Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' węgiel' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 18 wyników

  1. Grupa japońskich naukowców z Kyoto University wykorzystała eksplozje do wyprodukowania... najmniejszych diamentowych termometrów, które można będzie wykorzystać do bezpiecznych pomiarów różnic temperatury w pojedynczej żywej komórce. Gdy w sieci krystalicznej diamentu dwa sąsiadujące atomy węgla zostaną zastąpione pojedynczym atomem krzemu, pojawia się optycznie aktywne miejsce, zwane centrum krzem-wakancja (silicon-vacancy center, SiV). Od niedawna wiemy, że takie miejsca są obiecującym narzędziem do pomiaru temperatur w skali nanometrów. Atom krzemu, gdy zostanie wzbudzony laserem, zaczyna jasno świecić w wąskim zakresie światła widzialnego lub bliskiej podczerwieni, a kolor tego światła zmienia się liniowo w zależności od temperatury otoczenia diamentu. Zjawisko to jest bezpieczne dla żywych organizmów, nawet dla bardzo delikatnych struktur. To zaś oznacza, że można je wykorzystać podczas bardzo złożonych badań nad strukturami biologicznymi, np. podczas badania procesów biochemicznych wewnątrz komórki. Problem stanowi jednak sam rozmiar nanodiamentów. Uzyskuje się je obecnie różnymi technikami, w tym za pomocą osadzania z fazy gazowej, jednak dotychczas potrafiliśmy uzyskać nanodiamenty o wielkości około 200 nm. Są one na tyle duże, że mogą uszkadzać struktury wewnątrzkomórkowe. Norikazu Mizuochi i jego zespół opracowali technikę pozyskiwania 10-krotnie mniejszych niż dotychczas nanodiamentów SiV. Japońscy naukowcy najpierw wymieszali krzem ze starannie dobraną mieszaniną materiałów wybuchowych. Następnie, w atmosferze wypełnionej CO2, dokonali eksplozji. Później zaś przystąpili do wieloetapowej pracy z materiałem, który pozostał po eksplozji. Najpierw za pomocą kwasu usunęli sadzę i metaliczne zanieczyszczenia, następnie rozcieńczyli i wypłukali uzyskany materiał w wodzie dejonizowanej, w końcu zaś pokryli uzyskane nanodiamenty biokompatybilnym polimerem. Na końcu za pomocą wirówki usunęli wszystkie większe nanodiamenty. W ten sposób uzyskali jednorodny zbiór sferycznych nanodiamentów SiV o średniej średnicy 20 nm. To najmniejsze wyprodukowane nanodiamenty SiV. Mizouchi wraz z kolegami przeprowadzili serię eksperymentów, podczas których wykazali, że ich nanodiamenty pozwalają na precyzyjne pomiary temperatury w zakresie od 22 do 40,5 stopnia Celsjusza. Zakres ten obejmuje temperatury wewnątrz większości organizmów żywych. To zaś otwiera nowe możliwości badań struktur wewnątrzkomórkowych. Japończycy zapowiadają, że rozpoczynają prace nad zwiększeniem liczby SiV w pojedynczym nanodiamencie, co ma pozwolić na uzyskanie jeszcze większej precyzji pomiaru. Dzięki temu – mają nadzieję – w przyszłości można będzie badać poszczególne organelle. Szczegóły badań zostały opisane na łamach Carbon. « powrót do artykułu
  2. Przed dwoma dniami prezydent Biden popisał Inflation Reduction Act, ustawę przewidującą wydatkowanie z federalnego budżetu 437 miliardów dolarów w ciągu najbliższych 10 lat. Przewidziano w niej 370 miliardów USD na energetykę odnawialną i inne technologie niskoemisyjne. Jednak najbardziej interesujące są przepisy dotyczące technologii produkcji wodoru. Z jednej strony dlatego, że przewidziano środki znacznie większe niż spodziewali się analitycy, z drugiej zaś, że przepisy nie wyróżniają żadnej technologii pozyskiwania wodoru. Specjaliści zajmujący się rynkiem wodoru mówią, że dzięki temu w końcu można będzie mówić o początku prawdziwej rewolucji wodorowej. Wodór można