Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Rekordowe tesle. Nowy magnes dla akceleratorów cząstek wygenerował 14,5 tesli

Recommended Posts

Specjaliści z Fermilab stworzyli najpotężniejszy na świecie magnes do akceleratorów cząstek. Magnes pozwala na wygenerowanie pola magnetycznego o indukcji 14,5 tesli. Poprzedni rekord wynosił 14,1 tesli i również został ustanowiony w Fermilab.

Obecne osiągnięcie to niezwykle ważny krok dla budowy przyszłych akceleratorów cząstek. Bez silniejszych magnesów nie powstaną bowiem przyszłe akceleratory, takie jak proponowany przez CERN 100-kilometrowy Future Circural Collider (FCC). O ile bowiem Wielki Zderzacz Hadronów wykorzystuje magnesy generujące pole 7,8 tesli, to w FCC naukowcy będą potrzebowali nawet 16 tesli.

Naszym kolejnym celem jest przekroczenie poziomu15 tesli i zwiększenie maksymalnej siły pola naszych magnesów do 17 tesli albo i więcej. To znakomicie zwiększy wydajność magnesów i zoptymalizuje koszty, mów Alexander Zlobin, który stoi na czele grupy pracującej nad magnesami. Osiągnięcie wyznaczonych przez nas celów położy silne podwaliny pod przyszłe akceleratory cząstek, dodaje uczony.

W akceleratorach magnesy są używane do kontrolowania wiązki cząstek poruszających się niemal z prędkością światła. Im silniejszy magnes tym łatwiej wiązkę kontrolować.

Warto zauważyć, że Fermilab znacząco przyspieszyło postęp w dziedzinie magnesów. Prace nad przekroczeniem granicy 14 tesli trwały przez kilkanaście lat. W 2011 roku w Lawrence Berkeley National Laboratory osiągnięto 13,8 tesli. Rekord ten utrzymał się do 2019 roku, kiedy to w Fermilab osiągnięto 14,1 tesli. Wystarczył rok, by osiągnąć 14,5 tesli.

Tworzenie coraz silniejszych magnesów to konieczność, jeśli chcemy mieć coraz doskonalsze akceleratory. Nie jest to jednak łatwe zadanie. Problem nie tylko w samej technologii, ale też w konieczności opracowywania nowych materiałów. W Wielkim Zderzaczu Hadronów pracują magnesy niobowo-tytanowe. Nie są one w stanie wytrzymać napięcia prądu elektrycznego potrzebnego do wygenerowania 15 tesli. Z odpowiednimi napięciami mogą pracować magnesy niobowo-cynowe, jednak ą one bardzo kruche i mogą rozsypać się pod wpływem działających na nie sił.

Dlatego w Fermilab już podczas bicia poprzedniego rekordu stworzono specjalną architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją.

I to właśnie magnesy niobowo-cynowe mają pozwolić na osiągnięcie 17 tesli. Zlobin nie wyklucza, że w przyszłości, dzięki nowym materiałom, uda się wygenerować nawet 20 tesli.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Mam nadzieję Jarku, że rozumiesz taki termin jak "multi-shot". Takie pierdoły może dobrze robią przy rozwolnieniu, ale nie w tym o czym jest mowa, czyli w akceleratorach. :)

Biorąc w obronę Mariusza zacytuję pierwsze zdanie (przeczytaj powoli, ze zrozumieniem ;)):

4 godziny temu, KopalniaWiedzy.pl napisał:

Specjaliści z Fermilab stworzyli najpotężniejszy na świecie magnes do akceleratorów cząstek.

 

Share this post


Link to post
Share on other sites

"Multi-shot" brzmi jak "pulsed" (?) ale nie znam się - tylko przesłałem obecnie rekordowe w kategoriach stałego i "pulsed".

