-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Dyrektor wykonawczy IBM-a Arvind Krishna poinformował, że jego firma przestanie rekrutować ludzi na stanowiska, na których w najbliższych latach mogą być oni zastąpieni przez sztuczną inteligencję. W wywiadzie dla Bloomberga menedżer stwierdził, że rekrutacja na stanowiska biurowe, na przykład w dziale HR, może zostać znacznie spowolniona lub całkowicie wstrzymana. Obecnie na tego typu stanowiskach – gdzie nie ma kontaktu z klientem – IBM zatrudnia 26 000 osób.
Zdaniem Krishny, w ciągu najbliższych 5 lat sztuczna inteligencja może zastąpić 30% z nich. To oznacza, że w samym tylko IBM-ie maszyny zastąpią 7800 osób. Stąd też pomysł na spowolnienie lub wstrzymanie rekrutacji, dzięki czemu uniknie się zwalniania ludzi.
Krishna mówi, że takie zadania, jak pisanie listów referencyjnych czy przesuwanie pracowników pomiędzy poszczególnymi wydziałami, prawdopodobnie zostaną całkowicie zautomatyzowane. Inne zaś, takie jak analizy produktywności czy struktury zatrudnienia, ludzie będą wykonywali jeszcze przez kolejną dekadę.
Błękitny Gigant zatrudnia obecnie około 260 000 osób i wciąż zwiększa zatrudnienie. Potrzebuje pracowników przede wszystkim do rozwoju oprogramowania oraz osób pracujących z klientem. Na początku bieżącego roku firma ogłosiła, że planuje zwolnienia, które w sumie obejmą 5000 osób, ale jednocześnie w I kwartale zatrudniła 7000 osób.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W projektach związanych z syntezą termojądrową konieczne jest wykorzystanie materiałów odpornych na wysokie temperatury i uszkodzenia radiacyjne. Obiecujące pod tym względem są materiały bazujące na węglu, zwłaszcza nanorurki węglowe i grafen. Naukowcy z Zakładu Badań Reaktorowych NCBJ brali udział w badaniach odporności detektorów grafenowych na wysokie strumienie neutronów.
Reaktory termojądrowe, takie jak powstające obecnie w Cadarache we Francji urządzenie badawcze ITER (International Thermonuclear Experimental Reactor), czy powstający w Hiszpanii jego następca – DEMO (Demonstration Power Plant), wykorzystują silne pole magnetyczne do uwięzienia plazmy, w której zachodzą reakcje syntezy lekkich jąder atomowych. By umożliwić efektywne zachodzenie reakcji syntezy, plazmę należy podgrzać do temperatury dziesiątek milionów stopni Celsjusza. Aby zapewnić stabilne działanie urządzenia, konieczna jest precyzyjna diagnostyka pola magnetycznego. Ze względu na działające na znajdującą się we wnętrzu reaktora elektronikę warunki, takie jak wysoka temperatura (rzędu kilkuset °C) czy silne promieniowanie neutronowe, większość komercyjnie dostępnych półprzewodnikowych czujników pola magnetycznego nie jest w stanie pracować w takich układach. Z tego powodu prowadzone są badania nad detektorami metalowymi, opartymi o chrom czy bizmut. Niestety, detektory oparte o nie mają niską czułość i duży przekrój czynny na oddziaływanie z neutronami.
Interesującą alternatywą wydają się być detektory wykonane w technologii kwaziswobodnego grafenu epitaksjalnego na węgliku krzemu. Warstwy grafenu mogą być formowane w bardzo czułe sensory efektu Halla: jeżeli przewodnik, przez który płynie prąd elektryczny, znajduje się w polu magnetycznym, pojawia się w nim różnica potencjałów – tzw. napięcie Halla, które może posłużyć do pomiaru pola magnetycznego. Zbadana została już odporność grafenu na promieniowanie. Badania przeprowadzono wykorzystując zarówno wiązki jonów, protonów, jak i elektronów, i nie wykryto istotnych zmian właściwości napromienionych próbek. Przewidywania teoretyczne sugerują, że podobnie grafen reaguje na promieniowanie neutronowe, jednak nigdy wcześniej nie zostało to bezpośrednio potwierdzone eksperymentalnie.