przecież wykorzystać zarówno jako paliwo napędzające pojazdy czy statki, jak i do produkcji energii elektrycznej zasilającej nasze domy. Ustawa przewiduje bowiem, że producenci wodoru mogą pomniejszyć należny państwu podatek, a wielkość tego pomniejszenia będzie zależała wyłącznie od ilości dwutlenku węgla emitowanego podczas produkcji wodoru. I tak producenci wykorzystujący najczystszą obecnie metodę pozyskiwania wodoru, w czasie której na każdy kilogram wodoru emituje się 0,45 kg CO2, będą mogli odpisać 3 USD na każdy wytworzony kilogram wodoru. Dzięki temu wodór taki może być tańszy niż tzw. szary wodór uzyskiwany z gazu metodą reformingu parowego. W metodzie tej na każdy kilogram wodoru emituje się 8–10 kg CO2. Obecnie cena szarego wodoru w USA to około 2 USD/kg. Dlatego też niemal cały wodór – ok. 10 milionów ton rocznie – produkowany w Stanach Zjednoczonych wytwarzany jest tą metodą. Największym na świecie producentem wodoru są Chiny. Państwo Środka wytwarza 25 milionów ton tego pierwiastka rocznie, z czego aż 62% uzyskuje się z węgla, co wiąże się z emisją 18–20 kg CO2 na kilogram wodoru. Zarówno USA jak i Chiny produkują czysty tzw. zielony wodór uzyskiwany metodą elektrolizy z wykorzystaniem odnawialnych źródeł energii, ale produkcja ta nie przekracza 1% całości. Ten zielony wodór kosztuje bowiem ok. 5 USD/kg. Teraz, dzięki możliwości odpisania 3-dolarowego podatku, stanie się on konkurencyjny cenowo z szarym wodorem. Amerykanie opracowali też plan dojścia do produkcji zielonego wodoru bez ulg podatkowych. Przepisy przewidują, że do roku 2026 kwota, którą można będzie odpisać od kilograma zielonego wodoru zostanie zmniejszona do 2 USD, a w roku 2031 wyniesie 1 USD. Przepisy te znacznie przyspieszą transformację wodorową. Specjaliści z National Renewable Energy Laboratory spodziewali się, że cena zielonego wodoru spadnie o trzy dolary do roku 2026. Teraz, dzięki ustawie, spadnie ona natychmiast. Mamy gwałtowne obniżenie kosztów do poziomu, przy którym zielony wodór staje się konkurencyjny, a w wielu miejscach tańszy, od wodoru pozyskiwanego z paliw kopalnych. Stąd też wielkie nadzieje związane z nową ustawą. Wspomniany odpis podatkowy to tylko jeden z ostatnich kroków na rzecz wodorowej rewolucji. W ubiegłym roku w życie weszła ustawa Infrastructure Investment and Jobs Act, w której przewidziano 8 miliardów USD na stworzenie w USA ośmiu regionalnych „hubów wodorowych” produkujących zielony wodór. W oczekiwaniu na rozdysponowanie tych pieniędzy, co ma nastąpić we wrześniu lub październiku, przedsiębiorstwa zgłosiły 22 projekty potencjalnych hubów. Wkrótce też ma ruszyć warty 2,65 miliarda USD projekt firm Mitsubishi Power Americas i Magnum Development, w ramach którego zainstalowane zostaną 840-megawatowe turbiny zasilane mieszaniną gazu naturalnego i wodoru, wspierane przez instalację fotowoltaiczną. W miejscu tym 220-megawatowy system elektrolizy będzie wytwarzał wodór. W znajdujących się w pobliżu podziemnych wysadach solnych powstaną zaś magazyny przechowujące do 300 GWh energii w postaci wodoru. Nowe amerykańskie przepisy powinny znacznie przyspieszyć prace prowadzone chociażby przez Hydrogen Council. To ogólnoświatowa organizacja skupiająca obecnie 132 korporacje pracujące nad technologiami wodorowymi. « powrót do artykułu
