Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'hydrożel'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 18 results

  1. Opracowany w Kalifornii nowatorski biomateriał po dożylnym podaniu zmniejsza stan zapalny i pomaga w regeneracji uszkodzonych tkanek i komórek. Został on już przetestowany na gryzoniach i większych zwierzętach, udowadniając swoją skuteczność w regeneracji tkanki po ataku serca. Jego twórcy opracowali też prototypową metodę wykorzystania biomateriału w urazach mózgu oraz nadciśnieniu płucnym. Nasz biomateriał regeneruje tkankę od wewnątrz. To nowe podejście do inżynierii regeneracyjnej, mów profesor Karen Christman z University of California San Diego, której zespół stworzył biomateriał. Uczona dodaje, że testy bezpieczeństwa i skuteczności biomateriału na ludziach mogą rozpocząć się w ciągu 1-2 lat. Każdego roku w Polsce zawału serca doświadcza około 80 tysięcy osób. Po zawale w mięśniu sercowym pojawiają się blizny, które pogarszają jego funkcjonowanie i mogą prowadzić do kolejnych chorób. Już podczas wcześniejszych badań zespół Christman opracował hydrożel zbudowany z macierzy pozakomórkowej, który można było podać przez cewnik w mięsień sercowy, co pobudzało wzrost nowych komórek i naprawę tkanki mięśnia sercowego. Udaną pierwszą fazę testów klinicznych przeprowadzono w 2019 roku. Jednak metoda wprowadzania żelu – bezpośrednia injekcja w mięsień – powodowała, że leczenie można było zastosować nie wcześniej niż tydzień po zawale. Wcześniejsze wprowadzanie igły groziło dodatkowymi uszkodzeniami mięśnia. Dlatego też naukowcy z San Diego postanowili opracować metodę, którą będzie można stosować bezpośrednio po zawale. A to oznaczało konieczność stworzenia biomateriału, który można by wprowadzać do naczyń krwionośnych w sercu podczas przeprowadzania innych procedur ratunkowych, lub też podawać dożylnie. Potrzebowaliśmy biomateriału, który można dostarczyć do trudno dostępnych miejsc, postanowiliśmy więc wykorzystać naczynia krwionośne, mówi doktor Martin Spang. Jedną z zalet nowego żelu jest fakt, że poprzez naczynia krwionośne równomiernie dociera on do całej uszkodzonej tkanki. Żel podawany przez cewnik pozostawał w miejscu podania i nie rozprzestrzeniał się. Christman i jej grupa rozpoczęli więc pracę od żelu opracowanego przed kilku laty, który dowiódł swojego bezpieczeństwa w 2019 roku. Uczeni wiedzieli, że nadaje się on do podawania dożylnego, jednak cząstki hydrożeli były zbyt duże, by spełnić swoje zadanie. Naukowcy wpadli więc na pomysł, by hydrożel odwirować w centryfudze. W ten sposób oddzielono zbyt duże cząstki, pozostawiając te w skali nano. Tak uzyskany materiał poddano dializie za pomocą błony półprzepuszczalnej, filtrowaniu i sterylizacji, a następnie liofilizacji. Uzyskano w ten sposób proszek, który po dodaniu wody do injekcji zmienia się w hydrożel gotowy do wstrzyknięcia. Materiał przetestowano na mysim modelu zawału serca. Naukowcy spodziewali się, że hydrożel przeniknie z naczyń krwionośnych do tkanki, gdyż podczas ataku serca pojawiają się szczeliny pomiędzy komórkami śródbłonka naczyń. Okazało się, że żel nie tylko przenika do tkanki, ale również zamyka szczeliny pomiędzy komórkami naczyń krwionośnych i przyspiesza ich gojenie, zmniejszając stan zapalny. Taki sam efekt zaobserwowano podczas testów na świniach. Naukowcy wysunęli i z powodzeniem przetestowali hipotezę, że ich hydrożel pomaga również w szczurzym modelu stanu zapalnego po urazie mózgu i w nadciśnieniu płucnym. Planują więc przeprowadzenie kolejnych badań w tym kierunku. Większość przeprowadzonych przez nas badań dotyczy serca, jednak widzimy, że istnieje możliwość leczenia w ten sposób innych trudno dostępnych tkanek, mówi Spang. Profesor Christman oraz startup Ventrix Bio, którego jest współzałożycielką, chcą teraz postarać się o zgodę FDA (Agencja ds. Żywności i Leków) na rozpoczęcie testów na ludziach. Mogłyby się one rozpocząć w ciągu 1-2 lat. Łatwa do zastosowania metoda naprawy mięśnia sercowego pomogłaby w uniknięciu komplikacji i rozwoju schorzeń pojawiających się po zawale. « powrót do artykułu
