Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Fermilab buduje ostatni z wielkich detektorów, które mają znaleźć neutrino sterylne i fizykę poza MS

Recommended Posts

W Fermi National Accelerator Laboratory (Fermi Lab), jednej z najbardziej zasłużonych instytucji dla rozwoju fizyki cząstek, trwa właśnie budowa ostatniego z wielkich detektorów, który ma badać neutrino i szukać dowodów na istnienie fizyki poza Modelem Standardowym. Zespół detektorów powstaje w ramach Short-Baselina Neutrino Program.

Projekt składa się ze źródła neutrin i trzech detektorów ustawionych w linii prostej. Short-Baseline Near Detector (SBND), którego budowa właśnie się rozpoczęła, znajdzie się 110 metrów za obszarem, w którym strumień protonów będzie uderzał w cel, generując strumień neutrin mionowych. W odległości 360 metrów za SBND znajduje się MicroBooNE. Urządzenie to rozpoczęło pracę już w 2015 roku. Za MicroBooNE, w odległości 130 metrów, stoi zaś ICARUS, który rozpocznie pracę jeszcze tej jesieni.

Podróżujące przez przestrzeń neutrino podlega oscylacjom, zmienia się pomiędzy trzema różnymi rodzajami: neutrinem mionowym, taonowym i elektronowym. I właśnie te oscylacje mają badać SBND, MicroBooNE i ICARUS. Jeśli okazałoby się, że istnieje czwarty rodzaj neutrin lub też badane neutrina zachowywałyby się w inny sposób, niż obecnie się przewiduje, detektory powinny to wykryć i być może fizyka wyjdzie poza Model Standardowy.

Czujniki detektora SBND będą zawieszone w zbiorniku z płynnym argonem. Gdy neutrino trafi do zbiornika i zderzy się z atomem argonu, powstaną liczne cząstki oraz światło. Zostaną one zarejestrowane przez czujniki, a analizy sygnałów pozwolą fizykom na precyzyjne odtworzenie trajektorii wszystkich cząstek powstałych w wyniku kolizji. Zobaczymy obraz, który pokaże nam olbrzymią liczbę szczegółów w bardzo małej kali. W porównaniu z wcześniejszymi eksperymentami otworzy nam się naprawdę nowe spektrum możliwości, mówi Anne Schukraft, koordynatorka techniczna projektu.

Wewnątrz SBND znajdą się trzy wielkie elektrody. Dwie anody i katoda. Każda z nich będzie mierzyła 5x4 metry. Natężenie pola elektrycznego pomiędzy katodą a każdą z anod wyniesie 500 V/cm. Anody zostaną umieszczone na przeciwnych ścianach pomieszczenia w kształcie sześcianu. Będą one przechwytywały elektrony, a znajdujące się za nimi czujniki będą rejestrowały fotony. W środku detektora umieszczona zostanie folia spełniająca rolę katody. Zamontowano ją pod koniec lipca, a w najbliższych dniach ma zostać ukończony montaż pierwszej anody.

Całość, gdy zostanie ukończona, będzie ważył ponad 100 ton i zostanie wypełniona argonem o temperaturze -190 stopni Celsjusza. Komora będzie znajdowała się w stalowym kriostacie o izolowanych ścianach, którego zadaniem będzie utrzymanie niskiej temperatury wewnątrz. Skomplikowany system rur będzie ciągle filtrował argon, by utrzymać go w czystości.
SBND to przedsięwzięcie międzynarodowe. Poszczególne elementy systemy powstają w wielu krajach, przede wszystkim w USA, Wielkiej Brytanii, Brazylii i Szwajcarii. Schukraft przewiduje, że nowy detektor ruszy na początku 2023 roku.

Gdy prace nad SBND się zakończą, detektor będzie pracował razem z MicroBooNE i ICARUSEM. Naukowcy chcą przede wszystkim poszukać dowodów na istnienie neutrina sterylnego, cząstki, która nie wchodzi w interakcje z oddziaływaniami słabymi. Już wcześniej, podczas eksperymentów prowadzonych w Liquid Scintillator Neutrino Detector w Los Alamos National Lab i MiniBooNE w Fermilab odkryto sygnały, które mogą wskazywać na istnienie takiej cząstki.

Pomysł polega na tym, by umieścić detektor naprawdę blisko źródła neutrin, w nadziei, że uda się złapać ten typ neutrina. Następnie jest kolejny detektor, a dalej jeszcze jeden. Mamy nadzieję, że zobaczymy oscylacje sterylnego neutrina, wyjaśnia Rober Acciarri, współdyrektor prac nad budową detektorów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Typowe narzekanie laika. A swój smartphone albo komputer to lubisz, co nie? Zrób wszystkim na złość i przestań z niego korzystać w ramach protestu :) W Nevadzie wydano 5.3 miliarda USD na gry hazardowe w 2019. Fermilab ma budżet 546 milionów USD według danych z 2019, czyli 1/10 tego, co ludzie wydali na przemiał w kasynach w jednym tylko stanie, co prawda słynącym z hazardu i gdzie kasyna są na każdym rogu, ale to tylko jeden stan.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
22 godziny temu, cyjanobakteria napisał:

Zrób wszystkim na złość i przestań z niego korzystać w ramach protestu 

Ale dlaczego miałby to robić? Brakuje ciągu przyczynowo-skutkowego w tym wywodzie. Ma wyrzucić smartfon za który zapłacił bo? 
Niemniej - zna ktoś przesłanki jakiekolwiek za tym że istnieje neutrino sterylne? Albo że mogą neutrina podlegać oscylacjom innym niż te które już znamy? :)
No raczej nie. To strzał na oślep - i to dość drogi.
Jest wiele projektów tańszych i nie będących strzelaniem na oślep. Powinny mieć pierwszeństwo.
Jak np. ten nowy sposób detekcji fal grawitacyjnych.
BTW. W LHC strzelali z 25 % powodzeniem.
Jeżeli istnieje neutrino sterylne - byłoby czwartą generacją cząstek. Nie znamy ani jednej cząstki z czwartej generacji. Ja osobiście ich nie wykluczam fundamentalnie jako możliwych do "stworzenia" ale to raczej zakres energii nie tylko poza ziemskimi warunkami ale nawet najbardziej ekstremalnymi we Wszechświecie.
Więc teoretycznie możliwe (choć wykraczające poza obecne teorie), praktycznie nie istnieje.
 

Edited by thikim

Share this post


Link to post
Share on other sites

Czepiam się, ale za dużo jest w sieci ruchów antynaukowych i mi to działa na nerwy. Swoją drogą, ciekawe ile smartphonów po pijaku zgubiono w Las Vegas? :)

Związek jest taki, że 200-300 lat temu, kiedy zaczynano na poważnie badać elektryczność i magnetyzm, nie wiadomo było jaki będzie związek :) Chociaż oczywiście ciężko sobie teraz wyobrazić, na co mogą się przydać tego typu badania zwykłemu zjadaczowi chleba, który jedyne, co musi wiedzieć to, gdzie jest najbliższa biedronka. Koszty badań są niewspółmiernie wyższe niż wydatki na ebonitowe pałeczki do pocierania o wełniany sweter :) Po za tym, przytoczone liczby to był budżet całego Fermilab, a nie kwota na detektor.

Ciekawe jaka jest przyszłość zderzaczy? Projekty zaczynają być gargantuiczne, nawet jak na mój gust, tak jak ten nowy zderzacz, który może zastąpić LHC. Od dekad mozolnie zwiększamy moc i z akceleratorów liniowych przeszliśmy na kołowe. Oczywiście trudno sobie teraz wyobrazić, jakie projekty będziemy realizować za kilkaset lat. Tym czasem, może wykorzystanie promieniowania kosmicznego, albo przeniesienie aparatury do przestrzeń? Swoją drogą, mało kto wie, że w LHC jest najlepsza próżnia w Układzie Słonecznym. Lepsza jest tylko w przestrzeni międzygwiezdnej oraz międzygalaktycznej.

Jeszcze mi się przypomniało, że widziałem niedawno na kwantowo ten wykres z energiami. Dla porównania LHC był zaprojektowany na 14 TeV.

wielka-unifikacja-1024x490.png

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

No to do większego przełomu sporo brakuje. 104 GeV kontra 1016GeV. 12 rzędów wielkości.
Jak zbudować bilion razy "silniejszy" zderzacz? A nie FCC który ma być 10 razy "silniejszy".
10 a 1 000 000 000 000 to jest różnica.
Może kiedyś wyśle się urządzenia pomiarowe w okolice naturalnych generatorów cząstek o znacznie większych energiach niż to w laboratorium zrobimy. Ale budowa akceleratora bilion razy potężniejszego niż LHC tego nie zakładają nawet najwięksi optymiści.
Szanse że FCC coś da nie są przekonywujące. No chyba że zamierzasz pracować przy budowie lub po zbudowaniu tam. To wtedy każdy argument jest dobry. Bo to dobrze płatna robota na całe życie. 
Jest wiele innych pomysłów - tańszych a dających dużo większe możliwe korzyści. Niestety - elektrownie termojądrowe też do nich nie należą :)

Edited by thikim

Share this post


Link to post
Share on other sites

Za dużo właśnie brakuje rzędów wielkości :) Dlatego też jestem trochę sceptycznie nastawiony na większe zderzacze. Jestem jednak laikiem, a nie fizykiem cząstek elementarnych, więc się przesadnie w tej materii nie wypowiadam. Nadal są tropy do sprawdzenia, chociażby niedawny eksperyment muon g-2 w Fermilab.

Zdaje się, że aktualnie nie mamy kompletnie pojęcia co się działo przed 10^-43 sekundy po Wielkim Wybuchu, a przewijając do tylu prawa fizyki jesteśmy w stanie odtworzyć fakty do 10^-13 sekundy, co jest niesłychanym osiągnięciem, jak na mój rozum :) Na temat inflacji kosmologicznej mamy za to całkiem dobrą i racjonalną hipotezę.

bang.jpg

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

No właśnie o tym pisałem że jest wiele innych miejsc gdzie można lepiej zużyć kasę niż na FCC.
Np. jak pisałeś: muon g-2. Ale też i to z sąsiedniego tematu:
https://kopalniawiedzy.pl/czarna-dziura-supernowa-QED-cascades-elektrodynamika-kwantowa-kaskady-plazma,34312
do tego i lepsze detektory fal grawitacyjnych. 
Wreszcie - nowe napędy do eksploracji Układu Słonecznego. Z lepszymi - realnymi do osiągnięcia technologiami - jesteśmy w stanie dotrzeć nawet i do Plutona. To oczywiście pieśń przyszłości na jakieś 100 lat ale przez te 100 lat trzeba coś robić w tym kierunku.