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Specjaliści z Niemieckiego Synchrotronu Elektronowego (DESY – Deutsches Elektronen-Synchrotron) i Uniwesytetu w Hamburgu osiągnęli ważny krok milowy na drodze do stworzenia akceleratora cząstek przyszłości. Po raz pierwszy w historii laserowy akcelerator plazmowy pracował bez przerwy dłużej niż przez dobę. Urządzenie LUX było uruchomione przez 30 godzin.
      To przybliża nas do momentu, gdy ten innowacyjny akcelerator cząstek będzie mógł pracować w trybie ciągłym. Najwyższy czas, by technologia ta wyszła z laboratorium i znalazła zastosowanie w praktyce, mówi dyrektor Wydziału Akceleratora w DESY, Wim Leemans. Przed kilku laty brał on udział w stworzeniu w USA wyjątkowego lasera BELLA.
      Fizycy mają nadzieję, że technologia laserowych akceleratorów plazmowych pozwoli na budowę kompaktowych akceleratorów o unikatowych właściwościach, które znajdą liczne zastosowania. W technologii tej impuls laserowy tworzy falę plazmy w cienkim zbiorniku kapilarnym. Plazma to gaz, którego molekuły zostały pozbawione elektronów. W LUX gazem tym jest wodór.
      Impulsy lasera żłobią sobie drogę w gazie, pozbawiając molekuły wodoru elektronów i usuwając je na bok. Wzbudzone impulsem światła elektrony uzyskują dużą energię i są niesione przez dodatnio naładowaną falę plazmy przed nimi, wyjaśnia Andreas Maier, który stał na czele grupy badawczej DESY.
      Technika ta pozwala na uzyskanie nawet 1000-krotnie większych przyspieszeń cząstek niż za pomocą najpotężniejszych tradycyjnych akceleratorów. Można więc przyspieszać je do olbrzymich prędkości na krótkich odcinkach. A to oznacza, że laserowe akceleratory plazmowe mogą być potężnymi kompaktowymi urządzeniami, które znajdą zastosowanie zarówno w naukach podstawowych jak i w medycynie.
      Technika wymaga jeszcze dopracowania i przed naukowcami jest sporo problemów technicznych do rozwiązania. Teraz, gdy możemy uruchamiać nasze wiązki przez dłuższy czas, łatwiej nam będzie rozwiązać te problemy, dodaje Maier.
      Podczas rekordowo długiej pracy naukowcom udało się uzyskać ponad 100 000 wiązek elektronów. Wiązka była generowana w mniej niż sekundę. Dzięki temu zdobyto olbrzymie ilości danych dotyczących pracy akceleratora. Teraz możemy na przykład precyzyjnie zidentyfikować, w którym miejscu lasera generowane są niepożądane fluktuacje wiązki. Wiemy więc, gdzie zacząć prace nad poprawą jej jakości. To zaś podstawa do opracowania aktywnych technik stabilizacji wiązki, podobnych do tych, jakie są wykorzystywane w tradycyjnych wielkich akceleratorach, stwierdza Leemans.
      Naukowcy mówią, że ich system już teraz mógłby pracować dłużej niż 30 godzin, ale celowo zatrzymali go po 30 godzinach. Po pierwszym takim udanym eksperymencie powtarzali go jeszcze trzykrotnie. To dowodzi, że laserowe akceleratory plazmowe mogą generować powtarzalny i kontrolowalny impuls. To pozwala na dalszy rozwój tej technologii, podsumowuje Leemans. O szczegółach można przeczytać na łamach Physical Review X.
