Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'sensor' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 9 wyników

  1. Basy rapu mogą pomóc w podtrzymaniu pracy wszczepialnego czujnika nacisku. Naukowcy z Purdue University zauważyli bowiem, że fale akustyczne (szczególnie te z rapu) skutecznie go doładowują. Urządzenie będzie miało wiele zastosowań. Już teraz wspomina się o pacjentach z tętniakami czy wywołanym paraliżem nietrzymaniem moczu. Jak tłumaczą projektanci, sercem sensora jest wibrujący wspornik. Muzyka o określonych częstotliwościach (200-500 herców) wywołuje drgania beleczki. Jako że wykonano ją z piezoelektrycznej ceramiki, a konkretnie z tytaniano-cyrkonianu ołowiu (PZT), pod wpływem naprężeń na powierzchni pojawiają się ładunki elektryczne. Energia zostaje zmagazynowana w kondensatorze. Czujnik ma długość ok. 2 cm. Zespół z Purdue przetestował go w balonie wypełnionym wodą. Muzyka osiąga właściwą częstotliwość tylko w pewnych momentach, np. gdy grają mocne basy - tłumaczy Babak Ziaie. Kiedy częstotliwość wychodzi poza właściwy zakres, beleczka przestaje drgać, automatycznie wysyłając do czujnika ładunek elektryczny. Sensor mierzy ciśnienie, a dane przesyła w postaci sygnałów radiowych (są one widoczne na oscyloskopie). Ponieważ częstotliwość stale się zmienia w zależności od rytmu utworu, czujnik przełącza się między interwałami gromadzenia ładunku i przesyłu danych. Ziaie dodaje, że pomiar trwa zaledwie chwilę. Do monitorowania ciśnienia krwi czy moczu w pęcherzu wystarczy parę minut raz na godzinę. Odbiornik sygnału można umieścić w odległości kilkudziesięciu centymetrów od pacjenta. Urządzenie doładowuje się, oczywiście, nie tylko pod wpływem muzyki. Wystarczy odtwarzać niestanowiące kompozycji dźwięki o konkretnej częstotliwości. Odtwarzanie dźwięków bywa jednak drażniące, dlatego pomyśleliśmy, że wykorzystanie muzyki byłoby czymś nowym i przyjemniejszym estetycznie. Eksperymentowano z 4 rodzajami muzyki: rapem, jazzem, bluesem i rokiem. Rap okazał się najlepszy, ponieważ zawiera dużo dźwięków o niskich częstotliwościach, w szczególności basów. Ziaie podkreśla, że urządzenie pomysłu jego zespołu stanowi świetną alternatywę dla czujnika z bateriami, które trzeba co jakiś czas wymieniać.
  2. Badacze z Uniwersytetu Tokijskiego donoszą o stworzeniu mikroskopijnych kapsułek, które umożliwiają precyzyjny pomiar temperatury cieczy na podstawie obserwacji fluorescencji. Ponieważ materiał wykorzystany do ich produkcji jest nietoksyczny, najważniejszym zastosowaniem wynalazku będzie najprawdopodobniej ustalanie temperatury wewnątrz pojedynczych komórek. Miniaturowe sensory, opisane na łamach czasopisma Journal of American Chemical Society, składają się z dwóch głównych elementów połączonych ze sobą w formie nanożelu. Pierwszym z nich jest związek nazwany DBD-AA, należący do tzw. fluoroforów, czyli związków zdolnych do fluorescencji. Drugim jest polimer o nazwie polyNIPAM, którego cząsteczki są zdolne do gwałtownej zmiany struktury wewnętrznej pod wpływem zmian temperatury. Działanie "termometru" jest wypadkową cech obu związków. DBD-AA wytwarza światło po oświetleniu niebieskim laserem, lecz jego fluorescencja gwałtownie słabnie pod wpływem wody. Dostęp tej ostatniej jest z kolei kontrolowany przez polyNIPAM, który pęcznieje w niskich temperaturach, ułatwiając przenikanie wody do wnętrza kapsułek. Dochodzi wówczas do tłumienia światła wydzielanego przez fluorofor. Odwrotnie dzieje się po ogrzaniu sensora - trójwymiarowa sieć utworzona przez cząsteczki polyNIPAM ulega zaciśnięciu, co prowadzi do usunięcia wody i przywrócenia DBD-AA zdolności do emisji światła. Zjawisko to zachodzi w sposób bardzo przewidywalny, co pozwala na pomiar temperatury z dokładnością do 0,5, a nawet 0,3°C. Dodatkową zaletą opracowanych kapsułek jest ich rozpuszczalność w wodzie - cecha, której nie posiada prawdopodobnie żaden konkurencyjny prototyp. Jest to niezwykle istotne, gdyż umożliwia - w połączeniu z brakiem toksyczności składników nanożelu - wprowadzenie "termometru" do wnętrza żywych komórek. Co więcej, poziom fluorescencji jest niezależny od pH otoczenia, co dodatkowo zwiększa wiarygodność pomiarów. Japońscy naukowcy planują na najbliższą przyszłość opracowanie zmodyfikowanej wersji czujników, które mogłyby zostać wprowadzone do ściśle określonych rejonów komórki. Pozwoliłoby to na dalsze zwiększenie dokładności pomiarów, co znacząco ułatwiłoby prowadzenie badań z zakresu biologii.