W pracy, która ukazała się na łamach czasopisma Applied Surface Science, zbadano wpływ prędkich neutronów na układ detektora opartego na grafenie. Instytut Mikroelektroniki i Fotoniki (IMiF) funkcjonujący w Sieci Badawczej Łukasiewicz wytworzył strukturę składającą się z grafenu na wysyconej atomami wodoru powierzchni węglika krzemu 4H-SiC(0001). Całość pokryto dielektryczną pasywacją z tlenku glinu, stanowiącą zabezpieczenie środowiskowe warstwy aktywnej detektora – mówi dr inż. Tymoteusz Ciuk, kierujący pracami w Łukasiewicz-IMiF. Tak przygotowany układ został następnie poddany napromienieniu neutronami prędkimi wewnątrz rdzenia reaktora MARIA w NCBJ.
Zamontowana w rdzeniu reaktora MARIA unikatowa instalacja do napromieniania neutronami prędkimi pozwala nam przeprowadzać badania materiałów, bądź podzespołów przewidywanych do wykorzystania w układach termojądrowych, w których także są generowane prędkie neutrony – opowiada dr inż. Rafał Prokopowicz, kierownik Zakładu Badań Reaktorowych NCBJ, współautor pracy. W przypadku badań nad strukturami detekcyjnymi z grafenu, próbki napromienialiśmy przez ponad 120 godzin neutronami prędkimi o fluencji rzędu 1017 cm–2, by oddać warunki, na jakie narażona jest elektronika w instalacjach termojądrowych – dodaje mgr Maciej Ziemba z Zakładu Badań Reaktorowych. „Aby zapewnić bezpieczeństwo badań, testy podzespołów wykonano, gdy aktywność próbek nie stanowiła już zagrożenia, czyli po kilku miesiącach od napromienienia”.
Zarówno przed napromienieniem, jak i po napromienieniu próbek, w Instytucie Fizyki Politechniki Poznańskiej dokładnie zbadano ich strukturę i właściwości elektryczne. Wykorzystano do tego spektroskopię Ramana, badania efektu Halla, jak również wielkoskalowe modelowanie z użyciem teorii funkcjonału gęstości (DFT – density functional theory). Dodatkowo, naukowcy z Politechniki Poznańskiej przeprowadzili charakteryzację napromienionych struktur po ich wygrzewaniu w temperaturze od 100 do 350°C, by zbadać działanie temperatury, w połączeniu z wpływem prędkich neutronów, na właściwości elektryczne. Dzięki testom wykryto na przykład, że z powodu promieniowania, w materiale pojawia się zależność właściwości elektrycznych od temperatury, która nie występowała przed umieszczeniem próbek w strumieniu neutronów – wyjaśnia dr inż. Semir El-Ahmar, kierujący badaniami na Politechnice Poznańskiej. Co więcej, promieniowanie neutronowe powoduje zmniejszenie gęstości nośników ładunku w badanej strukturze. Okazuje się jednak, że odpowiada za to warstwa wodoru, a więc napromienienie jedynie w umiarkowanym stopniu wpływa na strukturę i właściwości grafenu.
Na podstawie charakteryzacji właściwości badanych struktur przed napromienieniem i po ich napromienieniu, oceniono odporność grafenu na promieniowanie neutronowe jako bardzo dobrą. Gęstość uszkodzeń radiacyjnych była 7 rzędów wielkości mniejsza, niż wartość strumienia neutronów, co oznacza dość niski przekrój czynny grafenu na oddziaływanie z neutronami prędkimi. Mimo, iż wystąpiły uszkodzenia struktury spowodowane promieniowaniem, to w porównaniu z detektorami bazującymi na metalach, czułość układu z grafenem na pole magnetyczne pozostaje kilka rzędów wielkości większa – podsumowuje wyniki dr El-Ahmar. Dodatkowo, okazało się, że duża część uszkodzeń była związana nie z samymi warstwami grafenu, a z warstwą wodoru, która z kolei przy temperaturach powyżej 200°C, jakie będą panować w instalacjach takich jak DEMO, wykazuje wręcz pewien potencjał samo-naprawczy. Z uwagi na to, grafenowe detektory pola magnetycznego mogą stanowić obiecujące struktury do wykorzystania w reaktorach termojądrowych.
