Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Na początku było po równo - materii i antymaterii. Tak głosi teoria Wielkiego Wybuchu. Tymczasem nasz świat złożony jest wyłącznie z materii. Gdzie się zatem podziała cała antymateria, którą obserwujemy tak rzadko? Ośmioletnie badania nad neutrinami w ośrodku Fermilab sugerują zaburzenie symetrii CP (ładunku i przestrzeni) pomiędzy materią i antymaterią i mogą stanowić wyjaśnienie zagadkowej nierównowagi.

Neutrino, jedna z podstawowych cząstek Modelu Standardowego jest wyjątkowo trudnym obiektem badań. Nie posiada ładunku elektrycznego i niemal nie posiada masy. Rzadko styka się z większymi cząsteczkami a trudno obserwować coś, co przelatuje na wylot przez każdą aparaturę badawczą. Dlatego badania nad neutrinami wymagają olbrzymich detektorów i szaleńczej cierpliwości. Coś jednak wiemy: neutrina, jakie znamy, występują w trzech odmianach (zwanych zapachami) - neutrino elektronowe, mionowe i taonowe. Jedną z zagadkowych ich właściwości jest oscylacja - biegnąc przez przestrzeń neutrina nieustannie przechodzą z jednego rodzaju w drugie. Podobnie ma się sprawa, jak się uważa, z antyneutrinami.

Przynajmniej uważano do niedawna, bo dziś kwestia nie jest taka pewna. W roku 1990 (w skali czasu potrzebnego na badanie neutrin to bardzo niedawno) badania wykonywane przy pomocy detektora neutrin LSND (Liquid Scintillator Neutrino Detector) w Laboratorium Narodowym w Los Alamos wykazały większą od spodziewanej ilość oscylacji antyneutrin na niewielkich odległościach, co mogło sugerować istnienie czwartego typu (zapachu) neutrina, nazwanego „sterylnym".

 

Więc jest ta symetria, czy jej nie ma?

 

Potwierdzenie takich odkryć nie jest łatwe i nikomu się nie udawało. Dlatego w roku 2002 w ośrodku badawczym Fermilab pod Chicago zbudowano detektor neutrin MiniBooNE. Zbudowany jest on z półkilometrowego podziemnego tunelu, na którego krańcu znajduje się ogromny zbiornik z olejem mineralnym. Zderzenia neutrin - bardzo rzadkie - z cząsteczkami oleju są rejestrowane i można stwierdzić, do jakiego typu należało kolidujące neutrino. Przez pięć lat prowadzono obserwację oscylacji neutrin i wreszcie w roku 2007 uznano, że kontrowersyjne odkrycie z Los Alamos nie zostało potwierdzone.

Od tego czasu jednak przerzucono się na gromadzenie danych na temat oscylacji antyneutrin. Po trzech latach rejestracji można było wstępnie przejrzeć wyniki - i tu zaskoczenie: zaobserwowano więcej oscylacji antyneutrin, niż wynikałoby z wyliczeń dla jedynie trzech typów. Otwiera się pole dla istnienia czwartego zapachu antyneutrina i niewykluczone, że również następnych.

Rezultat jest pierwszym doświadczalnym obaleniem symetrii CP - teorii, że materia i antymateria zachowują się jednakowo, w sposób „lustrzany" względem siebie. Pociąga to za sobą istną rewolucję: konieczność przebudowania całego Modelu Standardowego i fizyki cząsteczkowej. Fizycy teoretycy już tworzą pierwsze teorie i modele wyjaśniające ten fenomen i uzupełniające naszą wiedzę.

Zanim jednak rewolucja w fizyce zostanie hucznie ogłoszona, potrzebne jest jej mocniejsze potwierdzenie. Po trzech latach gromadzenia danych ich pewność wynosi 99,7% - dla zwykłego człowieka dużo, dla naukowca wciąż zbyt mało. Aby wynik uznano za dowiedziony, potrzebna jest pewność przynajmniej 99,99994%. Dlatego rejestracja danych i badanie oscylacji antyneutrin w Fermilabie będzie trwało jeszcze przynajmniej półtora roku.