      Zainteresowanie laserowymi akceleratorami plazmowymi szybko rośnie. Niedawno informowaliśmy, że europejskie konsorcjum EuPRAXIA chce zbudować praktyczny akcelerator plazmowy. Obecnie na świecie istnieje około 20 takich prototypowych urządzeń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord jasności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć jasność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Jasność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 manometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania jasności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało z jasnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął jasność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął jasność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje z jasnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat jasność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleść ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rada CERN jednogłośnie przyjęła dzisiaj plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Plan zakłada m.in. wybudowanie 100-kilometrowego akceleratora cząstek. O stworzeniu wstępnego raportu projektowego budowy Future Cilcular Collider (FCC) informowaliśmy na początku ubiegłego roku.
      The European Strategy for Particle Physics został po raz pierwszy przyjęty w 2006 roku, a w roku 2013 doczekał się pierwszej aktualizacji. Prace nad jego obecną wersją rozpoczęły się w 2018 roku, a w styczniu ostateczna propozycja została przedstawiona podczas spotkania w Niemczech. Teraz projekt zyskał formalną akceptację.
      CERN będzie potrzebował znaczniej międzynarodowej pomocy, by zrealizować swoje ambitne plany. Stąd też w przyjętym dokumencie czytamy, że Europa i CERN, za pośrednictwem Neutrino Platform, powinny kontynuować wsparcie dla eksperymentów w Japonii i USA. W szczególności zaś, należy kontynuować współpracę ze Stanami Zjednoczonymi i innymi międzynarodowymi partnerami nad Long-Baseline Neutriono Facility (LBNF) oraz Deep Underground Neutrino Experiment (DUNE).
      Obecnie szacuje się, że budowa nowego akceleratora, który byłby następcą Wielkiego Zderzacza Hadronów, pochłonie co najmniej 21 miliardów euro. Instalacja, w której dochodziłoby do zderzeń elektronów z pozytonami, miała by zostać uruchomiona przed rokiem 2050.
      Zatwierdzenie planów przez Radę CERN nie oznacza jednak, że na pewno zostaną one zrealizowane. Jednak decyzja taka oznacza, że CERN może teraz rozpocząć pracę nad projektem takiego akceleratora, jego wykonalnością, a jednocześnie rozważać inne konkurencyjne projekty dla następcy LHC. Myślę, że to historyczny dzień dla CERN i fizyki cząstek, zarówno w Europie jak i poza nią, powiedziała dyrektor generalna CERN Fabiola Gianotti po przyjęciu proponowanej strategii.
      Z opinią taką zgadzają się inni specjaliści. Dotychczas bowiem CERN rozważał wiele różnych propozycji. Teraz wiadomo, że skupi się przede wszystkim na tej jednej.
      Przyjęta właśnie strategia zakłada dwuetapowe zwiększanie możliwości badawczych CERN. W pierwszym etapie CERN wybuduje zderzacz elektronów i pozytonów, którego energia zostanie tak dobrana, by zmaksymalizować produkcję bozonów Higgsa i lepiej zrozumieć ich właściwości.
      Później instalacja ta zostanie rozebrana, a w jej miescu powstanie potężny zderzacz protonów. Urządzenie będzie pracowało z energiami rzędu 100 teraelektronowoltów (TeV). Dla porównania, LHC osiąga energie rzędu 16 TeV.
      Zadaniem nowego zderzacza będzie poszukiwanie nowych cząstek i sił natury. Większość technologii potrzebna do jego zbudowania jeszcze nie istnieje. Będą one opracowywane w najbliższych dekadach.
      Co ważne, mimo ambitnych planów budowy 100-kilometrowego zderzacza, nowo przyjęta strategia zobowiązuje CERN do rozważenia udziału w International Linear Collider, którego projekt jest od lat forsowany przez japońskich fizyków. Japończycy są zadowoleni z takiego stanowiska, gdyż może pozwoli to na przekonanie rządu w Tokio do ich projektu.