  3. Sadzenie drzew i zapobieganie pożarom lasów niekoniecznie prowadzi do uwięzienia większej ilości węgla w glebie. Autorzy badań opublikowanych na łamach Nature Geoscience odkryli, że planowane wypalanie sawann, użytków zielonych oraz lasów strefy umiarkowanej może pomóc w ustabilizowaniu węgla uwięzionego w glebie, a nawet zwiększenia jego ilości. Kontrolowane wypalanie lasów, którego celem jest zmniejszenie intensywności przyszłych niekontrolowanych pożarów, to dobrze znana strategia. Odkryliśmy, że w takich ekosystemach jak lasy strefy umiarkowanej, sawanny i użytki zielone, ogień może ustabilizować, a nawet zwiększyć ilość węgla uwięzionego w glebie, mówi główny autor badań, doktor Adam Pellegrini z University of Cambridge. Wynikiem dużego niekontrolowanego pożaru lasu jest erozja gleby i wypłukiwanie węgla do środowiska. Mogą minąć nawet dziesięciolecia, nim uwolniony w ten sposób węgiel zostanie ponownie uwięziony. Jednak, jak przekonują autorzy najnowszych badań, ogień może również prowadzić do takich zmian w glebie, które równoważą utratę węgla i mogą go ustabilizować. Po pierwsze, w wyniku pożaru powstaje węgiel drzewny, który jest bardzo odporny na rozkład. Warstwa węgla zamyka zaś wewnątrz bogatą w węgiel materię organiczną. Ponadto ogień może zwiększyć ilość węgla ściśle powiązanego z minerałami w glebie. Jeśli odpowiednio dobierze się częstotliwość i intensywność pożarów, ekosystem może uwięzić olbrzymie ilości węgla. Chodzi tutaj o zrównoważenie węgla przechodzącego do gleby w postaci martwych roślin i węgla wydostającego się z gleby w procesie rozkładu, erozji i wypłukiwania, wyjaśnia Pellegrini. Gdy pożary są częste i intensywne, a tak się dzieje w przypadku gęstych lasów, wypalane są wszystkie martwe rośliny. Ta martwa materia organiczna rozłożyłaby się i węgiel trafiłby do gleby. Tymczasem w wyniku pożaru zostaje on uwolniony do atmosfery. Ponadto bardzo intensywne pożary mogą destabilizować glebę, oddzielając bogatą w węgiel materię organiczną od minerałów i zabijając bakterie oraz grzyby. Bez obecności ognia martwa materia organiczna jest rozkładana przez mikroorganizmy i uwalniana w postaci dwutlenku węgla lub metanu. Gdy jednak dochodzi do niezbyt częstych i niezbyt intensywnych pożarów, tworzy się węgiel drzewny oraz dochodzi do związania węgla z minerałami w glebie. A węgiel w obu tych postaciach jest znacznie bardziej odporny na rozkład, a tym samym na uwolnienie do atmosfery. Autorzy badań mówią, że odpowiednio zarządzane wypalanie może doprowadzić do zwiększenia ilości węgla uwięzionego w glebie. Gdy rozważamy drogi, jakimi ekosystem przechwytuje węgiel z atmosfery i go więzi, zwykle uważamy pożary za coś niekorzystnego. Mamy jednak nadzieję, że nasze badania pozwolą odpowiednio zarządzać pożarami. Ogień może być czymś dobrym, zarówno z punktu widzenia bioróżnorodności jak i przechowywania węgla, przekonuje Pellegrini. « powrót do artykułu
  4. Inżynierowe z MIT odkryli sposób na pozyskiwanie energii elektrycznej dzięki niewielkim kawałkom węgla, które wytwarzają prąd poprzez interakcję z płynem, który je otacza. Płyn ten to organiczny rozpuszczalnik, który wyciąga elektrony z węgla, a pozyskaną w ten sposób energią można by zasilać reakcje chemiczne czy napędzać mikro- i nanoroboty – stwierdzają naukowcy. To zupełnie nowy mechanizm pozyskiwania energii, mówi profesor Michael Strano. To bardzo intrygująca technologia, gdyż jedyne, czego potrzebujemy to przepływ rozpuszczalnika przez warstwę tych cząsteczek. Możemy więc mieć elektrochemię bez kabli, dodaje. Podczas eksperymentów naukowcy wykazali, że mogą użyć pozyskaną w ten sposób energię elektryczną podczas procesu utleniania alkoholu, który jest powszechnie używany w przemyśle chemicznym. Odkrycia dokonano dzięki wcześniejszym badaniom nad węglowymi nanorurkami. W 2010 roku Strano odkrył istnienie