Share this post


Link to post
Share on other sites

czy mógłbym prosic jakiegos specjaliste om podanie metody ,która daje takie wyniki pewności w %...jak to sie liczy?jestem fizykiem i filozofem ,chciałbym znać uprawnomocnienie tej metody..;

to naprawdę rewolucja  a nie uzupełnienie wiedzy..;

jeśli to prawda...

Share this post


Link to post
Share on other sites

Nie jestem specjalistą, ani nie odpowiem jak wygląda błędologia tych wyliczeń, ale w notce zauważyłem stwierdzenie, że neutrina nie mają masy.

 

Z tego co pamiętam, wykrycie faktu oscylacji neutrin obaliło tę tezę. Gdyby nie miały masy, to leciałyby z prędkością światła, a to z kolei powodowałoby, że ich czas "pokładowy" stałby w miejscu. A jeśli czas stoi, to niemożliwe są jakiekolwiek zmiany.

Share this post


Link to post
Share on other sites

Mnie rzuciło się w oczy stwierdzenie, że "niemal nie masy". Sformułowanie troszkę nieszczęśliwe ale sugeruje (w zgodzie z faktami), że neutrino masę posiada.

Share this post


Link to post
Share on other sites

Według dostępnych mi źródeł, masa neutrin jest bliska zeru, stąd określenie „niemal”. Może rzeczywiście można lepiej to ująć, jak tylko będę w CMSie, to poprawię na „bliską zeru”. Chyba że ma ktoś lepiej brzmiącą propozycję.

 

@zbigniewmiller —  Nie jestem specjalistą, ale owo 99,7% jest określane jako dokładność 3 sigma, zaś dokładność 99,99994 procent jako 5 sigma — może z tym będzie łatwiej wyszperać jakiejś informacje w internecie.

Share this post


Link to post
Share on other sites

Była jakaś kontynuacja tego?

Nie licząc Nobla z zeszłego roku, to więcej info na pewno będzie tu:

http://lhcb-public.web.cern.ch/lhcb-public/

albo tu:

https://www.newscientist.com/article/2095968-neutrinos-hint-at-why-antimatter-didnt-blow-up-the-universe/

 

Sam jestem ciekawy, ale ponieważ angielski u mnie jest na poziomie podstawowym i czytanie w tym języku sprawia mi nieomal fizyczny (nomen omen) ból, więc liczę na jakiś ciekawy artykuł w KW.