  2. Na szwedzkim Uniwersytecie Technologicznym Chalmersa powstał nowy materiał, który zapobiega infekcjom ran. To specjalny hydrożel, skuteczny przeciwko wszystkim typom bakterii, w tym lekoopornym. Jego opracowanie może przyczynić się do lepszej walki z antybiotykoopornymi bakteriami, które stanowią coraz bardziej poważny problem. Po przetestowaniu naszego hydrożelu na różnych typach bakterii, zaobserwowaliśmy, że jest on wysoce efektywny, również przeciwko bakteriom, które stały się oporne na antybiotyki, mówi profesor Martin Andersson. Substancją aktywną w mikrożelu są peptydy, niewielkie proteiny, które występują naturalnie w układzie odpornościowym. "Ryzyko, że bakterie rozwiną oporność na te peptydy jest bardzo małe, gdyż atakują one najbardziej zewnętrzną błonę bakterii. To powód, dla którego się nimi zainteresowaliśmy", stwierdza Andersson. Naukowcy od dawna próbowali wykorzystać te peptydy, jednak dotychczas bez powodzenia. Problem w tym, że po kontakcie z płynami organizmu, np. z krwią, bardzo szybko ulegają one rozpadowi. Szwedzcy naukowcy uwięzili te peptydy w specjalnym hydrożelu, który je chroni. To bardzo obiecujący materiał. Jest nieszkodliwy dla komórek, łagodny dla skóry. Z naszych badań wynika, że przyłączone do niego peptydy ulegają znacznie wolniejszej degeneracji niż normalnie, stwierdza doktorant Edvin Blomstrand z Wydziału Chemii i Inżynierii Chemicznej. Spodziewaliśmy się dobrych wyników, ale ten materiał naprawdę pozytywnie nas zaskoczył, dodaje Andersson. Komercjalizacją wynalazku zajmie się firma Amferia AB, której Andersson jest założycielem. Obecnie w wielu krajach Europy trwają testy kliniczne żelu. Badana jest też jego przydatność w weterynarii. Najprawdopodobniej będzie on stosowany w formie opatrunku. Niewykluczone, że na rynek trafi już w przyszłym roku. « powrót do artykułu
  3. Jak najłatwiej zniszczyć chorą tkankę? Świetnym rozwiązaniem może być odcięcie dopływu krwi. Właśnie taki sposób uśmiercania zmian chorobowych wybrali naukowcy z firmy CeloNova BioSciences, którzy opracowali system pozwalający na niemal całkowicie bezinwazyjne zablokowanie przepływu krwi np. przez nowotwór. Biozgodność, precyzyjna kalibracja, zdolność do długotrwałego przebywania w roztworach oraz stabilność struktury - to cztery cechy, które, zdaniem twórców produktu, decydują o jego wyjątkowej przydatności w klinice. Wynalazek, nazwany Embozene, został w ostatnim czasie dopuszczony do rutynowego użytku w Unii Europejskiej oraz Stanach Zjednoczonych. Od momentu wprowadzenia był już stosowany m.in. do niszczenia włókniaków macicy, zaburzeń budowy naczyń, raka wątroby i innych silnie ukrwionych zmian chorobowych. Sekretem Embozene jest powłoka z materiału nazwanego Polyzene-F, posiadającego właściwości przeciwzapalne i bakteriobójcze. We wnętrzu ukryta jest wykonana z hydrożelu sfera, posiadająca, w zależności od wersji produktu, odpowiedni rozmiar (obecnie dostępnych jest siedem wariantów o średnicach od 40 do 900 mikrometrów). Powłoka poszczególnych rodzajów preparatu posiada unikalny dla siebie kolor, zmniejszający prawdopodobieństwo pomyłki podczas stosowania. Całość umieszczona została w gotowych do użycia strzykawkach o pojemności 1 lub 2 ml. Procedura leczenia z użyciem nowatorskiego środka jest dziecinnie prosta. Z pomocą technik obrazowania wystarczy namierzyć naczynie krwionośne, a następnie wbić strzykawkę do jego wnętrza. Podane w ten sposób mikrosfery są przenoszone wraz z krwią do momentu, w którym napotykają zwężenie. Dochodzi wówczas do embolizacji, czyli, mówiąc najprościej, zatkania naczynia i zablokowania przepływu życiodajnej cieczy. Prowadzi to do śmierci komórek zasilanych przez określone naczynie. Czy Embozene stanie się rozwiązaniem stosowanym rutynowo i skutecznym? Ciężko na to pytanie odpowiedzieć, lecz trzeba przyznać, że prostota tego wynalazku jest naprawdę godna podziwu. Miejmy nadzieję, że już niedługo przekonają się o tym także polscy pacjenci.
  4. Posługując się polem magnetycznym i hydrożelem, naukowcy ze Szkoły Medycyny Uniwersytetu Pensylwanii zademonstrowali potencjalną metodę odtwarzania złożonych tkanek. Za jej pomocą można by sobie radzić np. z degeneracją tkanki chrzęstnej. Wyniki badań zespołu opublikowano w piśmie Advanced Materials. Odkryliśmy, że jesteśmy w stanie organizować obiekty, takie jak komórki, w taki sposób, by utworzyć [...] złożone tkanki, nie zmieniając samych komórek. By uzyskać reakcję na pole magnetyczne, inni musieli dodawać do komórek cząstki magnetyczne. Zabieg ten może jednak wywierać niepożądany długofalowy wpływ na zdrowie komórki. Zamiast tego manipulowaliśmy więc magnetycznym charakterem otoczenia komórki; dzięki temu mogliśmy organizować obiekty za pomocą magnesów - opowiada Hannah Zlotnick. U ludzi ubytki w chrząstce naprawia się za pomocą różnych sztucznych i biologicznych materiałów. Ich właściwości odbiegają jednak od oryginału, dlatego należy się liczyć z ograniczeniami takiego rozwiązania. Zlotnik wskazuje też na naturalny gradient chrząstki (powierzchniowo występuje większa liczba komórek). Mając to wszystko na uwadze, Amerykanie postanowili poszukać innego rozwiązania. Podczas