  3. Nie tak dawno pisaliśmy o miniaturowym ciśnieniomierzu, który swobodnie mieści się we wnętrzu tętnicy udowej. Tym razem badacze z Uniwersytetu Purdue proponują nanotechnologiczny implant pozwalający na pomiar innego ważnego parametru - poziomu glukozy we krwi. Urządzenie wykorzystuje niezwykle wysokie przewodnictwo elektryczne węglowych nanorurek oraz tzw. biokompatybilność złota, czyli brak zdolności organizmu do jego wykrycia i uruchomienia reakcji immunologicznej. Jak twierdzą autorzy prototypu, pozwala on na osiągnięcie precyzji pomiaru niespotykanej dotąd w urządzeniach o podobnym stopniu miniaturyzacji. Produkcja układu zachodzi w kilku etapach. Wyjściowym materiałem do jego wytwarzania jest bloczek wykonany z glinu posiadający wyjątkową, porowatą strukturę, powstający na warstewce tytanu. Kolejny proces polega na wytworzeniu ultraczystych, cienkościennych węglowych nanorurek (cienkie granatowe linie biegnące w poprzek obrazka), które "wyrastają" z pokrytego tytanem dna porów na powierzchnię kanalików. Do powstającej sieci nanorurek przykłada się napięcie, które umożliwia odkładanie się metalu - palladu, które tworzą miniaturowe kryształy na powierzchni sensora (są to widoczne na zdjęciu żółte struktury o kostkowatym kształcie) oraz wewnątrz kanalików. Na jego powierzchni jest z kolei odkładane złoto, które służy jako biokompatybilna baza dla elementu wykrywającego bezpośrednio poziom glukozy. Ostatnią warstwę, przyłączoną do powierzchni czujnika, stanowi enzym - oksydaza glukozy. Przeprowadza ona rozkład glukozy do kwasu glukonowego i nadtlenku wodoru (wody utlenionej). Ta ostatnia rozpada się błyskawicznie z wytworzeniem tlenu oraz dwóch rodzajów jonów: kationów wodorowych H+ oraz anionu tlenowego O2-. Wytworzone jony posiadają ładunek elektryczny, więc ich wytwarzanie objawia się jako zmiana napięcia elektrycznego mierzonego na elektrodach wchodzących w skład urządzenia. To właśnie ilość powstających jonów służy do oceny stężenia glukozy znajdującej się w badanym roztworze. Jak twierdzą badacze z Uniwersytetu Purdue, ich wynalazek jest w stanie wykryć glukozę o stężeniu aż pięciokrotnie niższym, niż inne miniaturowe detektory. Co więcej, urządzenie jest tak małe (najmniejsza jego wersja ma wymiary 0,5 x 0,5 mm), że możliwe jest instalowanie go we wnętrzu naczyń krwionośnych. Teoretycznie umożliwia to wykonywanie pomiarów stężenia cukru w róznych miejscach ciała i w różnych typach naczyń krwionośnych, dzięki czemu ocena stanu zdrowia cukrzyka mogłaby być znacznie bardziej wnikliwa, niż obecnie. Konstrukcja sensora jest wysoce uniwersalna i pozwala na przyłączenie różnych enzymów, które mogłyby wykrywać wiele rodzajów substancji obecnych w krwi czy dowolnym innym roztworze. Potencjalne zastosowanie dla podobnych platform jest więc niemal nieograniczone. Wcześniej konieczne będzie jednak ich przetestowanie i dopuszczenie do użytku, co może zająć nawet kilka lat.