Edited by thikim

Share this post


Link to post
Share on other sites

Falcon Heavy albo Delta IV Heavy spokojnie wyniesie ładunek w okolice Plutona. Hew Horizon został wystrzelony przez Atlas V. Więc nie potrzeba żadnych nowych napędów. Problemem jest hamowanie, bo do wyboru jest szybki fly-by bez możliwości wejścia na orbitę, ale z relatywnie krótkim tranzytem albo długa podróż trwająca dekady, której celu planiści mogą nie dożyć :)

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Jak zapewne wiesz - sondy już tam latały nawet dalej. Voyagery daleko dalej.
Więc nie mogłem mieć na myśli sondy czy jakiegoś przedmiotu - bo to już robiliśmy i jest względnie łatwe ale ludzi.
A żeby ludzie dolecieli do Plutona to trzeba nowego napędu. I są takie propozycje. I na tym się trzeba skupić, żeby podróż do Plutona trwała rok - dwa a nie 20-ścia.

Edited by thikim

Share this post


Link to post
Share on other sites

Brałem to pod uwagę, ale pomysł jest tak niepoważny, że go odrzuciłem :) Jedna misja na Księżyc kosztowała 42 miliardy, na Marsa będzie kosztować około 100 miliardów, a bezsensowna misja załogowa na Plutona to będzie chyba liczona setkach miliardów jak nie trylionach USD. Więc jest to słaby pomysł na rozsądną alokację środków z projektu nowego zderzacza :)