eksperymentów odkryli, że gdy do hydrożelu mającego formę ciekłą doda się ciecz magnetyczną, można porządkować komórki i inne obiekty, w tym mikrokapsułki do dostarczania leków, według specyficznego wzorca, który przypomina naturalną tkankę. Wystarczy przyłożyć zewnętrzne pole magnetyczne. Po działaniu pola magnetycznego całość wystawiano na oddziaływanie ultrafioletu (naukowcy prowadzili fotosieciowanie, utrwalając rozmieszczenie obiektów). W porównaniu do standardowych jednolitych materiałów syntetycznych [...], takie "odwzorowane magnetycznie" tkanki lepiej przypominają oryginał pod względem rozmieszczenia komórek i właściwości mechanicznych [uczeni odtworzyli chrząstkę stawową] - podkreśla dr Robert Mauck. Technikę badano na razie wyłącznie in vitro. « powrót do artykułu
  5. Międzynarodowy zespół naukowców zaprojektował hydrożel, który pozwala hodować wykorzystywane w immunoterapii nowotworów limfocyty T. Hydrożele te imitują węzły chłonne, gdzie limfocyty T się namnażają. Zespół ma nadzieję, że technologia szybko znajdzie zastosowanie w klinikach. Uczeni, których artykuł ukazał się w piśmie Biomaterials, rozpoczęli projekt, którego celem jest drukowanie nowego hydrożelu w 3D. Ma to przyspieszyć transfer technologii na rynek. Hydrożele 3D są wykonywane z 1) poli(tlenku etylenu), biokompatybilnego polimeru szeroko wykorzystywanego w biomedycynie, oraz 2) drobnocząsteczkowej heparyny. Polimer zapewnia właściwości strukturalne i mechaniczne konieczne do wzrostu limfocytów T, a heparyna "kotwiczy" różne biocząsteczki, np. cytokinę CCL21; CCL21 występuje w węzłach chłonnych i odgrywa ważną rolę w migracji i proliferacji komórek. Naukowcy wyjaśniają, że w leczeniu nowotworów można stosować adoptywną terapię komórkową (ang. adoptive cell therapy). Polega ona na wykorzystaniu zmodyfikowanych in vitro własnych komórek odpornościowych pacjenta i zwrotnym ich podaniu do krwiobiegu. Jej zastosowanie jest ograniczane przez obecne podłoża hodowlane, ponieważ nie są one na tyle skuteczne, by umożliwić namnażanie i wzrost odpowiedniej liczby terapeutycznych limfocytów T w krótkim czasie i w opłacalny ekonomicznie sposób - podkreśla Judith Guasch z Institut de Ciència de Materials de Barcelona (ICMAB-CSIC). Zespół będzie próbował drukować kompatybilne z bioreaktorami duże hydrożele 3D. Celem ma być namnażanie limfocytów T w bardziej wydajny sposób. Obecnie trwa poszukiwanie partnerów przemysłowych. « powrót do artykułu
  6. Naukowcy z Uniwersytetu Hokkaido opisali hydrożel, który naśladuje zdolność ludzkiego mózgu do zapamiętywania i zapominania. Wyniki ich badań ukazały się w piśmie Proceedings of the National Academy of Sciences (PNAS). Ludzki mózg uczy się różnych rzeczy i zapomina informacje, gdy nie są już istotne. Odtworzenie dynamicznego procesu pamięciowego w materiałach wyprodukowanych przez człowieka stanowi wyzwanie. Ostatnio japońscy naukowcy uzyskali hydrożel, który naśladuje dynamiczną funkcję pamięciową naszego mózgu. Hydrożele są doskonałymi kandydatami do odtwarzania funkcji biologicznych, ponieważ są miękkie i wilgotne jak ludzkie tkanki. Jesteśmy podekscytowani, mogąc zademonstrować, jak hydrożel naśladuje pewne funkcje pamięciowe tkanki mózgowej - cieszy się prof.  Jian Ping Gong. Podczas testów akademicy umieszczali cienką warstwę hydrożelu (o ok. 45% zawartości wody) między płytkami. W górnej wycięty był kształt, np. samolot, albo wyraz, np. "GEL". Na początku żel umieszczano w zimnej wodzie, a potem przenoszono go do gorącej kąpieli. Żel wchłaniał wodę w odsłoniętej części. W ten sposób wzorzec był nanoszony na materiał jak informacja. Kiedy zawierający poliamfolity żel przenoszono z powrotem do zimnej wody, odsłonięty obszar stawał się ciemniejszy, przez co przechowywana informacja była wyraźnie widoczna. W niższej temperaturze hydrożel stopniowo się kurczył, uwalniając wchłoniętą wodę. Wzór coraz bardziej bladł. Japończycy zauważyli, że im dłużej żel pozostawał w gorącej kąpieli, tym ciemniejszy (bardziej intensywny) był wzór i tym więcej czasu zajmowało blaknięcie czy, inaczej mówiąc, zapominanie informacji. Zespół wykazał także, że wyższe temperatury intensyfikowały "wspomnienia". Wygląda to podobnie jak u ludzi. Im więcej czasu spędzasz na uczeniu się czegoś lub im silniejszy jest bodziec emocjonalny, tym dłużej się zapomina - wyjaśnia prof. Kunpeng Cui. Uczeni zademonstrowali, że pamięć hydrożelowa jest stabilna przy wahaniach temperatury i dużym rozciąganiu. Co ciekawe, można zaprogramować proces zapominania, dostrajając czas uczenia termicznego lub temperaturę. Gdy do poszczególnych liter wyrazu GEL zastosowano, na przykład, różne czasy uczenia, litery zanikały sekwencyjnie. Przypominający działanie mózgu hydrożelowy system pamięciowy można eksplorować pod kątem pewnych zastosowań, np. w wiadomościach, które znikają ze względów bezpieczeństwa - podsumowuje Cui.     « powrót do artykułu