Nad zastosowaniem grafenu jako bazy przy detekcji pola magnetycznego w instalacjach termojądrowych prowadzone będą dalsze badania. Naukowcy rozważają wykorzystanie innego typu podłoża – np. 6H-SiC(0001), na którym formowana struktura może być bardziej odporna na promieniowanie neutronowe. Rozważane jest też zastąpienie warstwy wodoru buforową warstwą atomów węgla.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od dekad tranzystory są mniejsze i mniejsze. Dzięki temu w procesorze możemy upakować ich więcej. To zaś najłatwiejszy sposób na zwiększenie wydajności procesora. Powoli zbliżamy się do momentu, w którym nie będziemy już w stanie zmniejszać długości bramki tranzystora. Niewykluczone, że Chińczycy właśnie dotarli do tej granicy.
Prąd w tranzystorze przepływa pomiędzy źródłem a drenem. Przepływ ten kontrolowany jest przez bramkę, która przełącza się pod wpływem napięcia. Długość bramki to kluczowy czynnik decydujący o rozmiarach tranzystora.
W ostatnich latach naukowcy zaczęli eksperymentować z nowymi materiałami, z których chcą budować elektronikę przyszłości. W obszarze ich zainteresowań jest na przykład grafen – dwuwymiarowy materiał składający się z pojedynczej warstwy atomów węgla – czy disiarczek molibdenu, czyli warstwa atomów molibdenu zamknięta między dwiema warstwami siarki.
Teraz specjaliści z Chin wykorzystali te materiały do zbudowania rekordowo małego tranzystora. Długość jego bramki wynosi zaledwie 0,34 nanometra. To tyle, co średnica atomu węgla.
Nowy tranzystor można porównać do dwóch schodów. Na górnym znajduje się źródło, na dolnym zaś dren. Oba zbudowane są z tytanu i palladu. Powierzchnia schodów działa jak łączący je kanał. Jest ona zbudowana w pojedynczej warstwy disiarczku molibdenu, pod którą znajduje się izolująca warstwa ditlenku hafnu. Wyższy stopień zbudowany jest z wielu warstw. Na samy dole znajduje sie warstwa grafenu, nad nią zaś aluminium pokryte tlenkiem aluminium. Jego zadaniem jest oddzielenie grafenu i disiarczku molibdenu. Jedynym miejscem ich połączenia jest widoczna na grafice niewielka szczelina w wyższym stopniu.
Gdy bramka zostaje ustawiona w pozycji „on” jej długość wynosi zaledwie 0,34 nm. Autorzy nowego tranzystora twierdzą, że nie uda się tej odległości już bardziej zmniejszyć. Na pewno zaś próba zbudowania jeszcze mniejszych tranzystorów będzie wymagała nowatorskiego podejścia do materiałów dwuwymiarowych.
Ze szczegółami pracy zespołu z Tsinghua University można zapoznać się na łamach Nature.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Prace międzynarodowej grupy badawczej, na czele której stali specjaliści ze Skołkowskiego Instytutu Nauki i Technologii (Skoltech) w Moskwie oraz IBM-a zaowocowały powstaniem energooszczędnego superszybkiego przełącznika optycznego. Urządzenie nie wymaga chłodzenia, a jednocześnie jest ponad 100-krotnie szybsze od najszybszych współczesnych tranzystorów.
Tym, co czyni to urządzenie tak bardzo energooszczędnym jest fakt, że do przełączenia stanu potrzebuje zaledwie kilku fotonów, mówi główny autor badań Anton Zasiedatieliew. W laboratorium udało się nam go przełączać za pomocą pojedynczego fotonu. I to w temperaturze pokojowej. Jednak minie sporo czasu, zanim taka technologia będzie mogła trafić do procesorów optycznych, dodaje profesor Pawlos Lagudakis.