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Po 10 latach analiz i wielokrotnego sprawdzania wyników, badacze z projektu CDF collaboration prowadzonego przez Fermi National Accelarator Laboratory (Fermilab) ogłosili, że dokonali najbardziej precyzyjnych pomiarów masy bozonu W, nośnika jednego z czterech podstawowych oddziaływań fizycznych. Uzyskane wyniki sugerują, że Model Standardowy powinien zostać poprawiony lub poszerzony.
      Znamy cztery podstawowe oddziaływania fizyczne: grawitacyjne, słabe, elektromagnetyczne i silne. Bozon W jest nośnikiem oddziaływań słabych. Specjaliści z Fermilab, wykorzystując dane z Collider Detector at Fermilab (CDF) okreslili masę bozonu W z dokładnością do 0,01%. Pomiar jest dwukrotnie bardziej dokładny niż dotychczasowe. Po jego wykonaniu  naukowcy wykorzystali nową wartość do przetestowania Modelu Standardowego.
      Wprowadziliśmy olbrzymią liczbę poprawek i dodatkowych weryfikacji. Wzięliśmy pod uwagę nasze lepsze rozumienie samego wykrywacza cząstek oraz postępy w teoretycznym i eksperymentalnym rozumieniu interakcji bozonu W z innymi cząstkami. Gdy w końcu przeprowadziliśmy wszystkie obliczenia okazało się, że różnią się one od przewidywań Modelu Standardowego, mówi Ashutosh V. Kotwal z Duke University, który stał na czele grupy wykonującej obliczenia. Jest on jednym z 400 naukowców skupionych wokół CDF collaboration.
      Nowe pomiary w wielu aspektach zgadzają się z wcześniejszymi pomiarami masy bozonu W, ale w niektórych są z nimi rozbieżne. Dlatego też konieczne będą kolejne badania. To bardzo intrygujące wyniki, ale do ich pełnego wyjaśnienie konieczne jest potwierdzenie w ramach innych eksperymentów, mówi zastępca dyrektora Fermilab, Joe Lykken.
      Bozon W, nośnik oddziaływań słabych, jest m.in odpowiedzialny za procesy powodujące, że Słońce świeci, a cząstki się rozpadają. Fermilab, a którym działał niezwykle zasłużony dla nauki akcelerator Tevatron, dysponuje olbrzymią ilością danych zbieranych w latach 1985–2011. Pomiary CDF były prowadzone przez wiele lat. Wyniki tych pomiarów były ukryte w danych, które trzeba było szczegółowo przeanalizować. Gdy w końcu je uzyskaliśmy, byliśmy zdumieni, mówi fizyk Chris Hays z Uniwersytetu Oksfordzkiego.
      Masa bozonu W jest około 80-krotnie większa od masy protonu i wynosi około 80 000 MeV/c2. Teraz naukowcy z Fermilab ją uściślili. Dzięki ich pracy wiemy, że wynosi ona 80 433 ± 9 MeV/c2. Wynik ten bazuje na badaniach 4,2 milionów bozonów W uzyskanych w Fermilab.
      W ciągu ostatnich 40 lat eksperymenty w wielu akceleratorach pozwoliły na badanie bozonu W. To bardzo trudne, złożone pomiary, które cały czas są doprecyzowywane. Nam praca zajęła wiele lat. Dokonaliśmy najbardziej precyzyjnych pomiarów, dzięki czemu mogliśmy stwierdzić, że istnieje rozbieżność pomiędzy wartością zmierzoną, a oczekiwaną, mówi rzecznik CDF collaboration Giogrio Chiarelli z Włoskiego Narodowego Instytutu Fizyki Jądrowej.
      Najbardziej precyzyjne obliczenia masy bozonu W wykonane na podstawie Modelu Standardowego – w których wykorzystuje się pomiary masy kwarka górnego i bozonu Higgsa – dają wynik 80 357 ± 6 MeV/c2. Różnica pomiędzy teoretycznymi obliczeniami a wykonanymi pomiarami jest więc widoczna. Teraz autorzy kolejnych eksperymentów oraz fizycy teoretyczni powinni spróbować ją wyjaśnić. Jeśli różnica pomiędzy wynikiem eksperymentów a teoretycznymi obliczeniami jest spowodowana istnieniem jakiegoś nowego oddziaływania – a to tylko jedna z możliwości – to przyszłe eksperymenty powinny je wykryć.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Poszukiwanie zjawisk fizycznych wykraczających poza Model Standardowy często wymaga dostępu do potężnych narzędzi, jak Wielki Zderzacz Hadronów, podziemnych wykrywaczy neutrin, ciemnej materii i egzotycznych cząstek. Urządzenia takie są niezwykle kosztowne w budowie i utrzymaniu, ich konstruowanie trwa przez wiele lat i jest ich niewiele, przez co ustawiają się do nich długie kolejki naukowców. Teraz dzięki naukowcom z Holandii może się to zmienić. Opracowali oni bowiem technikę więzienia i badania ciężkich molekuł w warunkach laboratoryjnych.
      Ciężkie molekuły są świetnym obiektem do badań nad elektrycznym momentem dipolowym elektronu. Jednak dotychczas stosowane metody nie pozwalały na ich uwięzienie w warunkach niewielkiego laboratorium.
      Standardowe techniki poszukiwania elektrycznego momentu dipolowego elektronu (eEDM) wykorzystują wysoce precyzyjną spektroskopię. Jednak by ją zastosować konieczne jest najpierw spowolnienie molekuł i schwytanie ich w pułapkę laserową lub elektryczną. Problem w tym, że do odkrycia zjawisk wykraczających poza Model Standardowy konieczne może okazać się przechwycenie molekuł zbyt ciężkich, by mogły uwięzić je lasery. Z kolei pułapki elektryczne pozwalają na przechwycenie ciężkich jonów, ale nie obojętnych elektrycznie molekuł.