Share this post


Link to post
Share on other sites

Drugi artykuł na ile zrozumiałem to powtórka tego co i na kopalni.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory.
      Zwiększenie indukcji magnetycznej to znaczące osiągnięcie w fizyce cząstek. Silniejsze magnesy mogą posłużyć do zbudowania doskonalszych akceleratorów, które zastąpią w przyszłości Wielki Zderzacz Hadronów (LHC). Magnesy są wykorzystywane w akceleratorach do kontrolowania poruszających się cząstek. Im są silniejsze, tym łatwiej kontrolować cząstki poruszające się niemal z prędkością światła.
      Przez kilkanaście lat pracowaliśmy nad przekroczeniem granicy 14 tesli, więc to ważne osiągnięcie. W pierwszym teście uzyskaliśmy 14,1 tesli na demonstracyjnym magnesie, dla którego teoretyczna granica wynosi 15 tesli. Pracujemy nad wyciśnięciem z niego jeszcze więcej, mówi Alexander Zlobin, który stoi na czele grupy badawczej.
      Przyszłość zderzaczy hadronów zależy od dostępności silnych magnesów, dlatego fizycy na całym świecie są zainteresowani pracami mającymi na celu stworzenie niobowo-cynowych magnesów o indukcji 15 tesli.
      Sercem takiego urządzenia jest nadprzewodzący stop niobu z cyną. Prąd przepuszczany przez magnes powoduje pojawienie się pola magnetycznego. Jako, że materiał schłodzony jest do bardzo niskich temperatur, prąd nie napotyka oporu, nie dochodzi do generowania energii cieplnej. Całe energia elektryczna przyczynia się do wygenerowania pola magnetycznego.
      Indukcja zależy zaś od maksymalnego napięcia prądu, jakie może znieść dany materiał. Niobowo-tytanowe magnesy Wielkiego Zderzacza Hadronów nie są w stanie pracować z napięciem, które pozwalałoby na osiągnięcie 15 tesli. Można to uzyskać magnesach niobowo-cynowych, problem jednak w tym, że są one kruche i mogą się rozsypać pod wpływem działających na nie olbrzymich sił.
      Zespół z Fermilab stworzył taką architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją.
      To olbrzymie osiągnięcie, kluczowe dla rozwoju kolejnych generacji kołowych akceleratorów cząstek, mówi Soren Prestemon, naukowiec z Berkeley Lab i dyrektor U.S. Magnet Development Program, w skład którego wchodzi zespół z Fermilab. To wyjątkowy krok milowy na drodze ku opracowaniu magnesów. Osiągnięcie zostało z entuzjazmem przyjęte przez badaczy, którzy będą w przyszłości wykorzystywali akceleratory nowej generacji.
      Naukowcy z Fermilab zapowiadają, że w ciągu najbliższych miesięcy wzmocnią swój magnes pod względem mechanicznym i jesienią poddadzą go kolejnemu testowi, w czasie którego spróbują uzyskać 15 tesli. Ma być to wstępem do stworzenia jeszcze potężniejszych magnesów. W oparciu o ten projekt i o to, czego się nauczyliśmy, mamy zamiar udoskonalić magnesy niobowo-cynowe i w przyszłości osiągnąć 17 tesli, mówi Ziobin. Naukowiec nie wyklucza, że w przyszłości, wykorzystując nowe nadprzewodniki, jego zespół dojdzie do 20 tesli.
      Maksymalna indukcja pola magnetycznego magnesów LHC wynosi 8,34 tesli, czyli jest blisko górnej granicy 10 tesli dla magnesów niobowo-tytanowych. Z kolei w ubiegłym roku CERN informował o uzyskaniu dzięki magnesowi FRESCA2 14,6 tesli. FRESCA2 jest to magnes, który służy do testowania nadprzewodników, a nie do pracy wewnątrz akceleratora cząstek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W LHCb zaobserwowano, po raz pierwszy w historii, naruszenie symetrii CP podczas rozpadu mezonu D0. To historyczne wydarzenie, które z pewnością trafi do podręczników fizyki.