  7. Chińscy naukowcy opracowali hydrożel, który skutecznie hamuje krwawienie z przebitej tętnicy. Na łamach Nature Communications opisano proces pozyskania hydrożelu oraz jego testy na zwierzętach. Niekontrolowane krwawienie jest niebezpieczną sytuacją zarówno w czasie operacji, jak i po doznaniu urazu. W większości przypadków jest ono wynikiem uszkodzenia głównej tętnicy albo jakiegoś narządu, np. wątroby. By ofiara nie zmarła, konieczne jest natychmiastowe działanie. Obecne leczenie polega na założeniu zacisku, a następnie szwów. W przeszłości naukowcy próbowali opracować kleje do takich ran, ale nie sprawowały się one tak dobrze, jak oczekiwano: albo były wyprodukowane z toksycznych materiałów, albo nie wytrzymywały wysokiego ciśnienia cieczy w krwiobiegu. Chińczycy uzyskali jednak ostatnio hydrożel, który rozwiązuje oba wymienione problemy. W założeniu hydrożel miał w jak największym stopniu przypominać budowę ludzkiej tkanki łącznej. Po oświetleniu ultrafioletem (UV) gęstnieje, przywierając do rany (w ten sposób zapobiega wypływaniu krwi). Wszystko to dzieje się w ciągu zaledwie 20-30 sekund. Naukowcy podkreślają, że nowy materiał wytrzymuje ciśnienie do 290 mmHg, a więc o wiele wyższe od normalnego. Hydrożel testowano na przebitej tętnicy szyjnej świni. Okazało się, że nie tylko zamknął on ranę, ale i umożliwił wygojenie rany. Testy przeprowadzone po 2 tygodniach wykazały niewielką martwicę i stan zapalny albo całkowity ich brak. Biokompatybilny materiał rozkładał się w organizmie, nie powodując skutków ubocznych. Hydrożel przetestowano także na króliku. Tutaj za jego pomocą naprawiono tętnicę udową oraz uszkodzenie wątroby. Naukowcy podkreślają, że przed testami na ludziach trzeba lepiej ocenić bezpieczeństwo nowego materiału.   « powrót do artykułu
  8. Inżynierowie z MIT-u stworzyli przypominającą galaretkę pigułkę, która po dotarciu do żołądka pęcznieje i osiąga wielkość piłeczki do ping-ponga. Elastyczna pigułka jest wyposażona w czujnik, który nieprzerwanie monitoruje temperaturę żołądka nawet przez 30 dni. W przyszłości sensory będą mogły mierzyć inne parametry, np. pH. Gdy pigułka ma być usunięta, pacjent musi wypić roztwór wapnia, pod wpływem którego skurczy się ona do pierwotnych rozmiarów. Potem zostaje bezpiecznie wydalona. Jak ujawniają autorzy artykułu z pisma Nature Communications, pigułka jest wykonana z 2 typów hydrożelu. Dzięki temu może ona szybko pęcznieć i jednocześnie być odporna na kwaśne środowisko żołądka. Ponieważ w pigułkach wykorzystano hydrożel, jest ona delikatniejsza, bardziej biokompatybilna i bardziej wytrzymała niż stosowane dotąd "połykalne" sensory, które albo mogły pozostawać w żołądku zaledwie parę dni, albo były o wiele sztywniejsze od tkanki układu pokarmowego. Spełnieniem marzeń jest galaretowata inteligentna pigułka, która po połknięciu pozostaje w żołądku i monitoruje stan zdrowia pacjenta przez długi czas, np. miesiąc - podkreśla prof. Xuanhe Zhao. Pęczniejące pigułki z MIT-u są inspirowane rozdymkami (przestraszone bądź zaatakowane ryby z tej rodziny zwiększają rozmiary ciała przez napompowanie wodą lub powietrzem). Obecnie, gdy ludzie próbują projektować pęczniejące żele, zazwyczaj wykorzystują dyfuzję, pozwalając, by woda stopniowo przenikała do hydrożelowej sieci. Osiągnięcie rozmiarów piłeczki pingpongowej zajmuje jednak godziny, a nawet dni. To znacznie przekracza czas opróżniania żołądka - opowiada Shaoting Lin. Zespół z MIT-u chciał więc stworzyć pigułkę hydrożelową, która "nadmucha się" o wiele prędzej, w tempie porównywalnym do zaskoczonej rozdymki. Owocem intensywnych prac jest galaretowata pigułka złożona z 2 hydrożelowych materiałów. W środku znajduje się rdzeń z poliakrylanu sodu, który potrafi wiązać znaczne ilości wody, do kilkuset razy więcej niż wynosi jego masa (jest on wykorzystywany w pieluszkach jednorazowych). Ponieważ Amerykanie zauważyli, że gdy pigułka jest zbudowana tylko z tego polimeru, w żołądku ulega szybkiemu rozkładowi, postanowili dodać 2. ochronną warstwę hydrożelową, która miała enkapsulować błyskawicznie pęczniejące cząstki. Jest ona zbudowana z krystalicznych nanołańcuchów, tworzących niemal nieprzenikalną warstwę. By przerwać tę błonę, trzeba by się przebić przez wiele krystalicznych domen. Dzięki temu hydrożel jest bardzo wytrzymały, a jednocześnie miękki - wyjaśnia Lin. Podczas testów