      Naukowcy z Uniwersytetu w Groningen, Vrije Universiteit Amsterdam oraz instytutu Nikhef rozpoczęli swoją pracę od stworzenie molekuł fluorku strontu (SrF), które powstały w wyniku reakcji chemicznych zachodzących w kriogenicznym gazie w temperaturze około 20 kelwinów. Dzięki niskiej temperaturze molekuły te mają początkową prędkość 190 m/s, podczas gdy w temperaturze pokojowej wynosi ona ok. 500 m/s. Następnie molekuły wprowadzane są do 4,5-metrowej długości spowalniacza Stark, gdzie zmienne pola elektryczne najpierw je spowalniają, a następnie zatrzymują. Molekuły SrF pozostają uwięzione przez 50 milisekund. W tym czasie można je analizować za pomocą specjalnego systemu indukowanego laserem. Pomiary takie pozwalają badać właściwości elektronów, w tym elektryczny moment dipolowy, dzięki czemu możliwe jest poszukiwanie oznak asymetrii.
      Model Standardowy przewiduje istnienie eEDM, jednak ma on niezwykle małą wartość. Dlatego też dotychczas właściwości tej nie zaobserwowano. Obserwacja i zbadanie eEDM mogłyby wskazać na istnienie fizyki wykraczającej poza Model Standardowy.
      Molekuły SrF, którymi zajmowali się Holendrzy, mają masę około 3-krotnie większą niż inne molekuły badane dotychczas podobnymi metodami. Naszym kolejnym celem jest uwięzienie jeszcze cięższych molekuł, jak np. fluorku baru (BaF), który ma macę 1,5 raza większą od SrF. Taka molekuła byłaby jeszcze lepszym celem do pomiarów eEDM, mówi Steven Hoekstra, fizyk z Uniwersytetu w Groningen. Im bowiem cięższa molekuła, tym dokładniejszych pomiarów można dokonać.
      Jednak możliwość uwięzienia ciężkich molekuł przyda się nie tylko do badania elektrycznego momentu dipolowego elektronu. Można dzięki temu przeprowadzać też zderzenia ciężkich molekuł przy niskich energiach, symulując warunki w przestrzeni kosmicznej. To zaś przyda się podczas badań interakcji na poziomie kwantowym. Hoekstra mówi, że wraz ze swoimi kolegami będą też pracowali nad zwiększeniem czułości pomiarów poprzez zwiększenie intensywności strumienia molekuł. Spróbujemy też uwięzić bardziej złożone molekuły, jak BaOH czy BaOCH3. Dodatkowo wykorzystamy naszą technikę do badania asymetrii w molekułach chiralnych, zapowiada.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wyniki eksperymentu MicroBooNE nie przyniosły żadnych śladów istnienia neutrina sterylnego, poinformowali naukowcy z Fermi National Accelerator Laboratory (Fermilab). Neutrino sterylne to hipotetyczna cząstka, której istnienie byłoby dobrym wyjaśnieniem niektórych anomalii w prowadzonych eksperymentach. Jeśli uda się je znaleźć, byłoby to niezwykle ważne odkrycie, prowadzące do znaczących zmian w naszym rozumieniu fizyki.
      Nowe wyniki nie napawają jednak optymizmem. Międzynarodowy zespół naukowy pracujący przy eksperymencie MicroBooNE przeprowadził cztery dodatkowe analizy, a ich wyniki zaprezentował podczas seminarium. Wynik każdej z analiz jest taki sam – brak śladów istnienia neutrina sterylnego. Za to wszystko świetnie pasuje do Modelu Standardowego, który przewiduje istnienie trzech rodzajów neutrin. I tyle ich właśnie znamy.
      To bardzo solidne badania, które przeprowadziliśmy za pomocą różnych rodzajów interakcji, analiz i technik rekonstrukcji. Wszystkie dały taki sam wynik i wszystkie wskazują na brak śladów neutrino sterylnego, mówi profesor Bonnie Fleming z Yale Univerity.
      MicroBooNE to 170-tonowy wykrywacz neutrin, który działa od 2015 roku. W eksperyment zaangażowanych jest niemal 200 naukowców z 36 instytucji z 5 krajów. Wykorzystują najnowocześniejsze techniki do uzyskania trójwymiarowego obrazu reakcji z udziałem neutrin i badają cząstki biorące w nich udział.
      Neutrino to jedna z podstawowych cząstek natury. To najbardziej rozpowszechnione we wszechświecie cząstki. Są obojętne, niezwykle małe i rzadko wchodzą w interakcje z innymi cząstkami. Wiąże się z nimi wiele intrygujących kwestii fizycznych, dlatego są przedmiotem intensywnych badań. Jedno z pytań na ich temat brzmi, dlaczego mają tak małą masę i czy to one odpowiadają za przewagę materii nad antymaterią.
      Wyniki eksperymentu MicrBooNE to ważny element na drodze ku lepszemu zrozumieniu otaczającego nas świata. Skoro neutrino sterylne nie istnieje, fizycy muszą spróbować w inny sposób wyjaśnić obserwowane anomalie. W większym stopniu będą mogli skupić się na innych hipotezach próbujących je wyjaśnić, jak istnienie egzotycznej ciemnej materii czy niewyjaśnionych zjawisk fizycznych związanych z istnieniem bozonu Higgsa.
      Wykrywacz MicroBooNE korzysta z ponad 8000 czujników śledzących trasy cząstek. Umieszczono to w 170 tonach płynnego argonu. Neutrina wchodzą w interakcje z argonem, w wyniku czego powstają cząstki, które czujniki potrafią wychwycić. Dzięki temu możemy poznać szczegółowe trasy tych cząstek, a co najważniejsze – odróżnić fotony od elektronów.
      Podczas pierwszych trzech lat pracy urządzenia nie zarejestrowano nadmiaru elektronów, ale nie zauważono też nadmiaru fotonów, co mogło wskazywać na błędy w danych. Nie zauważyliśmy tego, co spodziewaliśmy się zaleźć. Ani elektronów, ani fotonów. Jednak dane nie są błędne. Tam dzieje się coś, co musimy wyjaśnić, mówi Sam Zeller, rzecznik prasowy eksperymentu.
      Dotychczas z 95-procentową pewnością wykluczono fotony jako jedyne źródło nietypowych danych, a elektrony jako jedyne wyjaśnienie zostały wykluczone z ponad 99-procentową pewnością. Naukowcom pozostała jeszcze połowa danych do przeanalizowania. Pracę zaczęli od najbardziej prawdopodobnych źródeł sygnałów. Teraz, skoro je wykluczono, pozostaje kilka innych możliwości. Być może pojawia się elektron i pozyton jednocześnie lub też dochodzi do jakiegoś zjawiska, w którym pojawia się m.in. foton.