      To krok milowy fizyki cząstek. Od czasu odkrycia przed ponad 40 laty mezonu D fizycy podejrzewali, że naruszenie symetrii CP zachodzi również w tym systemie. Jednak dopiero teraz, po analizie wszystkich danych, jakie udało się zebrać w LHCb możemy potwierdzić, że zaobserwowaliśmy to zjawisko, mówi Eckhard Elsen, dyrektor ds. badań i obliczeń w CERN.
      Symetria ładunkowo-przestrzenna CP to termin, który oznacza, że każda cząstka elementarna ma swój odpowiednik, czyli antycząstkę. Są one pod wieloma względami identyczne, różnią się za to ładunkami elektrycznymi oraz liczbami kwantowymi. Wiadomo jednak, gdy w grę wchodzą oddziaływania słabe, symetria w niektórych cząstkach nie jest zachowana. Dochodzi do naruszeń symetrii CP.
      Zjawisko to po raz pierwszy zaobserwowano w latach 60. ubiegłego roku w Brookhaven Laboratory podczas rozpadu neutralnych kaonów. W 1980 roku autorzy odkrycia, James Watson Cronin i Val Logsdon Fitch, otrzymali za nie Nagrodę Nobla z fizyki. Później w 2001 roku badania nad naruszeniem symetrii CP w mezonie B przeprowadził zespół z USA i Japonii. Ponownie skończyło się to Nagrodą Nobla, którą w 2008 roku otrzymali Makoto Kobayashi, Toshihide Masakawa i Yoichiro Nambu.
      Naruszenie symetrii CP to jeden z podstawowych procesów zachodzących we wszechświecie. To dzięki niemu rozpoczął się proces, który po Wielkim Wybuchu doprowadził do pojawienia się przewagi materii nad antymaterią. Jednak rozmiary obecnie obserwowanych naruszeń w Modelu Standardowym są zbyt małe, by wyjaśnić istniejącą nierównowagę pomiędzy materią a antymaterią. To zaś sugeruje, że istnieją dodatkowe, nieznane jeszcze, źródła naruszeń CP.
      Mezon D0 składa się z kwarka powabnego i antykwarka górnego. Dotychczas naruszenia symetrii CP były obserwowane wyłącznie w cząstkach zawierających kwark dziwny lub kwark niski. Dotychczasowe obserwacje potwierdzały wzorzec naruszeń symetrii CP opisany w Modelu Standardowym za pomocą macierzy Cabibbo-Kobayashiego-Masakawy (macierz CKM). Opisuje ona, jakie przemiany zachodzą w kwarkach wskutek oddziaływań słabych. Jednym z największych zadań współczesnej fizyki cząstek jest uzupełnianie macierzy. Odkrycie, że naruszenie symetrii CP zachodzi też w mezonach D0 to pierwszy dowód na przemiany w kwarku powabnym.
      Najnowszego odkrycia dokonano analizując pełny zestaw danych uzyskanych w LHCb w latach 2011–2018 pochodzących z rozpadów mezonu D0 i jego antycząstki, antymezonu D0. Znaczenie statystyczne odkrycia wynosi 5,3, czyli przekracza próg sigma 5, wyznaczający pewność dokonanego odkrycia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Rochester i North Carolina State University jako pierwsi w historii wykorzystali neutrino do przesłania wiadomości. Uczeni wykorzystali znajdujące się w Fermilab urządzenia NuMI (NeUtrino beam at the Main Injector) do wygenerowania 25 impulsów. Przerwy pomiędzy nimi wynosiły około 2 sekundy, a w ramach każdego impulsu wysłano 1013 neutrin.
      Impulsy zostały wysłane do wykrywacza MINERvA, znajdującego się w grocie w odległości około kilometra od NuMI. Neutrina, zanim dotarły do wykrywacza, musiały przejść przez 240 metrów skały.
      W strumieniu neutrin w postaci zer i jedynek zakodowano wyraz „neutrino“. Jego przesłanie trwało około 2,5 godziny. W tym czasie MINERvA pracował z połową mocy, gdyż planowane jego jego wyłączenie, a ponadto wykonywał swoje standardowe zadania.