  4. Niewielki detektor zasilany przez elementy żywych komórek może służyć do wykrywania substancji wybuchowych - twierdzą badacze z Uniwersytetu St Louis. Pomysłowy projekt zaprezentowano na łamach czasopisma Journal of the American Chemical Society. Źródłem energii dla tego interesującego miniurządzenia jest kwas pirogronowy, zaś elementem pozwalającym na jej uzyskanie są mitochondria - centra energetyczne komórek, odpowiedzialne za wytwarzanie wewnątrzkomórkowych nośników energii chemicznej. Prawidłowo funkcjonujące mitochondria utleniają kwas pirogronowy, a jednym z produktów tej reakcji są jony wodorowe H+. Ponieważ posiadają one ładunek elektryczny, zmiana ich stężenia może być traktowana jako przepływ prądu elektrycznego. Pomiar napięcia wytwarzanej elektryczności można wobec tego wykorzystać do określenia poziomu aktywności mitochondriów. Działanie centrum energetycznego komórki można łatwo zablokować za pomocą antybiotyku oligomycyny. Prowadzi to do obniżenia aktywności elektrycznej mitochondrium. Oddziaływanie oligomycyny można jednak zneutralizować, np. za pomocą nitrobenzenu - jednego ze związków organicznych, stosowanego często jako materiał wybuchowy. Właśnie tę chemiczną "konkurencję" wykorzystano do opracowania sensora. Głównym elementem urządzenia jest elektroda pokryta mitochondriami, zanurzona w pożywce zawierającej kwas pirogronowy i oligomycynę. Do roztworu dodaje się następnie próbkę podejrzewaną o obecność ładunku wybuchowego. Aby potwierdzić lub odrzucić prawdopodobieństwo występowania niebezpiecznej substancji, wystarczy prosty pomiar napięcia prądu elektrycznego wytwarzanego przez mitochondria. Autorem prototypu jest dr Shelley Minteer, pracująca dla Uniwersytetu St Louis. Jak twierdzi badaczka, prace jej zespołu pozwoliły na stworzenie detektora zdolnego do wykrycia nitrobenzenu w stężeniu zaledwie dwóch cząsteczek na bilion (1012). Co więcej, jak mówi sama autorka, powinniśmy być w stanie wykryć wszystkie organiczne związki wybuchowe z grupą nitrową [NO2]. Badania mogące potwierdzić to przypuszczenie już trwają.
  5. Zbudowany z nanorurek skaner jest w stanie wykryć raka płuc na podstawie prostej analizy wydychanego powietrza. Autorami tego interesującego wynalazku są specjaliści z Izraelskiego Instytutu Technologii. Prototyp urządzenia, który zaprezentowano na łamach czasopisma Nano Letters, powstał dzięki zespołowi kierowanemu przez dr. Hossama Haicka. Sercem maszyny jest matryca złożona z dziesięciu grup węglowych nanorurek o jednowarstwowych ściankach. W każdej grupie rurki są pokryte innym rodzajem związku organicznego, umożliwiającego wykrywanie określonej puli substancji obecnych w powietrzu wydychanym przez osoby podejrzewane o występowanie u nich raka płuc. Urządzenie pozwala łącznie na wykrywanie ponad dwustu różnych lotnych związków organicznych. Prototyp detektora wyprodukowano dzięki zastosowaniu nowoczesnych technologii stosowanych przy produkcji mikroprocesorów. Został on przetestowany na piętnastu zdrowych, niepalących osobach, a zebrane informacje porównano z wynikami uzyskanymi u tej samej liczby pacjentów cierpiących na raka płuc w czwartym, najcięższym stadium rozwoju. Powietrze wydychane przez poszczególne osoby analizowano równolegle za pomocą wynalazku izraelskich badaczy i z wykorzystaniem połączonych ze sobą superczułych urządzeń: chromatografu gazowego oraz spektrometru mas. Analizy z wykorzystaniem tych ostatnich są co prawda niezwykle czułe i precyzyjne, lecz ich koszt uniemożliwia wprowadzenie ich do rutynowej diagnostyki. Celem testu było więc stwierdzenie, czy detektor oparty na nanorurkach jest w stanie zastąpić te ultranowoczesne metody. Analiza przepływu elektryczności przez rurki należące do każdego z dziesięciu sensorów pozwoliła na określenie ilości wychwyconych związków z poszczególnych grup. Eksperyment pokazał wyraźnie, że istnieją ogromne różnice pomiędzy powietrzem wydychanym przez osoby zdrowe i chore, co pozwala przypuszczać, że możliwe jest diagnozowanie niektórych przypadków raka płuc na podstawie prostego badania wydychanego powietrza. Grupa trzydziestu osób to oczywiście zbyt mało, by wyniki można było uznać za pewne. W związku z tym badacze z Izraela planują przeprowadzenie dalszych badań, tym razem na znacznie liczniejszej grupie osób ochotników. Od ich wyników będzie zależało ewentualne dopuszczenie urządzenia do stosowania w diagnostyce medycznej.
