-
Similar Content
-
By KopalniaWiedzy.pl
Na zakończonej przed dwoma dniami Recontres de Moriond, organizowanej od 1966 roku dorocznej konferencji, podczas której omawiane są najnowsze osiągnięcia fizyki, naukowcy CERN-u poinformowali o zaobserwowaniu jednoczesnego powstania czterech kwarków wysokich (kwarków t). To rzadkie wydarzenie zarejestrowały zespoły pracujący przy eksperymentach ATLAS i CMS, a może ono pozwolić na badanie zjawisk fizycznych wykraczających poza Model Standardowy.
Co niezwykle ważne, obserwacje dokonane zarówno przez ATLAS jak i CMS przekraczają statystyczny poziom ufności 5σ, przy którym można mówić o dokonaniu odkrycia. W przypadku ATLAS poziom ten wyniósł 6.1σ, a w przypadku CMS – 5.5σ.
Kwark wysoki to najbardziej masywna cząstka Modelu Standardowego, a to oznacza, że jest najsilniej powiązana z bozonem Higgsa. Dzięki temu kwarki t to najlepsze cząstki mogące posłużyć do badania fizyki poza Modelem Standardowym.
Najczęściej kwarki t obserwowane są w parach z odpowiadającym im antykwarkiem. Czasem powstają samodzielnie. Według Modelu Standardowego istnieje możliwość jednoczesnego powstania czterech kwarków wysokich czyli dwóch par składających się z kwarka i antykwarka. Jednak prawdopodobieństwo takiego zdarzenia jest 70 tysięcy razy mniejsze niż prawdopodobieństwo powstania pary kwark-antykwark. Zatem uchwycenie czterech kwarków t jest niezwykle trudne.
ATLAS już w roku 2020 i 2021 zarejestrował pewne sygnały sugerujące, że doszło do jednoczesnego powstania czterech kwarków t, a CMS wykrył taki sygnał w 2022 roku, jednak dotychczas poza pewnym wskazówkami, nigdy nie zdobyto pewności. Nie zarejestrowano takiego wydarzenia.
Nie dość, że to rzadkie wydarzenie, jest ono trudne do zarejestrowania. Fizycy, rozglądając się za konkretnymi cząstkami, szukają ich sygnatur, czyli produktów rozpadu. Kwark t rozpada się na bozon W i kwark niski (kwark b), a bozon W rozpada się następnie albo na naładowany lepton i neutrino, albo na parę kwark-antykwark. A to oznacza, że sygnatura wydarzenia, w ramach którego jednocześnie powstały cztery kwarki t może zawierać od 0 do 4 naładowanych leptonów i do 12 dżetów powstających w wyniku hadronizacji kwarków. Znalezienie takiej sygnatury jest więc trudne.
Na potrzeby badań naukowcy z ATLAS i CMS wykorzystali nowatorskie techniki maszynowego uczenia, dzięki którym algorytm wyłowił z olbrzymiej ilości danych te informacje, które mogły być sygnaturami powstania czterech kwarków t. Skoro się to udało, naukowcy mają nadzieję, że podczas obecnie trwającej kampanii badawczej – Run 3 – zarejestrowanych zostanie więcej tego typu zdarzeń. Run 3 potrwa, z przerwami, do końca 2025 roku. W grudniu 2025 Wielki Zderzacz Hadronów zostanie zamknięty, a przerwa potrwa aż do lutego 2029.
« powrót do artykułu -
By KopalniaWiedzy.pl
CERN poinformował, że w przyszłym roku przeprowadzi o 20% mniej eksperymentów, a w roku bieżącym akcelerator zostanie wyłączony 28 listopada, 2 tygodnie wcześniej, niż planowano. Zmiany mają związek z niedoborami energii i rosnącymi jej kosztami. W ten sposób CERN chce pomóc Francji w poradzeniu sobie z problemami z dostępnością energii.