      Oczywiście zarówno tempo przesyłania danych, jak i wymagany do tego sprzęt - sam wykrywacz MINRvA waży 170 ton - oznaczają, że obecnie neutrino nie można wykorzystać w praktyce. Jednak nie taki był cel eksperymentu. Naukowcy chcieli przetestować krążący od dłuższego czasu pomysł użycia neutrino w celu przekazywania informacji. Neutrino, w przeciwieństwie do wszelkich innych wykorzystywanych medium, ma bowiem tę zaletę, że praktycznie nie istnieją dlań żadne fizyczne przeszkody. Adresat wysłanej za ich pomocą informacji mógłby ją odebrać zarówno na ulicy, jak i na dnie najgłębszej kopalni.
    • By KopalniaWiedzy.pl
      Naukowcy pracujący w CERN-ie przy eksperymencie ALPHA dokonali kolejnego istotnego kroku na drodze ku zrozumieniu antymaterii i budowy wszechświata. Eksperymentalnie wykazali, że są w stanie zbadać strukturę wewnętrzną atomu antywodoru. Wiemy, że jest możliwe zaprojektowanie eksperymentu, który pozwoli nam na wykonanie szczegółowych pomiarów antyatomów - mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.
      Nasz wszechświat wydaje się niemal w całości zbudowany z materii. Antymateria gdzieś zniknęła. Tymczasem podczas Wielkiego Wybuchu powinno być jej tyle samo co materii. Zetknięcie materii i antymaterii prowadzi do ich anihilacji. Przewaga materii we wszechświecie sugeruje, że natura preferuje ją nad antymaterię. Jeśli uda się szczegółowo zbadać atomy antymaterii będziemy bliżsi odpowiedzi na pytanie o tę preferencję.
      W czerwcu ubiegłego roku informowaliśmy, że ekspertom z CERN-u udało się uwięzić i przechować atomy antywodoru przez 1000 sekund. Wówczas Joel Fajans, jeden z naukowców pracujących przy ALPHA mówił, że tysiąc sekund to aż nadto czasu, by wykonać pomiary schwytanego antyatomu. To wystarczająco długo, by np. zbadać jego interakcję z promieniem lasera czy mikrofalami.
      W skład atomu wodoru wchodzi elektron. Oświetlając atom laserem można doprowadzić do pobudzenia elektronu, który przeskoczy na wyższą orbitę, a następnie powróci na oryginalną orbitę, emitując przy tym światło. Możliwe jest bardzo precyzyjne zmierzenie spektrum tego światła, które w świecie materii jest unikatowe dla wodoru. Teoretycznie niemal identyczne spektrum powinniśmy uzyskać z pobudzenia atomu antywodoru. I właśnie dokonanie takiego pomiaru jest ostatecznym celem eksperymentu ALPHA.
      Wodór to najbardziej rozpowszechniony pierwiastek we wszechświecie. Jego strukturę rozumiemy bardzo dobrze. Teraz możemy zacząć odkrywać prawdę o antywodorze. Czy są one różne? Czas pokaże - mówi Hangst.
      Naukowcy dokonali właśnie pierwszych pomiarów antywodoru. Atomy najpierw zostały złapane w magnetyczną pułapkę. Następnie oświetlono je mikrofalami o precyzyjnie dobranej częstotliwości. To spowodowało zmianę orientacji magnetycznej antyatomów i uwolnienie się ich z pułapki. Wówczas antyatomy napotkały na atomy i doszło do ich anihilacji, co pozwoliło czujnikom na zarejestrowanie charakterystycznego wzorca tego zdarzenia. To z kolei dowiodło, że możliwe jest przeprowadzenie eksperymentu, w którym właściwości wewnętrzne atomu antywodoru zostaną zbadane za pomocą mikrofal.
    • By KopalniaWiedzy.pl
      Tevatron, najbardziej zasłużony dla nauki akcelerator cząstek, przechodzi na emeryturę. Dzisiaj o godzinie 14 czasu miejscowego (godzina 21 czasu polskiego) Pier Oddone, dyrektor Fermilab, które zarządza Tevatronem, wyda polecenie wyłączenia akceleratora na zawsze.
      Zatrzymane zostaną dwie wiązki, pomiędzy którymi od 1985 roku zachodziły kolizje, umożliwiające fizykom badanie świata subatomowego.
      Znaczenie amerykańskiego akceleratora dla nauki trudno jest przecenić. To dzięki niemu odkryto 3 z 17 znanych cząstek elementarnych. To Tevatron był podstawowym narzędziem pracy dwóch pokoleń fizyków.