Możliwość przełączania za pomocą pojedynczego fotonu oznacza, że układ jest niezwykle energooszczędny i zostało niewiele miejsca na jego dalsze udoskonalenie. Oczywiście musimy przy tym pamiętać, że obecnie działa to jedynie w wyspecjalizowanym laboratorium. Jednak tak właśnie zaczyna się wielu historia technologii, które w końcu trafiają do codziennego użytku. Większość współczesnych tranzystorów elektrycznych potrzebuje dziesiątki razy więcej energii, by się przełączyć, a te, którym wystarczy pojedynczy elektron, działają znacznie wolniej niż zademonstrowany właśnie przełącznik optyczny.
Jednak szybkość i energooszczędność to nie jedyne zalety nowej technologii. Równie ważny jest fakt, że przełącznik działa w temperaturze pokojowej i nie wymaga chłodzenia. Tymczasem systemy chłodzenia potrzebne współczesnym komputerom nie tylko wpływają na koszty samego sprzętu, ale też znacząco zwiększają zużycie energii koniecznej do ich zasilania.
Urządzenie składa się z dwóch laserów. Bardzo słaby promień lasera kontrolnego jest używany do przełączania stanu drugiego jaśniejszego z laserów. Do przełączenia wystarczy kilka fotonów, stąd wynika wysoka efektywność całości. Przełączanie odbywa się wewnątrz mikrownęki. To 35-nanometrowej grubości organiczny polimer półprzewodzący zamknięty pomiędzy dwiema nieorganicznymi warstwami o wysokim współczynniku odbicia. Mikrownęka zbudowana jest w taki sposób, by jak najdłużej więzić nadchodzące światło, prowadząc w ten sposób do jego sprzężenia z materiałem wnęki.
Oddziaływanie światła z materią to podstawa działania nowego urządzenia. Gdy fotony sprzęgają się z parami dziura-elektron – tworzącymi kwazicząstkę o nazwie ekscyton – pojawiają się kwazicząstki ekscyton-polaryton. Gdy silniejszy z laserów oświetla przełącznik powstają tysiące identycznych krótko żyjących kwazicząstek tworzących kondensat Bosego-Einsteina, w którym kodowany jest stan urządzenia „0” lub „1”.
Najpierw za pomocą silniejszego lasera we wnęce tworzone są kwazicząstki o energiach większych niż energia podstawowa. Przełącznik znajduje się w stanie „0” Do przełączenia potrzebny jest laser słabszy, za pomocą którego tworzona jest grupa kwazicząstek o energii podstawowej. Ich pojawienie się wywołuje lawinowy proces przełączania się pozostałych kwazicząstek do stanu podstawowego. W ten sposób uzyskujemy stan „1”. Czas przełączania liczony jest w femtosekundach, dzięki czemu przełącznik jest ponad 100-krotnie szybszy od współczesnych tranzystorów.
Naukowcy użyli kilku sztuczek, by utrzymać zapotrzebowanie na energię na jak najniższym poziomie przy jednoczesnym zmaksymalizowaniu pracy urządzenia. W efektywnym przełączaniu pomagają wibracje molekuł półprzewodzącego polimeru. Konieczne było precyzyjne dopasowanie częstotliwości pracy laserów, stanu kondensatu i energii wibracji molekuł polimeru.
Przed nami jeszcze sporo pracy. Musimy zmniejszyć całkowite zapotrzebowania urządzenia na energię. Obecnie jest ono zdominowane przez silniejszy z laserów, który utrzymuje przełącznik w gotowości. Prawdopodobnie trzeba będzie wykorzystać tutaj perowskitowego superkryształu, z którym wcześniej eksperymentowaliśmy. Są one doskonałymi kandydatami to zbudowania naszego przełącznika, gdyż zapewniają bardzo silną interakcję światła z materią, stwierdzają autorzy badań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W laboratorium IBM-a w Zurichu zaprezentowano rekordowo pojemny napęd taśmowy. Pojedynczy kartridż pozwala na przechowanie aż... 580 terabajtów danych. To aż 29-krotnie więcej niż oferowany obecnie przez IBM-a kartridż o pojemności 20 TB. Błękitny Gigant jest tutaj rynkowym liderem. Najnowszy standard przemysłowy LTO-Ultrium (Linear Tape-Open, version 9) mówi o kartridżach o pojemności 18 TB.