CERN kupuje 70–75% energii z Francji. Gdy wszystkie akceleratory w laboratorium pracują, zużycie energii wynosi aż 185 MW. Sama infrastruktura Wielkiego Zderzacza Hadronów potrzebuje do pracy 100 MW.
W związku ze zbliżającą się zimą we Francji wprowadzono plan zredukowania zużycia energii o 10%. Ma to pomóc w uniknięciu wyłączeń prądu. Stąd też pomysł kierownictwa CERN, by pomóc w realizacji tego planu. Ponadto rozpoczęto też prace nad zmniejszeniem zapotrzebowania laboratorium na energię. Podjęto decyzję m.in. o wyłączaniu na noc oświetlenia ulicznego, rozpoczęcia sezonu grzewczego o tydzień później niż zwykle oraz zoptymalizowania ogrzewania pomieszczeń przez całą zimę.
Działania na rzecz oszczędności energii nie są w CERN niczym niezwykłym. Laboratorium od wielu lat pracuje nad zmniejszeniem swojego zapotrzebowania i w ciągu ostatniej dekady konsumpcję energii udało się ograniczyć o 10%. Było to możliwe między innymi dzięki zoptymalizowaniu systemów chłodzenia w centrum bazodanowym, zoptymalizowaniu pracy akceleratorów, w tym zmniejszenie w nich strat energii.
W CERN budowane jest właśnie nowe centrum bazodanowe, które ma ruszyć pod koniec przyszłego roku. Od początku zostało ono zaprojektowane z myślą o oszczędności energii. Znajdą się tam m.in. systemy odzyskiwania ciepła generowanego przez serwery. Będzie ono wykorzystywane do ogrzewania innych budynków laboratorium. Zresztą już teraz ciepło generowane w jednym z laboratoriów CERN jest używane do ogrzewania budynków w pobliskiej miejscowości Ferney-Voltaire. Trwają też prace nad optymalizacją systemu klimatyzacji i wentylacji oraz nad wykorzystaniem energii fotowoltaicznej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Fizycy potrzebują coraz potężniejszych narzędzi, by prowadzić swoje badania. Dlatego przed 2 laty Rada CERN przyjęła plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Zakłada on m.in. wybudowanie 100 kilometrowego akceleratora Future Circular Collider (FCC). Fizycy z CERN – Patrick Janot i Alain Blondel – argumentują, że w związku z olbrzymim zapotrzebowaniem akceleratorów na prąd, pod uwagę należy brać również ślad węglowy tych urządzeń.
Na świecie rozważanych jest kilka projektów budowy potężnych akceleratorów, jednak prawdopodobnie żaden kraj nie porwie się samodzielnie na realizację takiego przedsięwzięcia. Potrzebna jest współpraca międzynarodowa i przekonanie partnerów, że to właśnie ten a nie inny projekt wart jest realizacji.
Międzynarodowa społeczność fizyków zastanawia się obecnie nad budową trzech akceleratorów liniowych – International Linear Collider (ILC) w Japonii, Cool Copper Collider (C3) w USA oraz Compact Linear Collider w CERN – i dwóch kołowych – FCC i China Electron Positron Collider (CEPC) w Chinach. Naukowcy podają argumenty za konkretnymi rozwiązaniami, a Janot i Blondel postulują, by "w przyszłych projektach z dziedziny fizyki wysokich energii uwzględniać nie tylko koszt i wydajność akceleratora, ale również jego ślad węglowy na każdy uzyskany wynik naukowy", stwierdzają naukowcy.