w nanorurkach zjawiska, które nazwano „falami termomocy”. Później wraz ze studentami zauważyli, że gdy część nanorurki zostanie pokryta polimerem podobnym do teflonu, pojawia się asymetria, która powoduje, że elektrony przepływają od pokrytej do niepokrytej części nanorurki, wytwarzając energię elektryczną. Elektrony te można było pozyskać z nanorurek za pomocą rozpuszczalnika. Naukowcy postanowili więc przeprowadzić kolejne badania. Zmielili węglowe nanorurki i utworzyli z nich płachty. Jedną stronę każdej z nich pokryli polimerem. Płachty następnie pocięto na kawałki o wymiarach 250x250 mikrometrów. Okazało się, że gdy takie fragmenty zostaną zanurzone w rozpuszczalniku organicznym jak acetonitryl, ten wyciąga z nich elektrony. Rozpuszczalnik wyciąga elektrony, a system próbuje osiągnąć równowagę przemieszczając je. Tam nie ma tej całej skomplikowanej chemii akumulatorów. Są tylko tylko kawałeczki umieszczone w rozpuszczalniku i z tego mamy elektryczność, wyjaśnia Strano. Obecny system pozwala na generowanie 0,7 wolta na cząsteczkę. Naukowcy wykazali, że są w stanie umieścić w próbówce macierze złożone z setek cząsteczek węgla. Taki reaktor wytwarza wystarczająco dużo energii, by zasilać reakcję utleniania alkoholu, podczas którego alkohol zamieniany jest w aldehyd lub keton. Zwykle do tego typu reakcji nie używa się procesów elektrochemicznych, gdyż wymagają one dostarczenia zbyt dużo energii z zewnątrz. Jako, że ten reaktor jest bardzo kompaktowy, jest też znacznie bardziej elastyczny niż wielkie reaktory elektrochemiczne. Użyte tutaj cząstki mogą być bardzo małe i nie wymagają zewnętrznego okablowania do przeprowadzenia reakcji elektrochemicznej, mówi jeden z autorów badań. Strano ma zamiar wykorzystać swój reaktor do wytwarzania polimerów wykorzystując w tym celu wyłącznie dwutlenek węgla jako materiał startowy. Już wcześniej stworzy samonaprawiające się polimery z dwutlenku węgla, która naprawiają się wykorzystując w tym celu energię słoneczną. W dłuższej perspektywie nowy sposób pozyskiwania energii może zostać wykorzystany do zasilania miniaturowych robotów. Perspektywa pozyskiwania przez takie urządzenia energii z otoczenia jest niezwykle kusząca. To oznacza, że nie trzeba wyposażać je w żaden mechanizm przechowywania energii. Szukamy mechanizmu, za pomocą którego przynajmniej część energii można pozyskać z otoczenia, wyjaśnia uczony. « powrót do artykułu
  5. Wraz ze zmianami klimatu Alaskę nawiedzają coraz poważniejsze i częstsze pożary lasów, które uwalniają do atmosfery olbrzymią ilosć węgla i azotu uwięzione w drzewach i glebie. Zjawisko takie może przyspieszyć globalne ocieplenie. Jednak najnowsze badania wskazały, że lasy liściaste, które zastępują spalone lasy iglaste, nie tylko rekompensują ten uwolniony węgiel, ale w ciągu 100 lat przechwytują i akumulują 4-krotnie więcej węgla, niż uwolniło się z zastąpionej przez nie spalonej roślinności. Badania, przeprowadzone przez uczonych z Northern Arizona University sugerują, że szybciej rosnące mniej palne lasy liściaste mogą działać jak stabilizujące sytuację bufory, które zapobiegają zbyt dużemu rozprzestrzenianiu się pożarów wśród lasów iglastych. Badania rozpoczęły się w 2004 roku, podczas sezonu olbrzymich pożarów, gdy na Alasce spłonęło 7-krotnie więcej lasów niż długoterminowa średnia. Spalone tereny były historycznie zasiedlone przez świerk czarny. Jednak po pożarach na części spalonych terenów pojawiły się szybko rosnące osika i brzoza. Naukowcy przeanalizowali 75 obszarów, na których w 2004 roku spłonęły świerki czarne i obserwowali je