zespół zanurzał pigułkę w różnych roztworach przypominających soki trawienne. Okazało się, że w ok. 15 min powiększała się ona 100-krotnie. Po napęcznieniu miała konsystencję tofu czy galaretki. By ocenić wytrzymałość pigułki, ściskano ją tysiące razy z siłą przekraczającą to, czego może doświadczyć podczas zwykłych skurczów żołądka. Okazało się, że nawet jeśli zrobimy w membranie drobne nacięcie, a później będziemy całość rozciągać i ściskać tysiące razy, rozcięcie się nie powiększy. Nasz dizajn jest bardzo wytrzymały. W dalszej kolejności ustalono, że roztwór z jonami wapnia (o stężeniu wyższym niż w przypadku mleka), może obkurczyć pigułkę. Na końcu Giovanni Traverso i Christoph Steiger wbudowali w kilka pigułek dostępne w handlu czujniki temperatury. Pigułki podano świniom, których przewód pokarmowy przypomina ludzki. Po ich wydobyciu z kału stwierdzono, że do 30 dni dokładnie monitorowały one wzorce aktywności zwierząt. Amerykanie sądzą, że w przyszłości taka hydrożelowa pigułka będzie dostarczać wiele różnych czujników, np. do monitorowania pH czy stwierdzania obecności bakterii i wirusów. Niewykluczone, że wbudowywane będą także minikamery do obrazowania guzów czy wrzodów. Zhao sugeruje, że pigułka mogłaby też stanowić wygodniejszą alternatywę dla balonu żołądkowego, stosowanego w leczeniu otyłości.   « powrót do artykułu
  9. Inżynierowie z Rutgers University opracowali drukowany w 3D inteligentny hydrożel, który "chodzi" pod wodą, chwyta różne obiekty i je przemieszcza. Naukowcy twierdzą, że może to doprowadzić do uzyskania przypominających morskie zwierzęta, np. ośmiornice, miękkich robotów, które przemieszczają się pod wodą. Wspominają też o sztucznym sercu, żołądku i innych mięśniach, a także urządzeniach diagnostycznych, wykrywających i dostarczających leki czy przeprowadzających podwodne inspekcje. Miękkie materiały są często tańsze w produkcji. W porównaniu do bardziej złożonych mechanicznie twardych urządzeń, te miękkie łatwiej zaprojektować, miniaturyzować i kontrolować. Nasz drukowany w 3D inteligentny żel ma duży potencjał w zakresie inżynierii biomedycznej, bo przypomina tkanki ludzkiego ciała, które także zawierają dużo wody i są bardzo miękkie. Oprócz tego można go wykorzystywać w wielu rodzajach podwodnych urządzeń [...] - opowiada Howon Lee. Badanie, którego wyniki ukazały się w piśmie ACS Applied Materials & Interfaces, koncentruje się na drukowanym hydrożelu, który po aktywowaniu prądem przemieszcza się i zmienia kształt. Hydrożel umieszcza się w elektrolicie. Za wywołanie ruchu - marsz do przodu, zmianę kierunku, chwytanie i przesuwanie obiektów - odpowiadają dwa przewodzące prąd druciki. Wydrukowany przez zespół Lee ludzik ma około cala (25,4 mm) wysokości. Prędkością przemieszczania się hydrożelu manipulowano, zmieniając jego wymiary (cieńszy rusza się szybciej). Zmiany kształtu zależą od stężenia roztworu i natężenia pola elektrycznego. Ponieważ miękki materiał zawiera ponad 70% wody i reaguje na stymulację elektryczną, wg Lee, przypomina mięśnie. « powrót do artykułu
  10. Naukowcy stworzyli wstrzykiwalne bandaże. Do uzyskania wstrzykiwalnych hydrożeli, które hamują wypływ krwi z naczyń i sprzyjają gojeniu ran, uwalniając leki, dr Akhilesh K. Gaharwar z Texas A&M University wykorzystał kappa karagen i nanokrzemiany. Wstrzykiwalne hydrożele to obiecujące materiały do uzyskiwania homeostazy w przypadku urazów wewnętrznych i krwawienia. Biomateriały te można bowiem wprowadzić do rany za pomocą minimalnie inwazyjnych procedur. Idealny wstrzykiwalny bandaż powinien twardnieć po wprowadzeniu do rany i sprzyjać naturalnej kaskadzie krzepnięcia. Dodatkowo, po osiągnięciu homeostazy, wstrzykiwalny bandaż powinien zapoczątkowywać gojenie. By uzyskać hydrożel, Amerykanie sięgnęli po często stosowany związek żelujący kappa karagen i zmieszali go z nanokrzemianami. Autorzy publikacji z pisma Acta Biomaterialia wyjaśniają, że nanokompozytowy usieciowany hydrożel jest wysoce porowaty. Dodatek nanokrzemianów zwiększa adsorpcję białek osocza i płytek oraz uruchamia kaskadę krzepnięcia. Odkryliśmy [...], że wstrzykiwalne bandaże wykazują przedłużone uwalnianie związków przydatnych do wspomagania gojenia ran. Ujemny ładunek powierzchniowy nanocząstek umożliwił elektrostatyczne oddziaływania z lekami, co przełożyło się na ich wolne wydzielanie - podsumowuje Giriraj Lokhande. « powrót do artykułu