Uczeni przeprowadzili analizę postulowanych akceleratorów i stwierdzili, że najbardziej „zielonym” z nich byłby FCC. Uzyskanie w nim jednego bozonu Higgsa wymagałoby zużycia 3 MWh. Drugim najlepszym byłby CEPC z wynikiem 4,1 MWh/bozon, natomiast najgorzej wypadł C3, który do wytworzenia jednego bozonu Higgsa zużyłby aż 18 MWh. Na tym jednak analiza się nie skończyła. Naukowcy przyjrzeli się też, jak dany kraj, w którym miałby znaleźć się akcelerator, uzyskuje energię. W tej konkurencji również wygrał FCC, w którym uzyskanie pojedynczego bozonu Higgsa wiązałoby się z wyemitowaniem 0,17 tony CO2. Z kolei ILC wyemituje 9,4 tony CO2 na każdy bozon. Niska emisja z FCC wiąże się z faktem, że we Francji niemal 80% energii elektrycznej pozyskiwane jest z elektrowni atomowych.
« powrót do artykułu -
By KopalniaWiedzy.pl
Wielki Zderzacz Hadronów, a dokładniej jeden z jego mniejszych eksperymentów – LHCb – zarejestrował nowy rodzaj pentakwarka oraz nigdy wcześniej nie widzianą parę tetrakwarków, w skład której wchodzi nowy typ tetrakwarka. Tym samym rodzina hadronów powiększyła się o trzech egzotycznych członków.
Kwarki to cząstki elementarne. Zwykle kwarki łączą się w grupy po dwa lub trzy, tworząc hadrony. Z trzech kwarków składają się np. protony i neutrony tworzące jądro atomu. Czasem jednak kwarki łączą się w grupy po cztery czy pięć, wówczas mówimy o tetra- i pentakwarkach. ich istnienie przewidziano teoretycznie w tym samym czasie, co istnienie „zwykłych” hadronów. Jednak tetra- i pentakwarki obserwujemy dopiero od początku obecnego wieku.
Większość odkrytych tetra- i pentakwarków zawiera kwark powabny i antykwark powabny, a pozostałe kwarki to kwark górny, dolny, dziwny lub ich antycząstki. Jednak w ciągu ostatnich lat naukowcy przy LHCb zaczęli rejestrować inne rodzaje egzotycznych hadronów.
Tak jest i tym razem. Uczeni z LHCb poinformowali właśnie, że podczas rozpadu mezonów B o ładunku ujemnym, zarejestrowano pentakwarka złożonego z kwarka powabnego, antykwarka powabnego oraz kwarków górnego, dolnego i dziwnego. To pierwszy znany pentakwark zawierający kwark dziwny. Poziom ufności (σ) wynosi w przypadku tej obserwacji wynosi 15, czyli znacznie więcej niż sigma 5 przy którym fizycy mówią o odkryciu nowej cząstki.
Drugie odkrycie to podwójnie naładowany tetrakwark o otwartym powabie, składający się z kwarka powabnego, antykwarka dziwnego, kwarka górnego i antykwarka dolnego. Towarzyszył mu neutralny tetrakwark. W przypadku tetrakwarka podwójnie naładowanego σ=6,5, a w przypadku jego towarzysza jest to 8, więc w obu przypadkach możemy mówić o odkryciu. To pierwszy raz, gdy odkryto parę tetrakwarków.
Im więcej badań przeprowadzamy, tym więcej odkrywamy egzotycznych hadronów. To podobna sytuacja jak w latach 50. ubiegłego wieku, gdy naukowcy trafili na całe „zoo cząstek”, dzięki czemu w latach 60. mogli stworzyć kwarkowy model hadronów. Teraz tworzymy „zoo cząstek 2.0”" – powiedział koordynator projektu LHCb Niels Tuning.
Obecnie niektóre modele teoretyczne opisują egzotyczne hadrony jako pojedyncze cząstki składające się ze ściśle powiązanych ze sobą kwarków. Natomiast według innych modeli są to pary luźno powiązanych standardowych hadronów, tworzących struktury podobne do molekuł. Dopiero kolejne badania pozwolą odpowiedzieć na pytanie, czym naprawdę są egzotyczne hadrony.
