Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'termometr'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. W czasach dinozaurów oceany przemierzały stałocieplne gady, a temperatura ich ciała była znacznie wyższa od wód, które zamieszkiwały. To wspaniałe, że da się to zbadać. Możemy zastosować technikę opracowaną przez Francuzów do przeanalizowania ewolucji ichtiozaurów, plezjozaurów i innych gadów morskich – cieszy się prof. Ryosuke Motani, paleontolog z Wydziału Geologii Uniwersytetu Kalifornijskiego w Davis. Artykuł Motaniego pt. "Perspektywa" ukazał się w najnowszym numerze pisma Science, gdzie towarzyszy publikacji zespołu Auréliena Bernarda z Uniwersytetu Liońskiego nt. "zębowego termometru ryb". Francuscy akademicy mierzyli stężenie izotopów tlenu w skamielinach zębów i w ten sposób określali temperaturę wymarłych zwierząt. Tlen występuje w atmosferze głównie w postaci tlenu-16 oraz jako tlen-18. Rosnąc, zwierzęta wykorzystują obie formy do budowy kości i zębów, ale wzajemny stosunek 16O i 18O zależy częściowo właśnie od temperatury ciała. Na początku naukowcy przyglądali się zębom skamieniałych ryb. Zakładając, że podobnie jak współczesne ryby były one zmiennocieplne, sygnał temperaturowy z zębów powinien odpowiadać temperaturze zamieszkiwanych wód. Następnie akademicy posłużyli się odnośnikiem w postaci rybiego termometru, by zbadać skamieliny ichtiozaurów, plezjozaurów i mozazaurów. Ichtiozaury przypominały delfiny i najprawdopodobniej przemieszczały się po głębokich wodach. Plezjozaury występowały na Ziemi od ok. 240 do 65 mln lat temu. Miały długą szyję i cztery płetwy, nic więc dziwnego, że nazywa się je płetwojaszczurami. Paleontolodzy są przekonani, że poruszały się jak lwy morskie. Mozazaury żyły w pobliżu brzegu i zaczajały się na ofiarę. Bernard ustalił, że ciepłota ciała ichtio- i plezjozaurów znacznie przewyższała temperaturę wody, a u mozazaurów się z nią zrównywała. Motani tłumaczy, że Bernardowi wyszło, że temperatury wód były przed milionami lat bardzo wysokie (39 stopni Celsjusza). W takich warunkach współczesne ryby i morskie gady nie mogłyby się rozwijać. Rybi termometr nadawał się do wyrzucenia, ponieważ zawartość tlenu-18 w atmosferze zmieniała się w ciągu tysięcy lat. Gdy Motani wziął na to poprawkę, temperatura ciała ichtiozaurów spadła do ok. 24 stopni Celsjusza. Te parametry dobrze pasują do organizmów żywych. Niektóre współczesne gady i ryby morskie także są stałocieplne. Żółwie skórzaste (Dermochelys coriacea) utrzymują stałą temperaturę wewnętrzną, ponieważ są duże i dysponują sporą warstwą tłuszczu. Tuńczyki mają zaś szybszą przemianę materii niż inne ryby. Motani uważa, że ichtiozaury i plezjozaury mogły wykorzystywać podobne strategie. Przypuszczenia na temat stałocieplności potwierdzają też doniesienia na temat ich aktywności: zwierzęta te przemierzały otwarte wody, nie ograniczając się do przybrzeżnych płycizn, gdzie można się było powygrzewać.
  2. Co może zrobić bakteria, gdy do ataku na organizm człowieka jest jej potrzebne białko, które niewiele później okazuje się idealnym celem dla układu odpornościowego? Badania nad bakteriami spokrewnionymi z mikroorganizmem powodującym dżumę wykazały, że doskonałym rozwiązaniem jest "ukrycie" newralgicznej proteiny zaraz po wniknięciu do ciała gospodarza. Odkrycia dokonali naukowcy z Centrum Badań nad Infekcjami im. Helmholtza w niemieckim mieście Braunschweig. Podczas badań nad jednym z białek wytwarzanych przez bakterie z rodzaju Yersinia odkryli oni niezwykły mechanizm pozwalający na odróżnienie środowiska zewnętrznego od wnętrza ciała człowieka na podstawie zmian temperatury. W centrum uwagi badaczy z Braunschweig było białko RovA, znane od pewnego czasu ze swojej zdolności do regulowania aktywności niektórych genów. Jednym z jego "celów" jest gen kodujący inwazynę - białko pozwalające patogenowi na skuteczne zaatakowanie organizmu gospodarza. Choć zjawisko ukrywania tej cząsteczki po zainfekowaniu organizmu człowieka było znane od pewnego czasu, nikt nie wiedział, dlaczego tak się dzieje. Szczegółowe badania nad strukturą RovA wykazały, że proteina ta zmienia swój układ przestrzenny (konformację) pod wpływem zmian temperatury. Jej cząsteczki inaczej wyglądają w temperaturze pokojowej, a inaczej - w temperaturze 37°C, typowej dla wnętrza organizmu człowieka. Efektem zmiany konformacji jest "wyciszenie" genu kodującego inwazynę, dzięki czemu bakteria staje się niemal niewidoczna dla układu odpornościowego. Co więcej, zmieniona strukturalnie cząsteczka aktywuje geny ułatwiające rozprzestrzenianie się w ciele gospodarza, a niewiele później... rozkłada sama siebie, gdyż nie jest już więcej potrzebna. Przy tak zaawansowanej optymalizacji metabolizmu aż trudno się dziwić, że najsłynniejszy z przedstawicieli rodzaju Yersinia wywołał w średniowieczu epidemię, która doprowadziła do śmierci 1/3 mieszkańców Europy...