  11. W laboratoriach Uniwersytetu Kalifornijskiego w San Diego powstał samonaprawiający się hydrożel, który z pewnością znajdzie zastosowanie w medycynie, np. w funkcji szwów czy transporterów leków, oraz przemyśle. Na zasadzie zamka błyskawicznego żel wiąże się w ciągu zaledwie kilku sekund, w dodatku na tyle mocno, że wytrzyma wielokrotne rozciąganie. Hydrożele powstają z łańcuchów polimeru. Ponieważ są galaretowate, przypominają tkanki miękkie. Wcześniej naukowcy nie potrafili uzyskać błyskawicznie samonaprawiających się żeli, co ograniczało ich zastosowania. Zespół Shyni Varghese poradził sobie z tym wyzwaniem, wykorzystując wolne łańcuchy boczne. Wystają one ze struktury pierwotnej (pierwszorzędowej) jak palce z dłoni i mogą się o siebie zaczepiać. Samonaprawa to jedna z podstawowych właściwości tkanek żywych, która pozwala im przetrwać powtarzające się uszkodzenia. Nic więc dziwnego, że akademicy nie ustawali w próbach stworzenia sztucznego materiału o podobnych zdolnościach. Podczas projektowania cząsteczek łańcuchów bocznych zespół korzystał z symulacji komputerowych. Ujawniły one, że zdolność hydrożelu do samonaprawy zależy od długości "palców". Kiedy w kwasowym roztworze umieszczano dwa cylindry z hydrożelu z łańcuchami bocznymi o optymalnej długości, natychmiast do siebie przywierały. Dalsze eksperymenty pokazały, że manipulując pH roztworu, kawałki hydrożelu można łatwo spajać (niskie pH) lub odłączać (wysokie pH). Proces wielokrotnie powtarzano, bez szkody dla siły związania. Ameya Phadke, doktorantka z laboratorium Varghese, podkreśla, że elastyczność i wytrzymałość hydrożelu w kwaśnym środowisku, takim jak w żołądku, pozwala myśleć o tym materiale w kontekście łatania perforacji żołądka czy kontrolowanego dostarczania leków na wrzody. Zespół uważa, że samonaprawiający się materiał można by wykorzystać w likwidowaniu przecieków kwasów z uszkodzonych pojemników. Gdy w plastikowym pojemniku wycięto otwór, hydrożel ją zatkał i zahamował wypływ kwasu. W przyszłości Amerykanie zamierzają uzyskać hydrożele działające przy innych niż kwasowe wartościach pH.
  12. Na Johns Hopkins University powstał żel, który, jak pokazują wstępne badania, może pomóc w całkowitej regeneracji skóry po ciężkich oparzeniach. Badania na mysich tkankach wykazały, że dzięki żelowi dochodzi do odtworzenia skóry, naczyń krwionośnych, mieszków włosowych oraz gruczołów. Leczenie polega na nałożeniu na ranę bazującego na wodzie polimerowego żelu. Badacze poinformowali na łamach Proceedings of the National Academy of Sciences, iż żel daje znacznie lepsze wyniki niż obecnie stosowane metody. Nasze leczenie ułatwiało wzrost nowych naczyń krwionośnych i regenerację warstw skóry, w tym mieszków włosowych i gruczołów - mówi profesor Sharon Gerecht, główna autorka badań. Uczona dodaje, że żel jest prosty w produkcji i można go wytwarzać na masową skalę. Jej zdaniem, jako że substancja nie zawiera leków ani komponentów biologicznych, Agencja Żywności i Leków (FDA) prawdopodobnie zakwalifikuje żel jako urządzenie, co znacznie ułatwi jego dopuszczenie na rynek. Żel nie był jeszcze testowany na ludziach. Najpierw planowane są kolejne testy na zwierzętach, ale profesor Gerecht wierzy, iż nowy środek może trafić na rynek już za kilka lat. Profesor chirurgii John Harmon z Johns Hopkins School of Medicine, jest zachwycony nowym żelem. Mówi, że podczas testów uzyskano całkowitą regenerację skóry, co nie jest możliwe do osiągnięcia współczesnymi metodami. Harmon mówi, że w USA każdego roku leczonych jest 100 000 oparzeń trzeciego stopnia. Nowy żel będzie zatem niezwykle przydatny. Co więcej, zdaniem Harmona, przyda się on też np. podczas leczenia owrzodzeń stóp u cukrzyków. Doktor Guoming Sun, który od trzech lat udoskonalał żel pod kątem ułatwienia wzrostu naczyń krwionośnych mówi, że substancja bardzo przyspiesza gojenie ran i wzrost nowych tkanek. W przypadku oparzeń im szybciej zachodzi ten proces, tym mniejsze ryzyko powstania blizn. Naukowcy z Johnsa Hopkinsa początkowo chcieli wypełnić żel komórkami macierzystymi i substancjami przyspieszającymi ich wzrost. Postanowili jednak przetestować „czysty' żel. Byliśmy zaskoczeni faktem, że doszło do kompletnej regeneracji skóry bez obecności czynników biologicznych - mówi Gerecht. Naukowcy ciągle nie rozumieją, jak działa ich żel. Przeprowadzone testy pokazały, że w ciągu 21 dni po nałożeniu substancja została całkowicie wchłonięta, a skóra nadal się odradzała, aż przypominała zdrową tkankę. Żel wykonany jest z wody, w której rozpuszczono dekstran. Być może to fizyczna struktura hydrożelu ułatwia naprawę skóry - spekuluje Gerecht. Uczeni nie wykluczają, że skład żelu w jakiś sposób angażuje w naprawę krążące we krwi komórki macierzyste szpiku kostnego. Może żel jakoś sygnalizuje komórkom, by stały się nową skórą i naczyniami krwionośnymi - stwierdził Harmon.