      Początkowe analizy skupiały się na poszukiwaniu neutrino sterylnego. Nie można jednak wykluczyć, że naukowcy znajdą coś zupełnie innego, jak cząstki ciemnej materii czy hipotetyczny bozon Z'. A być może będzie to neutrino sterylne, które pojawia się w zupełnie nieoczekiwany sposób.
      MicroBooNE to jeden z wielu eksperymentów badających neutrina. Przy okazji jest to urządzenie testowe, które ma położyć podwaliny pod przyszłe detektory wykorzystujące technologię ciekłego argonu. Zbudowaliśmy i przetestowaliśmy sprzęt, stworzyliśmy całą infrastrukturę do przetwarzania olbrzymiej ilości danych. Przeprowadzamy symulacje, kalibracje, mamy algorytmy do rekonstrukcji, analiz strategii badawczych i automatyzacji analizy za pomocą maszynowego uczenia się. Nasza praca kładzie podwaliny pod przyszłe eksperymenty, wyjaśnia Justin Evans z University of Manchester.
      Technologia ciekłego argonu zostanie wykorzystana m.in. z detektorze ICARUS, który ma rozpocząć pracę za kilka tygodni i będzie stanowiło – wraz z MicroBooNE i SBND – komplet trzech uzupełniających się wykrywaczy. Trzeci element zestawu, który niedawno opisywaliśmy, Short-Baseline Near Detector (SBND), ma zaś ruszyć w 2023 r. SBND również będzie korzystał z ciekłego argonu, a wykrywacz będzie tak wydajny, że w ciągu miesiąca dostarczy więcej danych niż MicroBooNE przez dwa lata.
      W fizyce istnieje sporo ważnych pytań, na które brak odpowiedzi. Neutrina mogą nam powiedzieć, gdzie tych odpowiedzi szukać. sądzę, że jeśli chcemy zrozumieć wszechświat, musimy zrozumieć neutrino, mówi Bonnie Fleming.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Trzmiel nie powinien latać, ale o tym nie wie, i lata, Lot trzmiela przeczy prawom fizyki. Setki tysięcy trafień w wyszukiwarkach, rozpaleni komentatorzy i teorie spiskowe, posiłkujące się tym mitem pokazują, jak bardzo trwałe potrafią być niektóre fałszywe przekonania. Bo przecież niemal każdy z nas słyszał, że zgodnie z prawami fizyki trzmiel latać nie powinien i każdy z nas widział, że jednak lata. Naukowcy najwyraźniej coś przed nami ukrywają lub coś nie tak jest z fizyką. A może coś nie tak jest z przekonaniem o niemożności lotu trzmiela?
      Obecnie trudno dociec, skąd wziął się ten mit. Jednak z pewnością możemy stwierdzić, że swój udział w jego powstaniu miał francuski entomolog Antoine Magnan. We wstępie do swojej książki La Locomotion chez les animaux. I : le Vol des insectes z 1934 roku napisał: zachęcony tym, co robione jest w lotnictwie, zastosowałem prawa dotyczące oporu powietrza do owadów i, wspólnie z panem Sainte-Lague, doszliśmy do wniosku, że lot owadów jest niemożliwością. Wspomniany tutaj André Sainte-Laguë był matematykiem i wykonywał obliczenia dla Magnana. Warto tutaj zauważyć, że Magnan pisze o niemożności lotu wszystkich owadów. W jaki sposób w popularnym micie zrezygnowano z owadów i pozostawiono tylko trzmiele?
      Według niektórych źródeł opowieść o trzmielu, który przeczy prawom fizyki krążyła w latach 30. ubiegłego wieku wśród studentów niemieckich uczelni technicznych, w tym w kręgu uczniów Ludwiga Prandtla, fizyka niezwykle zasłużonego w badaniach nad fizyką cieczy i aerodynamiką. Wspomina się też o „winie” Jakoba Ackereta, szwajcarskiego inżyniera lotnictwa, jednego z najwybitniejszych XX-wiecznych ekspertów od awiacji. Jednym ze studentów Ackerta był zresztą słynny Wernher von Braun.
      Niezależnie od tego, w jaki sposób mit się rozwijał, przyznać trzeba, że Magnan miałby rację, gdyby trzmiel był samolotem. Jednak trzmiel samolotem nie jest, lata, a jego lot nie przeczy żadnym prawom fizyki. Na usprawiedliwienie wybitnych uczonych można dodać, że niemal 100 lat temu posługiwali się bardzo uproszczonymi modelami skrzydła owadów i jego pracy. Konwencjonalne prawa aerodynamiki, używane do samolotów o nieruchomych skrzydłach, rzeczywiście nie są wystarczające, by wyjaśnić lot owadów. Tym bardziej, że Sainte-Laguë przyjął uproszczony model owadziego skrzydła. Tymczasem ich skrzydła nie są ani płaskie, ani gładkie, ani nie mają kształtu profilu lotniczego. Nasza wiedza o locie owadów znacząco się zwiększyła w ciągu ostatnich 50 lat, a to głównie za sprawą rozwoju superszybkiej fotografii oraz technik obliczeniowych. Szczegóły lotu trzmieli poznaliśmy zaś w ostatnich dekadach, co jednak nie świadczy o tym, że już wcześniej nie wiedziano, że trzmiel lata zgodnie z prawami fizyki.
      Z opublikowanej w 2005 roku pracy Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight autorstwa naukowców z Kalifornijskiego Instytut Technologicznego (Caltech) oraz University of Nevada, dowiadujemy się, że większość owadów lata prawdopodobnie dzięki temu, iż na krawędzi natarcia ich skrzydeł tworzą się wiry. Pozostają one „uczepione” do skrzydeł, generując siłę nośną niezbędną do lotu. U tych gatunków, których lot udało się zbadać, amplituda uderzeń skrzydłami była duża, a większość siły nośnej było generowanej w połowie uderzenia.