      W przyjętej właśnie strategii czytamy, że CERN będzie kontynuował rozpoczęte już prace nad High Luminosity LHC (HL-LHC), czyli udoskonaloną wersją obecnego zderzacza. Budowa 100-kilometrowego tunelu i zderzacza elektronów i pozytonów ma rozpocząć się w roku 2038. Jednak zanim ona wystartuje, CERN musi poszukać pieniędzy na realizację swoich zamierzeń. Chris Llewellyn-Smith, były dyrektor generalny CERN, uważa, że do europejskiej organizacji mogłyby dołączyć Stany Zjednoczone, Japonia i Chiny, by powołać nową globalną organizację fizyczną.
      Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN. Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek. Z opinią tą zgadza się Tara Shears z University of Liverpool. Uczona zauważa, że o ile powodem, dla którego budowano LHC było poszukiwanie bozonu Higgsa i urządzenie spełniło stawiane przed nim zadanie, to obecnie brak dobrze umotywowanych powodów naukowych, by budować jeszcze potężniejszy akcelerator. Nie mamy obecnie żadnych solidnych podstaw. A to oznacza, że cały projekt obarczony jest jeszcze większym ryzykiem, mówi. Dodaje jednak, że jednocześnie wiemy, że jedynym sposobem na znalezienie odpowiedzi są eksperymenty, a jedynymi miejscami, gdzie możemy je znaleźć są te miejsca, w które jeszcze nie zaglądaliśmy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele wskazuje na to, że gradzina, która spadła na argentyńskie miasto Villa Carlos Paz 8 lutego 2018 r., może ustanowić nowy rekord wielkości takich bryłek lodu. Dotychczasowy rekord należy do 20,3-cm gradziny, którą znaleziono 23 lipca 2010 r. w Vivian w Dakocie Południowej.
      Naukowcy przeanalizowali bryłki lodu, które spadły nieco ponad 2 lata temu w Argentynie podczas przechodzenia superkomórki burzowej. Maksymalne wymiary tej opisanej na łamach Bulletin of the American Meteorological Society to aż 18,7 na 23,6 cm.
      Prowadząc badania, naukowcy opierali się na wizytach w miejscu zdarzenia, relacjach świadków (było ich sporo ze względu na dużą gęstość zaludnienia), zdjęciach i filmach z serwisów społecznościowych (stąd pozyskano dane fotogrametryczne), danych meteorologicznych i sygnaturach radarowych. Jedna z gradzin została przechowana w zamrażarce, dzięki czemu akademicy mogli dokonać szczegółowych pomiarów.
      Rachel Gutierrez z Penn State odkryła związek między prędkością obrotową prądu wstępującego i większymi rozmiarami gradziny, ale nie wiadomo, na czym on dokładnie polega. Autorzy raportu zaproponowali, żeby bryłki większe niż 15 cm klasyfikować jako "gargantuiczne".
      Superkomórki burzowe cechują bardzo silne, szerokie prądy wstępujące, co ma duże znaczenie dla rozwoju dużych gradzin. Wzorce przepływu powietrza podczas burzy sprawiają, że cząstki opadowe pokonują w prądzie wznoszącym długą drogę, co maksymalizuje czas spędzany w regionie sprzyjającym wzrostowi gradzin - wyjaśnia prof. Matthew Kumjian.
      Tak duży grad może wyrządzić spore szkody. Wg relacji świadków, w Argentynie doszło m.in. do zniszczenia samochodów - w blacharce pojawiły się spore wgniecenia - oraz dachów domów. O ile nam wiadomo, na szczęście nikt nie odniósł poważniejszych obrażeń.
      Gutierrez zaznacza, że takie dane, zwłaszcza spoza USA, są bezcenne. Kumjian dodaje, że tak dobrze zaobserwowany przypadek to ważny krok naprzód w zakresie zrozumienia środowisk i burz, które generują gargantuiczny grad [...]. Jak podkreśla, w pewnych rzadkich przypadkach gargantuiczna gradzina może przebić się przez dach i pokonać parę pięter. Chcielibyśmy pomóc w ograniczeniu wpływu takich zdarzeń na ludzkie życie i majątek. Zależy nam na możliwości przewidywania takich zdarzeń.