  3. Badacze z Uniwersytetu Tokijskiego donoszą o stworzeniu mikroskopijnych kapsułek, które umożliwiają precyzyjny pomiar temperatury cieczy na podstawie obserwacji fluorescencji. Ponieważ materiał wykorzystany do ich produkcji jest nietoksyczny, najważniejszym zastosowaniem wynalazku będzie najprawdopodobniej ustalanie temperatury wewnątrz pojedynczych komórek. Miniaturowe sensory, opisane na łamach czasopisma Journal of American Chemical Society, składają się z dwóch głównych elementów połączonych ze sobą w formie nanożelu. Pierwszym z nich jest związek nazwany DBD-AA, należący do tzw. fluoroforów, czyli związków zdolnych do fluorescencji. Drugim jest polimer o nazwie polyNIPAM, którego cząsteczki są zdolne do gwałtownej zmiany struktury wewnętrznej pod wpływem zmian temperatury. Działanie "termometru" jest wypadkową cech obu związków. DBD-AA wytwarza światło po oświetleniu niebieskim laserem, lecz jego fluorescencja gwałtownie słabnie pod wpływem wody. Dostęp tej ostatniej jest z kolei kontrolowany przez polyNIPAM, który pęcznieje w niskich temperaturach, ułatwiając przenikanie wody do wnętrza kapsułek. Dochodzi wówczas do tłumienia światła wydzielanego przez fluorofor. Odwrotnie dzieje się po ogrzaniu sensora - trójwymiarowa sieć utworzona przez cząsteczki polyNIPAM ulega zaciśnięciu, co prowadzi do usunięcia wody i przywrócenia DBD-AA zdolności do emisji światła. Zjawisko to zachodzi w sposób bardzo przewidywalny, co pozwala na pomiar temperatury z dokładnością do 0,5, a nawet 0,3°C. Dodatkową zaletą opracowanych kapsułek jest ich rozpuszczalność w wodzie - cecha, której nie posiada prawdopodobnie żaden konkurencyjny prototyp. Jest to niezwykle istotne, gdyż umożliwia - w połączeniu z brakiem toksyczności składników nanożelu - wprowadzenie "termometru" do wnętrza żywych komórek. Co więcej, poziom fluorescencji jest niezależny od pH otoczenia, co dodatkowo zwiększa wiarygodność pomiarów. Japońscy naukowcy planują na najbliższą przyszłość opracowanie zmodyfikowanej wersji czujników, które mogłyby zostać wprowadzone do ściśle określonych rejonów komórki. Pozwoliłoby to na dalsze zwiększenie dokładności pomiarów, co znacząco ułatwiłoby prowadzenie badań z zakresu biologii.
  4. Inżynierowie z brytyjskiego Narodowego Laboratorium Fizycznego skonstruowali termometr do mierzenia temperatur, które powstają podczas eksplozji. Termometr składa się ze światłowodu zamkniętego w stalowej tubie, której jeden koniec jest wykorzystywany do pomiaru temperatury. Dotychczas nie istniało urządzenie, które byłoby w stanie zmierzyć temperaturę i jednocześnie przetrwać eksplozję. Podczas wybuchu powstaje fala uderzeniowa, wysoka temperatura i wydzielana jest różnego rodzaju materia, np. sadza, które mogą zniszczyć termometr bądź zafałszować wyniki - mówi Gavin Sutton, jeden z twórców termometru. Do tego typu pomiarów można wykorzystać też laser, jest to jednak metoda droga i trudna w użyciu. Stąd konieczność opracowania odpornego i wiarygodnego termometru wielokrotnego użycia. Próbowano wykorzystać pirometr, który na odległość mierzy emisję cieplną, jednak urządzenie takie nie rejestruje dobrze gradientu temperatur w centrum. Potrzebowaliśmy czegoś w samym centrum eksplozji - mówi Sutton. Rozwiązaniem okazała się stalowa tuba wypełniona piaskiem, wewnątrz której znalazł się światłowód o przekroju 0,4 milimetra. Podczas eksplozji fala elektromagnetyczna przedostaje się do światłowodu i wędruje nim w głąb tuby. Na końcu światłowód rozdziela się na cztery części, z których każda jest w stanie przesłać falę o określonej długości. Cztery końcówki są połączone do urządzeń, które konwertują falę elektromagnetyczną na napięcie. Dzięki temu, że urządzenie jest najpierw kalibrowane w znanych temperaturach, uczeni wiedzą, jakie napięcie odpowiada jakiej temperaturze, więc łatwo mogą przeliczyć uzyskane wyniki. Termometr jest w stanie wykonać 50 000 pomiarów w ciągu sekundy, dzięki czemu specjaliści uzyskują szczegółowe dane o zmianach temperatury podczas eksplozji. Testy laboratoryjne wykazały, że urządzenie jest w stanie przetrwać bez najmniejszych uszkodzeń wybuchy, podczas których temperatury przekraczają 2700 stopni Celsjusza. Teraz niezwykły termometr czekają testy polowe i praca ze znacznie potężniejszymi eksplozjami.
×
×
  • Create New...