      Natomiast w przypadku pszczół, a trzmiele są pszczołami, wygląda to nieco inaczej. Autorzy badań wykazali, że pszczoła miodna charakteryzuje się dość niewielką amplitudą, ale dużą częstotliwością uderzeń skrzydłami. W ciągu sekundy jest tych uderzeń aż 230. Dodatkowo, pszczoła nie uderza skrzydłami w górę i w dół. Jej skrzydła poruszają się tak, jakby ich końcówki rysowały symbol nieskończoności. Te szybkie obroty skrzydeł generują dodatkową siłę nośną, a to kompensuje pszczołom mniejszą amplitudę ruchu skrzydłami.
      Obrany przez pszczoły sposób latania nie wydaje się zbyt efektywny. Muszą one bowiem uderzać skrzydłami z dużą częstotliwością w porównaniu do rozmiarów ich ciała. Jeśli przyjrzymy się ptakom, zauważymy, że generalnie, rzecz biorąc, mniejsze ptaki uderzają skrzydłami częściej, niż większe. Tymczasem pszczoły, ze swoją częstotliwością 230 uderzeń na sekundę muszą namachać się więcej, niż znacznie mniejsza muszka owocówka, uderzająca skrzydłami „zaledwie” 200 razy na sekundę. Jednak amplituda ruchu skrzydeł owocówki jest znacznie większa, niż u pszczoły. Więc musi się ona mniej napracować, by latać.
      Pszczoły najwyraźniej „wiedzą” o korzyściach wynikających z dużej amplitudy ruchu skrzydeł. Kiedy bowiem naukowcy zastąpili standardowe powietrze (ok. 20% tlenu, ok. 80% azotu) rzadszą mieszaniną ok. 20% tlenu i ok. 80% helu, w której do latania potrzebna jest większa siła nośna, pszczoły utrzymały częstotliwość ruchu skrzydeł, ale znacznie zwiększyły amplitudę.
      Naukowcy z Caltechu i University of Nevada przyznają, że nie wiedzą, jakie jest ekologiczne, fizjologiczne i ekologiczne znaczenie pojawienia się u pszczół ruchu skrzydeł o małej amplitudzie. Przypuszczają, że może mieć to coś wspólnego ze specjalizacją w kierunku lotu z dużym obciążeniem – pamiętajmy, że pszczoły potrafią nosić bardzo dużo pyłku – lub też z fizjologicznymi ograniczeniami w budowie ich mięśni. W świecie naukowym pojawiają się też głosy mówiące o poświęceniu efektywności lotu na rzecz manewrowości i precyzji.
      Niezależnie jednak od tego, czego jeszcze nie wiemy, wiemy na pewno, że pszczoły – w tym trzmiele – latają zgodnie z prawami fizyki, a mit o ich rzekomym łamaniu pochodzi sprzed około 100 lat i czas najwyższy odłożyć go do lamusa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Królewska Szwedzka Akademia Nauk ogłosiła, że tegoroczna Nagroda Nobla z fizyki została przyznana za wkład w zrozumienie złożonych systemów fizycznych. Połową nagrody podzielą się Syukuro Manabe i Klaus Hasselmann za fizyczne modelowanie klimatu Ziemi, obliczenie jego zmienności i wiarygodne przewidzenie procesu ocieplania się. Druga połowa trafi do Giorgio Parisiego za odkrycie współzależności nieuporządkowania i fluktuacji w systemach fizycznych, od skali atomowej po planetarną.
      Wszyscy trzej laureaci specjalizują się badaniu chaotycznych i pozornie przypadkowych wydarzeń. Manabe i Hasselmann położyli wielkie zasługi dla lepszego zrozumienia klimatu naszej planety i wpływu nań człowieka. Z kolei Parisi zrewolucjonizował naszą wiedzę o materiałach nieuporządkowanych i procesach losowych.
      Syukuro Manabe wykazał, w jaki sposób zwiększona koncentracja dwutlenku węgla w atmosferze prowadzi do zwiększenia temperatury na powierzchni Ziemi. Już w latach 60. ubiegłego wieku pracował nad rozwojem fizycznych modeli ziemskiego klimatu. Był pierwszym naukowcem, który badał związek pomiędzy bilansem radiacyjnym Ziemi a pionowym ruchem mas powietrza wywołanym konwekcją.
      Żeby poradzić sobie z tak skomplikowanym zadaniem obliczeniowym, stworzył uproszczony model, który opisywał pionową kolumnę powietrza o wysokości 40 kilometrów i za jego pomocą testował różny skład atmosfery. Po setkach godzin obliczeń i symulacji wykazał, że poziom tlenu i azotu mają pomijalny wpływ, a o temperaturze decyduje dwutlenek węgla. Uczony wykazał, że przy dwukrotnym wzroście stężenia CO2, temperatura na powierzchni rośnie o ponad 2 stopnie Celsjusza. Jego model potwierdził, że wzrost temperatury na powierzchni Ziemi rzeczywiście jest zależny od koncentracji CO2, gdyż przewidywał wzrost temperatury przy powierzchni i jednoczesne ochładzanie się wyższych partii atmosfery. Gdyby za wzrost temperatury odpowiadały zmiany w promieniowaniu słonecznym, to cała atmosfera powinna się ogrzewać w tym samym czasie.
      Swój uproszczony, dwuwymiarowy model, zapoczątkowany w latach 60., rozbudował, gdy wzrosły możliwości obliczeniowe komputerów i mógł do niego dodawać kolejne elementy. W roku 1975 Manabe przedstawił trójwymiarowy model klimatyczny. Był on kolejnym krokiem milowym ku lepszemu zrozumieniu klimatu. Prace Manabe stanowią fundament dla współczesnych modeli.
      Około 10 lat po przełomowych pracach Manabe Klaus Hasselmann stworzył model fizyczny, w którym połączył pogodę i klimat. Odpowiedział w ten sposób na niezwykle ważne pytanie, dlaczego modele klimatyczne mogą być wiarygodne, pomimo tego, że sama pogoda jest zmienna i chaotyczna. Hasselmann stworzył też metody pozwalające na zidentyfikowanie sygnałów, świadczących o wpływie na klimat zarówno procesów naturalnych, jak i działalności człowieka. To dzięki nim jesteśmy w stanie udowodnić, że zwiększone temperatury na powierzchni Ziemi są spowodowane antropogeniczną emisją dwutlenku węgla.