przez kolejnych 13 lat. Zebrali olbrzymią ilość danych z drzew i gleby w różnym wieku, porównywali intensywność pożarów, obserwowali odradzanie się roślinności. W 2005 roku sądziłam, że nie ma mowy, by las ten wchłonął węgiel, który utracił w czasie pożaru, mówi profesor Michelle Mack, główna autorka badań. W literaturze fachowej mamy wiele doniesień o tym, że bardzo poważne pożary uwalniają więcej węgla, niż zostanie wchłonięte przed kolejnym takim pożarem. Okazało się jednak, że drzewa liściaste nie tylko uzupełniły straty, ale zrobiły to bardzo szybko. Z badań wynika, że osika i brzoza rosnące na miejscu spalonych świerków akumulują węgiel szybciej niż świerk i przechowują go głównie w drewnie i liściach, a nie warstwie organicznej gleby. Z symulacji komputerowych wynika, że po 100 latach drzewa liściaste wchłoną tyle samo azotu i więcej węgla niż zostało uwolnione w czasie pożaru. Byłam zaskoczona, że drzewa liściaste mogą tak efektywnie wyłapać utracony węgiel, komentuje profesor Heather Alexander. Nawet gdy mamy do czynienia naprawdę z poważnym pożarem i dochodzi do uwolnienia dużych ilości węgla ze spalonych świerków, drzewa liściaste często zastępują iglaste i wykazują niesamowitą zdolność do wyłapywania i składowania węgla. To bardzo ważne spostrzeżenie w regionie, w którym powszechnie występuje jedynie 5 gatunków drzew. Badania wykazały, że pożary mogą prowadzić do dramatycznych zmian w składzie lasu i w jego zdolności do przechwytywania węgla. Węgiel to tylko część układanki. Wiemy, że drzewa te pomagają chłodzić lokalny klimat i są mniej palne, więc zmniejsza się prawdopodobieństwo pożarów. Biorąc pod uwagę te wszystkie czynniki możemy stwierdzić, że mamy tu do czynienia z dość silnym efektem stabilizującym klimat w lasach północy, dodaje Mack. Naukowcy nie znają jeszcze odpowiedzi na kilka istotnych pytań. Nie wiedzą na przykład, czy gdy dojrzałe liściaste drzewa umierają, będą zastępowane przez drzewa o tej samej strukturze i zdolności do przechwytywania węgla. Nie wiedzą również, czy po pożarze drzewa takie zachowują swoje zdolności do wychwytywania węgla. Zamiana wolno rosnących świerków na szybko rosnące drzewa liściaste może rekompensować skutki pożarów lasów na północy. Nie wiemy jednak, jak będzie wyglądał budżet węglowy tych lasów w miarę przyspieszania globalnego ocieplenia na większych wysokościach geograficznych, dodaje Isla Myers-Smitch z University of Edinburgh, która nie była zaangażowana w opisywane badania. « powrót do artykułu
  6. Naukowcy z Michigan State University odkryli, że jedna z najważniejszych reakcji chemicznych we wszechświecie zachodzi znacznie intensywniej we wnętrzach supernowych. Odkrycie to zmienia nasz spojrzenie na powstanie niektórych pierwiastków obecnych na Ziemi. W szczególności zaś wywraca do góry nogami teorię wyjaśniającą, dlaczego na Ziemi mamy do czynienia z niezwykle dużą ilości pewnych izotopów rutenu i molibdenu. Wyniki zaskakujących badań opublikowano na łamach Nature. Dowiadujemy się z nich, że w najbardziej wewnętrznych obszarach supernowych atomy węgla powstają 10-krotnie szybciej, niż dotychczas sądzono. Są one tworzone w potrójnym procesie alfa (proces 3-α). To proces syntezy termojądrowej, w którym z trzech jąder helu 4He powstaje jedno jądro węgla 12C. Potrójny proces alfa to dla nas najważniejsza reakcja chemiczna. To dzięki niej istniejemy, mówi profesor Hendrik Schatz z Wydziału Fizyki i Astronomii Michigan State University. Niemal wszystkie atomy tworzące Ziemię oraz to, co się na niej znajduje, z ludźmi włącznie, powstały w gwiazdach. A