  13. Płynne perły to spełnienie marzeń pewnego szefa kuchni, przedstawiciela gastronomii molekularnej, który chcąc zamknąć smaki w osobnych przedziałach, poprosił o pomoc fizyków. Odpowiadając na jego zapotrzebowanie, naukowcy stworzyli pokryte elastyczną błoną hydrożelową kapsułki z płynnym rdzeniem. Co ważne, pomysł ten przyda się nie tylko w kuchni, ale i podczas leczenia nowotworów. Nicholas Bremond i jego zespół z ESPCI ParisTech porównują swoje dzieło do rybiej ikry. Na początku kroplę cieczy powleka się cienką warstwą kwasu alginowego (wchodzi on w skład ścian komórkowych wielu alg i trawy morskiej), która ulega zżelowaniu po zanurzeniu w kąpieli z roztworu chlorku wapnia z dodatkiem detergentu. Błonka jest bardzo cienka - jej grubość mierzy się w mikrometrach. Francuzi podkreślają, że by powstał film, przed zżelowaniem należy wyeliminować mieszanie. Bez detergentu powłoka także miałaby postać żelu, ale szybko zlałaby się z zawartością kapsułki. Substancja powierzchniowo czynna prowadzi do czasowego utwardzenia, które ogranicza niestabilność związaną ze ścinaniem podczas zderzenia. Bremond i inni uważają, że w hydrożelowej powłoce da się zamknąć dowolną ciecz. Dzięki temu prostemu zabiegowi można by badać wzrost i zdolność przeżycia mikroorganizmów czy komórek nowotworowych w różnych trójwymiarowych środowiskach. Ponieważ błona jest przepuszczalna, do wnętrza dostarczano by np. leki.
  14. Na North Carolina State University powstały układy elektroniczne zbudowane z płynnych metali i hydrożeli. Kwazipłynne diody i memrystory powinny lepiej niż tradycyjna elektronika współpracować z wilgotnymi, miękkimi substancjami, takimi jak np. ludzki mózg. Częściowo płynne urządzenie korzysta z elektrod zbudowanych ze stopu galu (75%) i indu (25%). Stop taki bardzo dobrze przewodzi sygnały i jest płynny w temperaturze pokojowej. Elektrody umieszczono w obudowie z tworzywa sztucznego. Pomiędzy elektrodami znajdują się dwie warstwy agarozy, naturalnego hydrożelu używanego w biochemii. Każda z warstw została wzbogacona elektrolitami - w jednej jest to kwas poliakrylowy (PAA), w drugiej polietylenoimina (PEI). Opornością można sterować za pomocą napięcia. Na styku elektrod i agarozy w sposób naturalny tworzy się warstwa tlenku galu, który jest opornikiem. Dzięki wysokiemu pH polietylenoiminy tlenek nie osiada na elektrodzie. Z kolei manipulując napięciem można zmieniać grubość warstwy tlenku galu na elektrodzie mającej styczność z PAA. Napięcie dodatnie zwiększa grubość zwiększając rezystancję, ujemne prowadzi do zmniejszenia grubości warstwy tlenku. Dzięki temu można przełączać stan urządzenia pomiędzy przewodzącym a nieprzewodzącym. Co ważne, urządzenie po odcięciu napięcia zapamiętuje ostatni stan swojej rezystancji, a więc działa jak memrystor. Badania wykazały, że potrafi go zapamiętać przez ponad 3 godziny. Połączenie diod i memrystorów pozwala tworzyć różne typy obwodów. Półpłynna elektronika jest dziełem dwójki studentów, Ju-Hee So i jej kolegi Hung-Jun Koo. Zbudowali już oni testową wersję obwodu i badają interakcje pomiędzy różnymi elektrolitami i metalami. Chcą znaleźć optymalną konfigurację, która pozwoli, m.in. na szybsze przełączanie pomiędzy stanami przewodzącym i nieprzewodzącym. Zdaniem So, możliwe jest osiągnięcie czasu przełączania mierzonego w milisekundach. Jej zdaniem kwazipłynna elektronika może pewnego dnia posłużyć do zbudowania interfejsów łączących żywą tkankę z komputerami.
  15. Nagły niedosłuch czuciowo-nerwowy (ang. sudden sensorineural hearing loss, SSNHL), nazywany też nagłą głuchotą lub nagłym niedosłuchem odbiorczym, wywołuje u chorego duży dyskomfort. Na szczęście w ramach pilotażowych badań japońskim naukowcom udało się uzyskać bardzo obiecujące wyniki przy zastosowaniu żelu powierzchniowego z insulinopodobnym czynnikiem wzrostu 1 (IGF1). Etiologia SSNHL jest nieznana. Ubytek słuchu wynosi więcej niż 30 decybeli, dotyczy trzech sąsiadujących ze sobą częstotliwości, a zaburzenie rozwija się przeważnie w ciągu 3 dni. Rocznie na nagłą głuchotę zapada od 5 do 20 osób na 100 tys. Szczyt zachorowań odnotowuje się w 50.-60. roku życia. Zespół Takayuki Nakagawy z Uniwersytetu w Kioto testował żel na grupie 25 pacjentów, którzy nie reagowali na leczenie przeciwobrzękowe i przeciwzapalne (glukokortykoidy). Wyniki wskazują, że powierzchniowe aplikowanie IGF1 z wykorzystaniem hydrożeli było bezpieczne i miało skuteczność zbliżoną lub wyższą od terapii tlenem hiperbarycznym w roli czynnika kontrolnego. W związku z tym Japończycy zaczynają planować systematyczne, zakrojone na szeroką skalę testy kliniczne. Dwanaście tygodni po leczeniu 48% pacjentów wykazywało poprawę słyszenia, a po upływie pół roku od zakończenia eksperymentalnej terapii odsetek ten wzrósł do 56%. Nie zaobserwowano poważnych skutków ubocznych. Nakagawa podkreśla, że nigdy wcześniej nie stosowano czynników wzrostu do poprawy słyszenia.