      W latach 50. Hasselmann był doktorantem fizyki w Hamburgu, gdzie zajmował się dynamiką płynów i rozwijał modele opisujące fale i prądy oceaniczne. Przeprowadził się do Kalifornii i nadal zajmował się oceanografią. Poznał tam m.in. słynnego Charlesa Keelinga, autora najdłuższej serii pomiarów stężenia CO2 w atmosferze. Jednak wówczas nie przypuszczał jeszcze, że w swoich badaniach będzie regularnie wykorzystywał krzywą Keelinga.
      Hasselmann wiedział, że stworzenie modelu klimatycznego z chaotycznych danych pogodowych będzie niezwykle trudne. A zadania nie ułatwia fakt, że zjawiska wpływające na klimat są niezwykle zmienne w czasie. Mogą być to zjawiska gwałtowne i szybko się zmieniające, jak siła wiatru i temperatura powietrza, ale również bardzo powolne, jak topnienie lodowców czy ogrzewanie się oceanów. Wystarczy wziąć pod uwagę fakt, że równomierne zwiększenie temperatury o 1 stopień Celsjusza może trwać w przypadku atmosfery kilka tygodni, ale w przypadku oceanów mogą minąć setki lat. Prawdziwym wyzwaniem było uwzględnienie tych szybkich chaotycznych zmian pogodowych w obliczeniach dotyczących klimatu i wykazaniu, w jaki sposób wpływają one na klimat. Hasselmann stworzył stochastyczny model klimatyczny, do którego zainspirowały go prace Einsteina nad ruchami Browna.
      A gdy już ukończył model zmienności klimatu i wpływu nań pogody, stworzył modele opisujące wpływ człowieka na cały system. Pozwalają one odróżnić np. wpływ zmian promieniowania słonecznego od wpływu gazów emitowanych przez wulkany, a te od wpływu gazów emitowanych przez człowieka.
      Około 1980 roku Giorgio Parisi, ostatni z tegorocznych laureatów, znalazł ukryte wzorce w nieuporządkowanych złożonych materiałach. To jedno z najważniejszych osiągnięć teorii złożonych systemów. Dzięki niemu jesteśmy w stanie lepiej rozumieć i badać wiele pozornie losowych zjawisk i nieuporządkowanych materiałów. Odkrycie to ma znaczenie nie tylko fizyce. Ma olbrzymie znaczenie dla matematyki, biologii, neurologii czy maszynowego uczenia się.
      Parisi rozpoczął swoje przełomowe prace od badań szkła spinowego. To materiał magnetyczny, który wykazuje lokalne uporządkowanie spinów, czyli momentów magnetycznych, ale nie posiadający wypadkowego momentu magnetycznego. Szkło spinowe to stop metalu, w którym mamy np. atomy żelaza są losowo rozmieszczone wśród atomów miedzi. Jednak mimo że w stopie znajduje się niewiele atomów żelaza, to radykalnie zmieniają one właściwości magnetyczne całego materiału. Zachowują się jak małe magnesy, na które wpływają sąsiadujące atomy. W standardowym magnesie wszystkie spiny mają ten sam kierunek.
      Jenak w szkle spinowym niektóre pary usiłują wskazywać w jednym kierunku, a inne w innym. Parisi chciał dowiedzieć się, jak wybierają one optymalną orientację. Problemem tym zajmowało się wielu wybitnych uczonych, w tym laureaci Nagrody Nobla. Jednym ze sposobów na znalezienie odpowiedzi było wykorzystanie tzw. replica trick, matematycznej metody, w której wiele kopii tego samego systemu było przetwarzanych jednocześnie. Jednak w fizyce się to nie sprawdzało.
      W 1979 roku Parisi dokonał przełomowego odkrycia na tym polu. Wykazał, że w kopiach istnieją ukryte struktury i opisał je matematycznie. Minęło wiele lat, zanim udowodniono, że rozwiązanie Parisiego jest prawidłowe. Od tamtej jednak pory jego metoda jest używana do badania systemów nieuporządkowanych.
      Syukuro Manabe urodził się w Japonii w 1931 roku. Jest pionierem w wykorzystaniu komputerów do symulowania klimatu. Pracę doktorską obronił na Uniwersytecie Tokijskim w 1958 roku, następnie wyjechał do USA, gdzie pracował w US Weather Bureau, NOAA (Narodowa Administracja Oceaniczna i Atmosferyczna) i Princeton University. Jest obecnie starszym meteorologiem na Princeton University. Jest również członkiem Akademii Nauk USA, zagranicznym członkiem Akademii Japońskiej, Academia Europaea i Royal Society of Canada, laureatem licznych nagród naukowych.
      Klaus Hasselmann, urodzony w Hamburgu w 1931 roku, to czołowy niemiecki oceanograf i specjalista od modelowania klimatu. Jest twórcą modelu zmienności klimatycznej nazwanego modelem Hasselmanna. Życie zawodowe związał głównie z Uniwersytetem w Hamburgu, pracował też na Uniwersytecie w Getyndzie i w Instytucie Dynamiki Cieczy im. Maxa Plancka. Był dyrektorem-założycielem Instytutu Meteorologii im. Maxa Plancka oraz dyrektorem naukowym w Niemieckim Centrum Obliczeń Klimatycznych. Obecnie zaś jest wiceprzewodniczącym Europejskiego forum Klimatycznego, które założył w 2001 roku wraz z prof. Carlo Jaegerem. Za swoją pracę naukową otrzymał m.in. nagrodę od Europejskiego Towarzystwa Geofizycznego i amerykańskich oraz brytyjskich towarzystw Meteorologicznych.
      Giorgio Parisi urodził się w 1948 roku. Jest fizykiem teoretycznym, a jego zainteresowania koncentrują się na mechanice statystycznej, kwantowej teorii pola i systemach złożonych. Pracował w Laboratori Nazionali di Frascati, na Columbia University, Institut des Hautes Études Scientifiques oraz École normale supérieure i Uniwersytecie Rzymskim Tor Vergata. Jest też prezydentem jednej z najstarszych i najbardziej prestiżowych europejskich instytucji naukowych Accademia dei Lincei oraz członkiem Francuskiej Akademii Nauk, amerykańskiej Akademii Nauk czy Amerykańskiego Towarzystwa Filozoficznego. Parisi to laureat wielu nagród w tym Nagrody Enrico Fermiego czy Medalu Maxa Plancka.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...