najważniejszym z tych atomów jest węgiel, który powstaje w 3-α. Wewnątrz gwiazd trzy jądra izotopu helu zwanego cząstką alfa – składające się z dwóch protonów i dwóch neutronów – tworzą nowy pierwiastek składający się z sześciu protonów i sześciu neutronów. To najpowszechniej występująca forma węgla – 12C. Proces 3-α jest jednak zwykle mało wydajny, przypomina szef zespołu badawczego, profesor Luke Roberts. Chyba, że jest coś, co go wspomaga. Zespół Robertsa odkrył właśnie, że w najbardziej wewnętrznych warstwach supernowych istnieje taki element, a jest nim nadmiar protonów. To może znacząco przyspieszać reakcję 3-α. Jednak przyspieszenie tej reakcji wiąże się ze zmniejszeniem zdolności supernowej do wytwarzania cięższych pierwiastków. To bardzo ważne spostrzeżenie, gdyż dotychczas uważano, że nadmiar izotopów rutenu i molibdenu na Ziemi powstał dzięki supernowym bogatym w protony. Jednak badania przeprowadzone właśnie przez zespół Robertsa sugerują, że izotopy te nie powstały w supernowych bogatych w protony. Fascynujące jest to, że teraz musimy znaleźć inny sposób na wyjaśnienie istnienia takiej ilości tych izotopów. Nie powinno być ich aż tyle. A znalezienie alternatyw dla bogatych w protony supernowych nie będzie łatwym zadaniem, mówi Hendrik Schatz. To pewien problem. Dotychczas sądziliśmy, że wiemy, skąd na Ziemi taka obfitość izotopów rutenu i molibdenu. Okazało się jednak, że się myliliśmy, dodaje emerytowany profesor Sam Austin. Istnieją alternatywne rozwiązania tej zagadki, ale żadna z nich nie jest do końca satysfakcjonująca. Potrzebujemy więc nowej teorii, uwzględniającej najnowsze badania. Niezależnie od tego, jakie rozwiązania zostaną zaproponowane w przyszłości, będą one musiały uwzględniać wpływ przyspieszonej reakcji 3-α. To bardzo intrygująca zagadka, stwierdza Schatz. Uwielbiamy postęp. Nawet jeśli burzy on naszą ulubioną teorię, dodaje uczony. « powrót do artykułu
  7. Eksperci z Rocky Mountain Institute opublikowali raport, z którego dowiadujemy się, że koszty produkcji energii z węgla osiągnęły punkt zwrotny i obecnie energia ta na większości rynków przegrywa konkurencję cenową z energią ze źródeł odnawialnych. Z analiz wynika, że już w tej chwili koszty operacyjne około 39% wszystkich światowych elektrowni węglowych są wyższe niż koszty wybudowania od podstaw nowych źródeł energii odnawialnej. Sytuacja ekonomiczna węgla będzie błyskawicznie się pogarszała. Do roku 2025 już 73% elektrowni węglowych będzie droższych w utrzymaniu niż budowa zastępujących je odnawialnych źródeł energii. Autorzy raportu wyliczają, że gdyby nagle cały świat podjął decyzję o wyłączeniu wszystkich elektrowni węglowych i wybudowaniu w ich miejsce odnawialnych źródeł energii, to przeprowadzenie takiej operacji stanie się opłacalne już za dwa lata. Szybsze przejście od węgla do czystej energii jest w zasięgu ręki. W naszym raporcie pokazujemy, jak przeprowadzić taką zmianę, by z jednej strony odbiorcy energii zaoszczędzili pieniądze, a z drugiej strony, by pracownicy i społeczności żyjące obecnie z energii węglowej mogli czerpać korzyści z energetyki odnawialnej, mówi Paul Bodnar, dyrektor Rocky Mountain Institute. Autorzy raportu przeanalizowali sytuację ekonomiczną 2472 elektrowni węglowych na całym świecie. Wzięli też pod uwagę koszty wytwarzania energii ze źródeł odnawialnych oraz jej przechowywania. Na podstawie tych danych byli w stanie ocenić opłacalność energetyki węglowej w 37 krajach na świecie, w których zainstalowane jest 95% całej światowej produkcji energii z węgla. Oszacowali też koszty zastąpienia