  6. Przeciwciała to nie tylko cząsteczki kluczowe dla naszej odporności. Mają one także zastosowanie w wielu technologiach związanych m.in. z diagnostyką medyczną oraz wykrywaniem toksyn. Mimo to, niektóre ich wady znacznie utrudniają ich zastosowanie na szeroką skalę. Czy syntetyczne odpowiedniki przeciwciał rozwiążą ten problem? Na rynku dostępna jest coraz szerszy wybór testów wykorzystujących zdolność przeciwciał (immunoglobulin) do wybiórczego wiązania ściśle określonych cząsteczek. Najlepiej znanym z nich jest bez wątpienia test ciążowy. Co prawda jest on prosty w użyciu i wygodny, lecz koszt jego produkcji oraz trwałość zastosowanych odczynników pozostawiają wiele do życzenia. Obiecujący pomysł na rozwiązanie tych niedogodności prezentują naukowcy z Uniwersytetu Kalifornijskiego. Głównym autorem technologii jest prof. Kenneth Shea. Zaprezentowana przez jego zespół cząsteczka jest zdolna do silnego, lecz jednocześnie wybiórczego wiązania cząsteczek melityny - głównej toksyny jadu pszczół. Do tworzenia "sztucznego przeciwciała" użyto techniki zwanej "piętnowaniem molekularnym" (ang. molecular imprinting). Przypomina ona tworzenie odlewu rzeźby. Cząsteczka, która ma być wykrywana, jest opłaszczana warstwą molekuł przylegających do jej powierzchni. Powstaje w ten sposób unikalny wzór wgłębień i wypukłości, charakterystyczny dla danego związku. Wytworzoną powłokę utrwala się poprzez polimeryzację, czyli wzajemne połączenie cząsteczek wchodzących w jej skład, a następnie wypłukuje się wykrywaną cząsteczki z jej wnętrza. Powstaje w ten sposób "forma" zdolna do wychwytywania innej cząsteczki tej samej substancji Piętnowanie molekularne jest od pewnego czasu stosowane w przemyśle, lecz brakowało dotychczas metod pozwalających na produkowanie "form" zdolnych do wykrywania substancji wielkocząsteczkowych, takich jak białka. Problemem były także właściwości fizykochemiczne polimeru używanego do produkcji "sztucznych przeciwciał", spośród których najistotniejsza była niska rozpuszczalność w wodzie. Problem rozwiązano dzięki wykorzystaniu do produkcji "odlewu" substancji innej niż zwykle. Jak tłumaczy prof. Shea, wykonano sporo pracy, aby ustalić kompozycję, która zminimalizuje interakcje z ogromną różnorodnością białek [innych niż wykrywane]. Przeprowadzone testy wykazały, że modelowe "przeciwciało" wykrywa melitynę równie skutecznie, co naturalne ludzkie immunoglobuliny. Zdaniem prof. Shea, syntetyczne cząsteczki mogą wkrótce stać się sercem sensorów wykrywających liczne zagrożenia w otoczeniu człowieka. Dzięki swojej wysokiej trwałości mogłyby one posłużyć także do podawania ludziom w celach terapeutycznych. W przeciwieństwie do naturalnych, białkowych przeciwciał, "formy" opracowane na University of California są odporne na działanie enzymów trawiennych, dzięki czemu mogłyby być podawane nawet drogą pokarmową. Zespół badaczy z Kalifornii przeprowadził już pierwsze testy, dzięki którym potwierdzono zdolność opracowanych cząsteczek do neutralizacji melityny w organizmie zwierząt. Trwają także prace nad wytworzeniem sensorów zdolnych do wykrywania kilku kolejnych substancji. Trzymamy kciuki!
