Oprócz niezrozumiałego Kopernika czy Kolumba były tysiące niezrozumiałych oszołomów proponujących tysiące bzdurnych teorii. Tysiące różnych bzdetów pojawiało się w historii, potwory morskie, substancje duchowe, eter, absurdalne siły natury, sfery niebieskie, diabły na ostrzu szpilki. Wszyscy piewcy mówili że to "nowe odkrycie" a inni po prostu "tego nie rozumieją". Najgorszym przykładem takie podejścia jest "z kopnięcia piłki wynika, że spada ona lotem parabolicznym, kopnijmy piłkę jeszcze bardziej to odkryjemy na pewno coś nowego".
Tak właśnie wygląda sprawa z nowym akceleratorem. Tym razem CERN nie ma żadnych spodziewanych odkryć, to tylko mrzonka, chęć zapewnienia sobie finansowania na lata obiecując ezoteryczno-iluzoryczne "na pewno coś znajdziemy, kopnijmy tylko piłkę jeszcze bardziej". Tak się zastanawiam, kiedy CERN przestał zajmować się fizyką a zaczął uprawiać sekciarstwo?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przez moment sądziłem, że piszesz o koledze od alternatywnych światów i portali, ale się sromotnie pomyliłem ;) Od kiedy to przeszkadzają Ci oszołomy i propagatorzy ezoteryzmów wykorzystujących te same, stare chwyty i ezoteryczno-iluzoryczne mrzonki napędzane przez chęć zapewnienia sobie finansowania na lata, żeby nie napisać tysiąclecia? ;) Po za tym, nie ma co komentować. Napiszę tylko, że Kolumb się nie spodziewał odkryć Ameryki.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, Ergo Sum napisał:

Tym razem CERN nie ma żadnych spodziewanych odkryć

Albo "spodziewane", albo "odkrycie".
Do końca lat 60 jedyną "spodzianką" było to, że odkryje się "niespodzianki". Po powstaniu Modelu Standardowego "spodzianki" miały bardzo dobrze określone parametry.Teraz weszliśmy w bardzo ciekawą fazę, gdzie z jednej strony wiemy że są rzeczy do odkrycia, ale z drugiej strony przedział energii gdzie mogą się znajdować jest ogromny. Czyli z mórz greckich wypłynęliśmy najpierw na Morze Śródziemne, a teraz jesteśmy w drodze na Atlantyk.

3 godziny temu, Ergo Sum napisał:

Najgorszym przykładem takie podejścia jest "z kopnięcia piłki wynika, że spada ona lotem parabolicznym, kopnijmy piłkę jeszcze bardziej to odkryjemy na pewno coś nowego".

Jasne. To byłoby albo lot hiperboliczny albo anihilacja piłki.

3 godziny temu, Ergo Sum napisał:

chęć zapewnienia sobie finansowania na lata obiecując ezoteryczno-iluzoryczne "na pewno coś znajdziemy, kopnijmy tylko piłkę jeszcze bardziej"

1) Nie znalezienie "czegoś" też jest odkryciem. 
2) Akurat fizyka jest w momencie, że może obiecywać znalezienie wielu ciekawych rzeczy.

32 minuty temu, cyjanobakteria napisał:

Napiszę tylko, że Kolumb się nie spodziewał odkryć Ameryki.

Janszoon za to spodziewał się odkryć Australię.

3 godziny temu, Ergo Sum napisał:

Tak się zastanawiam, kiedy CERN przestał zajmować się fizyką a zaczął uprawiać sekciarstwo?

Dla laika każda działalność badawcza której nie jest w stanie osobiście zweryfikować (ogarnąć umysłowo) z powodu tzw. luki poznawczej wygląda na sekciarstwo. Nie zmienia to faktu, że znaczna część miękkich badań sekciarstwem jest.
Krytyka CERNu i obecnej fizyki pochodzi od kilku webowych celebrytów, osób zbyt słabych by zajmować się nauką w sposób konstruktywny ale wystarczająco biegłych w uprawianiu tzw. działalności pozorowanej i dostatecznie cwanych by się lansować.
Co ciekawe Sabine Hossenfelder to modelowy przykład osobowości psychopatycznej, polecam poczytać jej teksty a zwłaszcza obejrzeć filmiki z jej udziałem.
Z jakiegoś powodu psychopaci pociągają tłumy.
Nie chcę nikomu odbierać do prawa do marudzenia, ale fizyka nie musi nikomu niczego udowadniać jako dyscyplina naukowa, wystarczy zajrzeć do CV.
I trzeba mieć świadomość że znaczna część fizyków to są dokładnie ci sami ludzie którzy wiedzieli co robią 20 i 30 lat temu. Kredyt zaufania wobec fizyki powinien wystarczyć na tysiące lat.