zarówno nieopłacalnej obecnie, jak o opłacalnej, energetyki węglowej przez źródła odnawialne. Z raportu dowiadujmy się, że gdyby na skalę światową zastąpić nieopłacalne źródła energii z węgla źródłami odnawialnymi, to w bieżącym roku klienci na całym świecie zaoszczędziliby 39 miliardów USD, w 2022 roczne oszczędności sięgnęłyby 86 miliardów, a w roku 2025 wzrosłyby do 141 miliardów. Gdyby jednak do szacunków włączyć również opłacalne obecnie elektrownie węglowe, innymi słowy, gdybyśmy chcieli już teraz całkowicie zrezygnować z węgla, to tegoroczny koszt netto takiej operacji wyniósłby 116 miliardów USD. Tyle musiałby obecnie świat zapłacić, by już teraz zrezygnować z generowania energii elektrycznej z węgla. Jednak koszt ten błyskawicznie by się obniżał. W roku 2022 zmiana taka nic by nie kosztowała (to znaczy koszty i oszczędności by się zrównoważyły), a w roku 2025 odnieślibyśmy korzyści finansowe przekraczające 100 miliardów dolarów w skali globu. W Unii Europejskiej już w tej chwili nieopłacalnych jest 81% elektrowni węglowych. Innymi słowy, elektrownie te przeżywałyby kłopoty finansowe, gdyby nie otrzymywały dotacji z budżetu. Do roku 2025 wszystkie europejskie elektrownie węglowe będą przynosiły straty. W Chinach nieopłacalnych jest 43% elektrowni węglowych, a w ciągu najbliższych 5 lat nieopłacalnych będzie 94% elektrowni węglowych. W Indiach zaś trzeba dopłacać obecnie do 17% elektrowni, a w roku 2025 nieopłacalnych będzie 85% elektrowni. Co ważne, w swoich wyliczeniach dotyczących opłacalności elektrowni węglowych analitycy nie brali pod uwagę zdrowotnych i środowiskowych kosztów spalania węgla. Energia węglowa szybko staje się nieopłacalna i to nie uwzględniając kosztów związanych z prawem do emisji i regulacjami odnośnie zanieczyszczeń powietrza. Zamknięcie elektrowni węglowych i zastąpienie ich tańszymi alternatywami nie tylko pozwoli zaoszczędzić pieniądze konsumentów i podatników, ale może też odegrać znaczną rolę w wychodzeniu gospodarki z kryzysu po pandemii, mówi Matt Gray stojący na czele Carbon Tracker Initiative. « powrót do artykułu
  8. Zespół naukowy prowadzony przez profesor Lindy Elkins-Tanton z Arizona State University zdobył pierwszy dowód na to, że intensywne palenie się węgla na Syberii mogło być główną przyczyną największego wymierania w historii Ziemi – wymierania permskiego. Wyniki badań opublikowano na łamach pisma Geology. Naukowcy skupili się na badaniach skał wulkanicznych w syberyjskich trapach. Trapy te to największe na Ziemi pokrywy lawowe. Powstały one w wyniku jednego z najbardziej intensywnych okresów erupcji wulkanicznych z ostatnich 500 milionów lat. Erupcje trwały przez niemal 2 miliony lat i wyznaczyły granicę pomiędzy permem a triasem. Trapy syberyjskie pokrywają obecnie 2 miliony kilometrów kwadratowych, a ich miąższość sięga 3700 metrów. Pierwotnie trapy mogły pokrywać nawet 7 milionów km2. Do powstania trapów doszło około 252 miliony lat temu, a w wyniku erupcji, które je utworzyły, zginęło nawet 96% gatunków morskich i do 70% lądowych kręgowców. Obliczenia dotyczące temperatury oceanów wskazują, że w szczytowym okresie wymierania na Ziemi doszło do śmiercionośnego ocieplenia klimatu, a temperatura wody w oceanach na równiku sięgnęła 40 stopni Celsjusza. Po takiej katastrofie ekosystem odradzał się przez miliony lat. Jedna z obecnie obowiązujących hipotez mówi, że globalne ocieplenie zostało spowodowane przez zapłon olbrzymich pokładów węgla. Elkins-Tanton i jej zespół postanowili poszukać potwierdzenia tej hipotezy właśnie w trapach syberyjskich. W jednym