  7. Koreański Instytu Badań nad Elektroniką i Telekomunikacją (ETRI) poinformował o stworzeniu systemu telefonii komórkowej dla osób starszych. System automatycznie powiadamia rodzinę i pogotowie ratunkowe, gdy starsza osoba upadnie. Składa się on z czujnika, który starsza osoba powinna nosić przy sobie. Gdy czujnik odkryje gwałtowny ruch, jak przy upadku, zawiadamia centrum komputerowe w szpitalu. Następnie szpitalny komputer oddzwania do posiadacza czujnika by sprawdzić, czy nie potrzebuje on pomocy. Jeśli okaże się, że pomoc jest potrzebna, informowane jest pogotowie oraz rodzina. Miejsce, w którym znajduje się osoba potrzebująca pomocy określane jest dzięki systemowi GPS. Park Soo-jun z ETRI zapowiada, że jego zespół pomniejszy czujnik do takich rozmiarów, by można było nosić go jak broszkę lub sprzączkę od paska. Ponadto powstanie oprogramowanie, które pozwoli na korzystanie ze wspomnianego systemu właścicielowi każdego modelu telefonu komórkowego.
  8. Jonathan Engel i Chang Liu z University of Illinois stworzyli mikroskopijne siatki z metalu, które można będzie wszyć w tkaniny i wykorzystać w roli łączy przekazujących dane czy energię elektryczną. Nie ma przeszkód, by powstały ubrania wyposażone np. w różnego rodzaju czujniki. Do produkcji siatek wykorzystano techniki używane przy wytwarzaniu układów scalonych. Najpierw na światłoczułym materiale naukowcy naświetlili ścieżki, które wypełnili związkami miedzi. Utworzyli w ten sposób sieć połączeń składającą się z połączonych ze sobą pierścieni i trójkątów. Każdy z nich ma średnicę około 400 mikronów. Taka siatka jest tak wytrzymała jak nylon i może rozciągać się, zwiększając swoją długość o 30 procent. Wielu naukowców tworzyło elastyczne czujniki, używając materiałów, które zginały się tylko w określony sposób. My chcemy stworzyć czujnik, który można zginać pod dowolnym kątem – powiedział Liu. Wynalazkiem Engela i Liu z pewnością zainteresuje się przemysł tekstylny, który od dłuższego czasu pracuje nad stworzeniem "inteligentnych” ubrań.
  9. Człowiek wytwarzał i zażywał leki ponoć już od neolitu. Na początku miały one postać płynu, potem przyszedł czas na inhalacje, zastrzyki i obecnie najpopularniejsze tabletki. Te ostatnie tak nam spowszedniały, że często się o nich zapomina. Przewlekle chorzy gubią się w schematach, kiedy mają połknąć jaką pigułkę, a dla pacjentów z demencją zapamiętanie wszystkiego stanowi nie lada problem. Duże ułatwienie stanowią więc dozujące leki protezy. Wydzielają odpowiednie dawki medykamentów do błony śluzowej jamy ustnej. Robią to stale, dlatego nie pojawiają się okresowe szczyty stężenia substancji czynnej. Urządzenie może nawet monitorować poziom leku we krwi i wyrównywać go, gdy zajdzie taka potrzeba. Wcześniej istniały podobne rozwiązania, lecz inteligentna proteza IntelliDrug przebiła je swoimi rozmiarami. Dzięki miniaturyzacji zajmuje miejsce tylko dwóch zębów trzonowych. Składa się z pojemniczka z lekiem, zastawki, dwóch czujników i kilku elementów elektronicznych. Jest łatwo dostępna, bez problemu można więc uzupełnić zapas medykamentu — tłumaczy dr Oliver Scholz z Fraunhofer Institute for Biomedical Engineering IBMT w St. Ingbert. Ślina wnika przez membranę do pojemnika. Rozpuszcza fragment zestalonego leku i wypływa przez niewielką rurkę do jamy ustnej, gdzie jest absorbowana przez błonę śluzową policzków pacjenta. W rurce znajdują się dwa czujniki, które monitorują ilość uwalnianej substancji czynnej. Jeden sensor to czujnik przepływowy, który mierzy objętość przechodzącego płynu. Drugi oznacza stężenia. W zależności od ich wskazań elektroniczny układ albo otwiera, albo częściowo zamyka znajdującą się na końcu rurki zastawkę. Gdy zapas leku się wyczerpuje, system alarmuje użytkownika. Pojemnik trzeba napełniać co kilka tygodni. Przy okazji można wymienić baterie i przeprowadzić przegląd protezy. Urządzenie zostanie pokazane po raz pierwszy na targach MedTec w Stuttgarcie, które rozpoczną się 27 lutego. W tym roku produkt przejdzie testy kliniczne. Pojemnik będzie wypełniony Naltrexonem, lekiem podawanym przy terapii uzależnień.
×
×
  • Dodaj nową pozycję...