Edytowane przez peceed

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
12 godzin temu, peceed napisał:

Naprawdę znowu będziemy się musieli babrać w tej hadronowej brei po upgradzie?

Przecież nikt nie będzie tego kopał łopatą i się nie spoci. A w planowanym (żeby nie było jak z webbem) 2050r to kompy pewnie będą potrafiły przerobić dane od ręki, w realtime, dobra aż tak szybkie nie będą, ale na pewno o x razy szybsze niż dzisiaj.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 minutę temu, tempik napisał:

dobra aż tak szybkie nie będą, ale na pewno o x razy szybsze niż dzisiaj.

Dennard się skończył, Moor zdycha a Amdahl ma się dobrze ;)
Gustafson zacznie się rozbijać o architekturę połączeń: wysokowymiarowe problemy będą ograniczane przez fizyczną topologię połączeń w przestrzeni 3d.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
7 minut temu, peceed napisał:

Dennard się skończył, Moor zdycha a Amdahl ma się dobrze ;)
Gustafson zacznie się rozbijać o architekturę połączeń: wysokowymiarowe problemy będą ograniczane przez fizyczną topologię połączeń w przestrzeni 3d.

Te wszystkie niby prawa zakładają że procesory ciągle są lutowane z tych samych tranzystorów. A przecież postęp w budowie bramek ciągle postępuje, materiały się zmieniają. Ciężko jest prognozować co będzie. Może da się całkowicie wyeliminować prąd i przejść na optykę. A może w końcu ta kwantowa rewolucja nastąpi?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, tempik napisał:

Te wszystkie niby prawa zakładają że procesory ciągle są lutowane z tych samych tranzystorów.

Gdzie tam. Prawo Moora działało wiele lat wstecz i obejmowało też pamięci rdzeniowe i układy lampowe po odpowiednim przeformułowaniu, zatem zupełnie nie dba o to z czego i jakie są tranzystory. Prawo Dennarda częściowo działa jeśli traktuje się je jako stałą ilość energii zużywaną przez układ, a nie skalowanie częstotliwości pracy przy tym samym zużyciu energii. Gdy zmniejszalismy ranzystor (długość bramki) k-razy, to dało się go przełączać k-raza szybciej z tym samym zużyciem energii, a teraz...

2 godziny temu, tempik napisał:

A przecież postęp w budowie bramek ciągle postępuje, materiały się zmieniają

.... szybkość tranzystorów nie ma już znaczenia, opóźnienia powstają na połączeniach i to jest największy problem. Małe upakowane druciki stają się okładkami kondensatora.

2 godziny temu, tempik napisał:

Może da się całkowicie wyeliminować prąd i przejść na optykę.