Mark Lantz, menedżer CloudFPGA odpowiedzialny w IBM Zurich za technologie taśmowe mówi, że w ostatnich latach taśmy magnetyczne przeżywają swój renesans. Ma to związek z jednej strony z wykładniczym wzrostem ilości wytwarzanych danych, które trzeba gdzieś archiwizować oraz z jednoczesnym spowolnieniem przyrostu gęstości zapisu na dyskach twardych. Jak zauważa Lantz, w ciągu ostatnich kilkunastu lat składane roczne tempo wzrostu gęstości zapisu na HDD spadło do poniżej 8%. Jednocześnie świat produkuje coraz więcej danych. Roczny wzrost wytwarzania informacji wynosi aż 61%. Eksperci mówią, że do roku 2025 wytworzymy 175 zetabajtów danych.
Jako, że gęstość zapisu HDD niemal stanęła w miejscu, dramatycznie wzrosła cena każdego gigabajta dysnku twardego. Już w tej chwili 1 bit HDD jest czterokrotnie droższy niż 1 bit taśmy magnetycznej. Ta wielka nierównowaga pojawiła się w bardzo niekorzystnym momencie, gdy ilość wytwarzanych danych zaczęła gwałtownie rosnąć. Centra bazodanowe mają coraz większy problem. Na szczęście zdecydowana większość danych to informacje, które są rzadko potrzebne. To zaś oznacza, że w ich przypadku szybkość odczytu danych nie jest rzeczą zbyt istotną. Mogą być więc przechowywane na taśmach magnetycznych.
Taśmy mają wiele zalet w porównaniu z dyskami twardymi. Są bardziej odporne na ataki cyberprzestępców, do działania potrzebują mniej energii, są trwałe i znacznie tańsze w przeliczeniu na gigabajt. Zalety te spowodowały, że – jak ocenia IBM – już 345 000 eksabajtów danych przechowywanych jest właśnie na taśmach.
Najnowszy napęd taśmowy to wynik 15-letniej współpracy IBM-a i Fujifilm. Od roku 2006 firmy pobiły sześć kolejnych rekordów dotyczących napędów taśmowych. Ostatnie osiągnięcie było możliwe dzięki udoskonaleniu samej taśmy, głowicy odczytującej oraz serwomechanizmu odpowiadającego za precyzję pozycjonowania głowicy. Firma Fujifilm odeszła tutaj od przemysłowego standardu jakim jest ferryt baru i pokryła taśmę mniejszymi cząstkami ferrytu strontu. Inżynierowie IBM-a, mając do dyspozycji nową taśmę, opracowali nową technologię głowicy odczytująco-zapisującej, która współpracuje z tak gładką taśmą.
O tym jak wielkie postępy zostały dokonane w ciągu kilkunastoletniej współpracy Fujifilm i IBM-a najlepiej świadczą liczby. W roku 2006 obie firmy zaprezentowały taśmę pozwalającą na zapisanie 6,67 miliarda bitów na calu kwadratowym. Najnowsza taśma pozwala na zapis 317 miliardów bitów na cal. Kartridż z roku 2006 miał pojemność 8 TB, obecnie jest to 580 TB. Szerokość ścieżki zapisu wynosiła przed 14 laty 1,5 mikrometra (1500 nanometrów), teraz to zaledwie 56,2 nanometra. Liniowa gęstość zapisu w roku 2006 sięgała 400 000 bitów na cal taśmy. Na najnowszej taśmie na każdym calu można zapisać 702 000 bitów. Zmniejszyła się też – z 6,1 mikrometra do 4,3 mikrometra – grubość taśmy, wzrosła za to jej długość. W pojedynczym kartridżu mieści się obecnie 1255 metrów taśmy, a przed 14 laty było to 890 metrów.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.