  16. Diabetycy dysponują coraz bardziej rozbudowanym wachlarzem metod kontrolowania swojej choroby. Ostatnio badacze z Uniwersytetu Tokijskiego i BEANS Research Institute opracowali wszczepialne monitory fluorescencyjne, które reagują na stężenie glukozy we krwi. Od tego zależy intensywność świecenia hydrożelowych Fasolek Życia (Life Beans). Wynalazek Japończyków eliminuje nakłuwanie skóry, by posłużyć się glukometrem, w dodatku zapewnia całodobowy monitoring. Słowo Beans odwołuje się nie tylko do kształtu urządzenia, ale stanowi również skrót od pełnej jego nazwy: Bioelectrical Mechanical Autonomous Nano Systems. Na razie przeprowadzano badania na modelu zwierzęcym. Kiedy wszczepiliśmy kulkę w ucho myszy, byliśmy w stanie zmierzyć, jak zmieniała się intensywność świecenia w czasie wahania poziomu cukru we krwi. Naukowcy z Kraju Kwitnącej Wiśni dodają, że stężenie glukozy rośnie i spada, nim pacjent się spostrzeże, np. podczas snu, gimnastyki czy jedzenia. Ciągły monitoring sprawia, że można ludzi zawiadomić za pomocą sygnału alarmowego, że są zagrożeni hiper- lub hipoglikemią [niedocukrzeniem]. Akademicy zastanawiają się, jak długo po wszczepieniu koraliki mogą spełniać swoją funkcję. Kiedy w organizmie pojawia się obcy obiekt, przylegają do niego białka, które działają jak filtr, obniżając intensywność świecenia. Jak widać, trzeba jeszcze popracować nad technologią zapobiegającą adsorpcji protein. Druga sprawa to zbudowanie takiego systemu pomiaru, który nie absorbowałby chorego, a to, wg Japończyków, kwestia 5, a nawet 10 lat.
  17. Japońscy naukowcy twierdzą, że mieszanina wody i gliny może zastąpić tworzywa sztuczne. Zespół Takuzo Aidy z Uniwersytetu Tokijskiego zmieszał kilka gramów gliny ze 100 gramami wody w obecności poliakrylatu sodu, działający jak "molekularny klej". Ten polimer spowodował, że glina przekształciła się w bardzo cienkie warstwy, co zwiększyło jej powierzchnię i pozwoliło na dobre przyleganie "kleju". W efekcie uzyskano plastyczny przezroczysty żel, który w 98% składa się z wody. Żel jest na tyle mocny, że udało się z niego zbudować most o szerokości 3,5 centymetra. Japończycy mówią, że wytrzymałość źelu zależy od sumy sił działających pomiędzy warstwami gliny a klejem, a więc od tzw. sił supramolekularnych. Wytrzymałość wielu hydrożeli jest zależna od kowalencyjnych wiązań chemicznych, a nie od sił supramolekularnych. Wadą takiej właściwości jest fakt, że jeśli dojdzie do zerwania wiązań, cały materiał traci na wytrzymałości. W przypadku sił supramolekularnych nie ma takiego niebezpieczeństwa, gdyż jeśli nawet materiał zostanie osłabiony np. pod wpływem nacisku, to siły supramolekularne ponownie zaczną działać i materiał odzyska wytrzymałość. Takuzo Aida podkreśla jeszcze jedną przydatną cechę nowego hydrożelu - jego formowanie trwa zaledwie 3 minuty, a do otrzymania substancji nie jest konieczne rozumienie procesu jej tworzenia się. Craig Hawker z Uniwersytetu Kalifornijskiego z Santa Barbara jest pod wrażeniem osiągnięć Japończyków. Największym przełomem jest łatwość produkcji oraz wyjątkowe właściwości uzyskanego materiału - stwierdził. Jego zdaniem największe zalety nowego hydrożelu to wytrzymałość i zdolność do samonaprawy. W przyszłości mogą dzięki niemu powstać jeszcze doskonalsze materiały.
  18. Chris Lowe i Cynthia Larbey z Cambridge University są autorami ciekawej metody pomiarowej, która ma szansę znacznie ułatwić życie osobom cierpiącym na przewlekłe choroby, takie jak zaburzenia pracy nerek, cukrzyca czy nadciśnienie. Metoda ta bazuje na "inteligentnych" hologramach, wykrywających zmiany poziomu glukozy we krwi oraz wielu innych parametrów naszej fizjologii. Jest ona nie tylko uniwersalna, ale też szybka, prosta, tania i niezawodna. Sercem metody jest wykorzystanie obrazów holograficznych naniesionych na hydrożele. Materiały z tej grupy potrafią kurczyć się lub rozszerzać, zależnie od warunków panujących w ich otoczeniu. Ta właśnie właściwość posłużyła do pomiaru takich parametrów, jak stężenie glukozy czy adrenaliny we krwi. Na skutek zmian, na opisywanych hologramach mogą pojawiać się (lub z nich znikać znikać) określone informacje. W ten sposób element mierzący daną wielkość automatycznie podaje wynik pomiaru. Prosty i niemal natychmiastowy odczyt pozwala na odpowiednio szybką interwencję, a ta może czasem nawet uratować życie. Firma Smart Holograms próbuje zamienić opisywane odkrycia w komercyjne produkty. Wśród opracowanych urządzeń można znaleźć m.in. wskaźnik zawartości wody w paliwie lotniczym. Inne mierniki mogą być zastosowanie nie tylko w medycynie, lecz również w systemach wykrywających niebezpieczne substancje, a nawet do badania szczelności paneli szklanych.
×
×
  • Create New...