      Największym sukcesem w historii akceleratora było odkrycie w 1995 roku kwarka wysokiego, ostatniego z brakujących budulców materii.
      Decyzję o powstaniu Tevatronu podjęto w latach 70. ubiegłego wieku. Urządzenia, które powstały na jego potrzeby, takie jak nadprzewodzące magnesy, pozwoliły na pojawienie się szpitalnych maszyn do rezonansu magnetycznego. Dzięki Tevatronowi istnieje też Wielki Zderzacz Hadronów (LHC), gdyż zastosowano w nim te same technologie. Nie ma mowy o tym, by LHC mógł powstać bez Tevatronu - mówi fizyk Christopher Quigg, który w Fermilab pracuje od 1974 roku.
      Tevatron ma olbrzymie zasługi, ale zdaniem wielu uczonych, mógłby dokonać jeszcze więcej. Najnowsze badania wykazały, że bozon Higgsa, którego znalezienie jest jednym z głównych zadań LHC, jest w zasięgu Tevatronu. Między innymi dlatego grupa wpływowych fizyków apelowała do Departamentu Energii, do którego należy Fermilab, by akcelerator mógł pracować do roku 2014. Urzędnicy stwierdzili jednak, że utrzymanie Tevatronu pochłania zbyt dużo pieniędzy - 25 milionów dolarów rocznie - i lepiej jest przeznaczyć te fundusze na dwa nowe eksperymenty w Fermilab. Ponadto, jak zauważył dyrektor Biura Nauki Departamentu Energii, LHC ma większe możliwości niż Tevatron.
      W związku z zamknięciem Tevatronu z pracy w Fermilab odeszły 42 osoby, jednak reszta z 1800 pracowników pozostaje.
      Wyłączenie akceleratora oznacza też, że teraz to Amerykanie będą jeździli do Europy, by korzystać z LHC. Przez dwa dziesięciolecia podróże naukowców odbywały się w przeciwną stronę.
      Od 1985 roku z Tevatronu skorzystało 6361 fizyków, z czego 1684 było obywatelami USA.
      Przez najbliższe lata to LHC będzie dla fizyki tym, czym był Tevatron. Amerykańscy naukowcy mieli nadzieję, że w USA powstanie następca akceleratora z Fermilab. Zostały one zniweczone w 1993 roku, gdy Kongres nie zgodził się na dalsze finansowanie prac nad Superconducting Super Collider. Wcześniej zdążono nań wydać 2 miliardy dolarów i wydrążono 22,5 kilometra tuneli. Całkowita długość SSC miała wynosić 87 kilometrów.
      Obecnie USA nie mają żadnych planów dotyczących ewentualnej budowy własnego akceleratora. Niewykluczone zresztą, że tak wyjątkowy projekt jak Tevatron - duży akcelerator zbudowany przez pojedyncze państwo - nigdy nie powstanie. W dawnych czasach Stany samodzielnie zbudowały Tevatron. Ale budowa następnej takiej maszyny będzie wyglądała inaczej. Będziemy potrzebowali pomocy innych - powiedział doktor Rob Roser, dyrektor jednego z dwóch detektorów Tevatronu. Jednak w najbliższej perspektywie Roser nie widzi możliwości powstania w USA akceleratora. Na przeszkodzie stoją dwa czynniki. Po pierwsze budżety na naukę są układane z roku na rok, trudno zatem byłoby przekonać Kongres do podjęcia decyzji o finansowaniu urządzenia, którego budowa potrwałaby wiele lat i które trzeba by utrzymywać przez kolejne dziesięciolecia. Ponadto w ciągu ostatniej dekady USA wprowadziły liczne ograniczenia w podróżowaniu, co utrudniłoby wizyty naukowców z zagranicy. A to z kolei utrudni przekonanie innych rządów do partycypowania w budowie akceleratora. Dlatego przez wiele najbliższych lat to Amerykanie będą podróżowali do Europy, by pracować na LHC, którego powstanie amerykański rząd dofinansował kwotą 531 milionów dolarów.
      Dyrektor Oddone nie wyklucza, że tunele Tevatronu zostaną zamienione w ogólnodostępne muzeum.
×
×
  • Create New...