      Grad gargantuiczny może występować częściej niż dotąd uważano. Naukowcy potrzebują jednak ochotników, którzy będą raportować takie zdarzenia i zapewniać dokładne pomiary, np. robiąc zdjęcia z obiektem referencyjnym - przedmiotem codziennego użytku lub linijką.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory.
      Zwiększenie indukcji magnetycznej to znaczące osiągnięcie w fizyce cząstek. Silniejsze magnesy mogą posłużyć do zbudowania doskonalszych akceleratorów, które zastąpią w przyszłości Wielki Zderzacz Hadronów (LHC). Magnesy są wykorzystywane w akceleratorach do kontrolowania poruszających się cząstek. Im są silniejsze, tym łatwiej kontrolować cząstki poruszające się niemal z prędkością światła.
      Przez kilkanaście lat pracowaliśmy nad przekroczeniem granicy 14 tesli, więc to ważne osiągnięcie. W pierwszym teście uzyskaliśmy 14,1 tesli na demonstracyjnym magnesie, dla którego teoretyczna granica wynosi 15 tesli. Pracujemy nad wyciśnięciem z niego jeszcze więcej, mówi Alexander Zlobin, który stoi na czele grupy badawczej.
      Przyszłość zderzaczy hadronów zależy od dostępności silnych magnesów, dlatego fizycy na całym świecie są zainteresowani pracami mającymi na celu stworzenie niobowo-cynowych magnesów o indukcji 15 tesli.
      Sercem takiego urządzenia jest nadprzewodzący stop niobu z cyną. Prąd przepuszczany przez magnes powoduje pojawienie się pola magnetycznego. Jako, że materiał schłodzony jest do bardzo niskich temperatur, prąd nie napotyka oporu, nie dochodzi do generowania energii cieplnej. Całe energia elektryczna przyczynia się do wygenerowania pola magnetycznego.
      Indukcja zależy zaś od maksymalnego napięcia prądu, jakie może znieść dany materiał. Niobowo-tytanowe magnesy Wielkiego Zderzacza Hadronów nie są w stanie pracować z napięciem, które pozwalałoby na osiągnięcie 15 tesli. Można to uzyskać magnesach niobowo-cynowych, problem jednak w tym, że są one kruche i mogą się rozsypać pod wpływem działających na nie olbrzymich sił.
      Zespół z Fermilab stworzył taką architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją.
      To olbrzymie osiągnięcie, kluczowe dla rozwoju kolejnych generacji kołowych akceleratorów cząstek, mówi Soren Prestemon, naukowiec z Berkeley Lab i dyrektor U.S. Magnet Development Program, w skład którego wchodzi zespół z Fermilab. To wyjątkowy krok milowy na drodze ku opracowaniu magnesów. Osiągnięcie zostało z entuzjazmem przyjęte przez badaczy, którzy będą w przyszłości wykorzystywali akceleratory nowej generacji.
      Naukowcy z Fermilab zapowiadają, że w ciągu najbliższych miesięcy wzmocnią swój magnes pod względem mechanicznym i jesienią poddadzą go kolejnemu testowi, w czasie którego spróbują uzyskać 15 tesli. Ma być to wstępem do stworzenia jeszcze potężniejszych magnesów. W oparciu o ten projekt i o to, czego się nauczyliśmy, mamy zamiar udoskonalić magnesy niobowo-cynowe i w przyszłości osiągnąć 17 tesli, mówi Ziobin. Naukowiec nie wyklucza, że w przyszłości, wykorzystując nowe nadprzewodniki, jego zespół dojdzie do 20 tesli.
      Maksymalna indukcja pola magnetycznego magnesów LHC wynosi 8,34 tesli, czyli jest blisko górnej granicy 10 tesli dla magnesów niobowo-tytanowych. Z kolei w ubiegłym roku CERN informował o uzyskaniu dzięki magnesowi FRESCA2 14,6 tesli. FRESCA2 jest to magnes, który służy do testowania nadprzewodników, a nie do pracy wewnątrz akceleratora cząstek.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...