« powrót do artykułu -
By KopalniaWiedzy.pl
Dzisiaj, po trzech latach przerwy, Wielki Zderzacz Hadronów (LHC) ponownie podejmuje badania naukowe. Największy na świecie akcelerator cząstek będzie zderzał protony przy rekordowo wysokiej energii wynoszącej 13,6 teraelektronowoltów (TeV). To trzecia kampania naukowa od czasu uruchomienia LHC.
Przez trzy ostatnie lata akcelerator był wyłączony. Trwały w nim prace konserwatorskie i rozbudowywano jego możliwości. Od kwietnia w akceleratorze znowu krążą strumienie cząstek, a naukowcy przez ostatnich kilka tygodni sprawdzali i dostrajali sprzęt. Teraz uznali, że wszystko działa, jak należy, uzyskano stabilne strumienie i uznali, że LHC może rozpocząć badania naukowe.
W ramach rozpoczynającej się właśnie trzeciej kampanii naukowej LHC będzie pracował bez przerwy przez cztery lata. Rekordowo wysoka energia strumieni cząstek pozwoli na uzyskanie bardziej precyzyjnych danych i daje szanse na dokonanie nowych odkryć.
Szerokość wiązek protonów w miejscu ich kolizji będzie mniejsza niż 10 mikrometrów, co zwiększy liczbę zderzeń, mówi dyrektor akceleratorów i technologii w CERN, Mike Lamont. Uczony przypomina, że gdy podczas 1. kampanii naukowej odkryto bozon Higgsa, LHC pracował przy 12 odwrotnych femtobarnach. Teraz naukowcy chcą osiągnąć 280 odwrotnych femtobarnów. Odwrotny femtobarn to miara liczby zderzeń cząstek, odpowiadająca około 100 bilionom zderzeń proton-proton.
W czasie przestoju wszystkie cztery główne urządzenia LHC poddano gruntowym remontom oraz udoskonaleniom ich systemów rejestracji i gromadzeniach danych. Dzięki temu mogą obecnie zebrać więcej informacji o wyższej jakości. Dzięki temu ATLAS i CMS powinny zarejestrować w obecnej kampanii więcej kolizji niż podczas dwóch poprzednich kampanii łącznie. Całkowicie przebudowany LHCb będzie zbierał dane 10-krotnie szybciej niż wcześniej, a możliwości gromadzenia danych przez ALICE zwiększono aż 55-krotnie.
Dzięki tym wszystkim udoskonaleniom można będzie zwiększyć zakres badań prowadzonych za pomocą LHC. Naukowcy będą mogli badać bozon Higgsa z niedostępną wcześniej precyzją, mogą zaobserwować procesy, których wcześniej nie obserwowano, poprawią precyzję pomiarów wielu procesów, które mają fundamentalne znaczenie dla zrozumienia fizyki, asymetrii materii i antymaterii. Można będzie badać właściwości materii w ekstremalnych warunkach temperatury i gęstości, eksperci zyskają nowe możliwości poszukiwania ciemnej materii.
Fizycy z niecierpliwością czekają na rozpoczęcie badań nad różnicami pomiędzy elektronami a mionami. Z kolei program zderzeń ciężkich jonów pozwoli na precyzyjne badanie plazmy kwarkowo-gluonowej, stanu materii, który istniał przez pierwszych 10 mikrosekund po Wielkim Wybuchu. Będziemy mogli przejść z obserwacji interesujących właściwości plazmy kwarkowo-gluonowej do fazy precyzyjnego opisu tych właściwości i powiązania ich z dynamiką ich części składowych, mówi Luciano Musa, rzecznik prasowy eksperymentu ALICE.
Udoskonalono nie tylko cztery zasadnicze elementy LHC. Również mniejsze eksperymenty – TOTEM, LHCf, MoEDAL czy niedawno zainstalowane FASER i SND@LHC – pozwolą na badanie zjawisk opisywanych przez Model Standardowy oraz wykraczających poza niego, takich jak monopole magnetyczne, neutrina czy promieniowanie kosmiczne.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.