Na razie nikt tego nie pokazał jeśli chodzi komputery cyfrowe. Nie wykluczam, ale wydaje mi się że więcej pokażą komputery które są w stanie wykorzystać interferencję do obliczeń. Komputery optyczne wykorzystywane w satelitach szpiegowskich już w latach 70 były miliony razy szybsze od elektroniki przy rozpoznawaniu obrazów. To w ogóle jest niesamowita sprawa że potężna część know-how i teorii jest całkowicie utajniona. Teraz różnica jest pewnie mniejsza ale po prostu nic nie wiemy jakiej wydajności można się spodziewać.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Podczas seminarium zorganizowanego w CERN-ie naukowcy pracujący przy projekcie NA62, w ramach którego badane są rzadkie rozpady kaonów, poinformowali o jednoznacznym potwierdzeniu rejestracji ultrarzadkiego rozpadu kaonu dodatniego do dodatnio naładowanego pionu i parę neutrino-antyneutrino. Uczeni z NA62 już wcześniej obserwowali sygnały, świadczące o zachodzeniu takiego procesu, jednak teraz, po raz pierwszy, pomiary zostały dokonane z poziomem ufności 5σ, od którego możemy mówić o dokonaniu odkrycia.
      Zaobserwowane zjawisko, które zapisujemy jako K+→π+νν, to jeden z najrzadziej obserwowanych rozpadów. Model Standardowy przewiduje, że w ten sposób rozpada się mniej niż 1 na 10 miliardów kaonów dodatnich. Ta obserwacja to moment kulminacyjny projektu, który rozpoczęliśmy ponad dekadę temu. Obserwowanie zjawisk naturalnych, których prawdopodobieństwo wynosi 10-11 jest zarówno fascynujące, jak i wymagające. Wielki wysiłek, jaki włożyliśmy w badania, w końcu zaowocował obserwacją, dla której projekt NA62 powstał, mówi Giuseppe Ruggiero, rzecznik projektu badawczego.
      Po co jednak fizycy wkładają tyle wysiłku w obserwacje tak rzadko zachodzącego procesu? Otóż modele teoretyczne sugerują, że rozpad K+→π+νν jest niezwykle wrażliwy na wszelkie odchylenia od Modelu Standardowego, jest zatem jednym z najbardziej interesujących procesów dla poszukiwań zjawisk fizycznych wykraczających poza Model Standardowy.
      Uzyskany obecnie wynik jest o około 50% większy, niż zakłada to MS, ale wciąż mieści się w granicach niepewności. Dzięki zebraniu kolejnych danych naukowcy z NA62 będą w stanie w ciągu kilku lat przeprowadzić testy rozpadu pod kątem występowania tam zjawisk, których Model Standardowy nie opisuje. Poszukiwanie nowej fizyki w tym rozpadzie wymaga zgromadzenia większej ilości danych. Nasze obecne osiągnięcie to duży krok naprzód. Stanowi ono fundament dla kolejnych badań, dodaje Karim Massri z NA62.
      Grupa NA62 uzyskuje kaony kierując intensywną wiązkę protonów z Super Proton Synchrotron w CERN-ie na stacjonarny cel. W wyniku zderzenia w każdej sekundzie powstaje około miliarda cząstek, które są rejestrowane przez detektory. Dodatnie kaony stanowią około 6% z tych cząstek. NA62 dokładnie określa sposób rozpadu tych kaonów, rejestrując wszystkie powstające wówczas cząstki, z wyjątkiem neutrin. Ich obecność jest dedukowana z brakującej energii.
      Dla obecnie opisanego odkrycia kluczowe były dane zebrane w roku 2021 i 2022, które zgromadzono po udoskonaleniu detektorów. Dzięki temu NA62 może pracować z wiązkami o 30% bardziej intensywnymi. W połączeniu z nowymi technikami analitycznymi, naukowcy są w stanie prowadzić analizy o 50% szybciej, niż wcześniej, a jednocześnie tłumić sygnały, które są podobne. Nasza praca polega na zidentyfikowaniu 1 na 10 miliardów rozpadu K+ i upewnieniu się, że nie był to żaden z pozostałych 9 999 999 999, dodaje kierownik projektu, Joel Swallow.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      CERN pochwalił się osiągnięciem przez Wielki Zderzacz Hadronów (LHC) rekordowej świetlności. Obok energii wiązki, w przypadku LHC maksymalna energia każdej z wiązek ma wynieść 7 TeV (teraelektronowoltów), to właśnie świetlność jest najważniejszym parametrem akceleratora. Zintegrowana świetlność to najbardziej interesujący fizyka parametr urządzenia. Oznacza ona liczbę zderzeń zachodzących w urządzeniu. A im więcej zderzeń, tym więcej danych dostarcza akcelerator.
      Jednostką świetlności jest odwrócony barn (b-1) lub jego jednostki pochodne, jak femtobarny (fb-1). W trakcie pierwszej kampanii naukowej (Run 1), która prowadzona była w latach 2010–2012 średnia zintegrowana świetlność LHC wyniosła 29,2 fb-1. Przez kolejne lata akcelerator był remontowany i rozbudowywany. Druga kampania naukowa miała miejsce w latach 2015–2018. Wówczas, w ciągu czterech lat pracy, akcelerator osiągnął średnią zintegrowaną świetlnośc 159,8 fb-1.
      Obecnie trwająca kampania, zaplanowana na lata 2022–2025, rozpoczęła się zgodnie z planem. W roku 2022 efektywny czas prowadzenia zderzeń protonów wyniósł 70,5 doby, a średnia zintegrowana świetlność osiągnęła poziom 0,56 fb-1 na dzień. W roku 2023 rozpoczęły się problemy. Niezbędne naprawy urządzenia zajmowały więcej czasu niż planowano i przez cały rok zderzenia protonów prowadzono jedynie przez 47,5 dnia, jednak średnia zintegrowana świetlność wyniosła 0,71 fb-1 na dzień.
      Bieżący rok jest zaś wyjątkowy. Wydajność LHC przewyższyła oczekiwania. Do 2 września 2024 roku akcelerator zderzał protony łącznie przez 107 dni, osiągając przy tym średnią zintegrowaną jasność rzędu 0,83 fb-1 na dzień. Dzięki temu na kilka miesięcy przed końcem trzeciego roku obecnej kampanii naukowej jego średnia zintegrowana świetlność wyniosła 160,4 fb-1, jest zatem większa niż przez cztery lata poprzedniej kampanii.
      W bieżącym roku LHC ma też przeprowadzać zderzenia jonów ołowiu. Zanim jednak do tego dojdzie, będzie przez 40 dni pracował z protonami. Powinno to zwiększyć jego zintegrowaną świetlność o koleje 33 fb-1. To o 12 fb-1 więcej niż zaplanowano na bieżący rok.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord świetlności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć świetlność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Świetlność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 nanometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania świetlności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało ze świetlnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął świetlność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął świetlność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje ze świetlnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat świetlność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleźć ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.
      Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.
      Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.
      Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...