z artykułów naukowych trafili na informację o istnieniu wypiętrzeń trapów w okolicach rzeki Angara. Naukowcy udali się więc w tamten region. Znaleźliśmy rzeczne klify składające się wyłącznie ze skał wulkanicznych. Otaczały one brzegi rzeki na długości setek kilometrów. Z geologicznego punktu widzenie to coś wyjątkowego, mówi Elkins-Tanton. Naukowcy wracali na Syberię przez sześć kolejnych lat. W czasie swoich badań zebrali około 500 kilogramów skał, które zostały poddane analizie przez zespół 30 uczonych z 8 krajów. Badania wykazały, że w skałach znajdują się ślady spalonego drewna oraz węgla. Elkins-Tanton poprosiła o pomoc Steve'a Grasby'ego z Geological Survey of Canada, który wcześniej znalazł podobne ślady w skałach zebranych na arktycznej kanadyjskiej wyspie. Okazało się, że ślady z trapów syberyjskich są bardzo podobne do tych z Kanady i pochodzą z tego samego okresu. Nasze badania wykazały, że magma trapów syberyjskich zawiera w sobie węgiel i materiał organiczny. To bezpośredni dowód, że podczas erupcji magmy doszło do spalenia olbrzymich ilości węgla i materiału organicznego, stwierdza Elkins-Tanton. « powrót do artykułu
  9. Microsoft oznajmił, że ma zamiar nie tylko zredukować zredukować emisję węgla związaną ze swoją działalnością, ale usunie z atmosfery węgiel, który wyemitował w całej swojej historii. Koncern wyznaczył sobie dwa ambitne terminy. Do roku 2030 firma chce tk zmienić sposób swojego działania, że będzie więcej węgla wycofywała z atmosfery niż go emitowała, a do roku 2050 ma zamiar wycofać z atmosfery cały węgiel, jaki w związku z prowadzoną przez siebie działalnością wyemitowała od swojego powstania w 1975 roku. To zdecydowane przebicie zapowiedzi Amazona, który obiecał, że do roku 2040 stanie się firmą neutralną pod względem emisji węgla. "Podczas gdy cały świat potrzebuje zredukować emisję netto do zera, ci z nas, których stać na szybsze i bardziej ambitne działanie, powinni to zrobić. Dlatego dzisiaj ogłaszamy nowy plan zredukowania, a docelowo usunięcia z atmosfery, całej emisji powodowanej przez Microsoft", oświadczył prezes Brad Smith. Koncern oznajmił, że do 2030 roku o ponad połowę zmniejszy zarówno swoją własną emisję jak i całego swojego łańcucha dostaw. Koncern pomoże swoim dostawcom i innym partnerom w redukcji ich śladu węglowego, przeznaczy też miliard dolarów na rozwój technologii związanych z redukcją emisji węgla, jego przechwytywaniem i usuwaniem z atmosfery. Od przyszłego zaś roku będzie wymagał od swoich nowych partnerów, by wdrażali politykę redukcji emisji. Firma zapowiedziała też, że co roku będzie publikowała Environmental Sustainability Report, w którym szczegółowo przedstawi poziom swojej emisji i działania zmierzające do jej zmniejszenia. « powrót do artykułu
  10. Wycinanie drzew w sposób nieunikniony prowadzi do uwalniania węgla do środowiska, jednak wpływ wylesiania na zmiany klimatyczne jest znacznie przeszacowany, twierdzą autorzy najnowszych badań. Zespół pracujący pod kierunkiem naukowców z Ohio State University i Yale University obliczył, że od roku 1900 wycinka lasów w celu pozyskania drewna oraz pod uprawy przyczyniła się do emisji 92 miliardów ton węgla. Nasze wyliczenia dały wynik aż pięciokrotnie mniejszy niż poprzednie szacunki, które mówiły, że od roku 1900 wylesianie przyczyniło się do emisji 484 miliardów ton węgla, czyli jest odpowiedzialne aż za 1/3 emisji antropogenicznej, mówi profesor Brent Sohngen z Ohio State University. Uczony zauważa, że autorzy poprzednich szacunków nie wzięli pod uwagę nowych nasadzeń drzew oraz innych metod zarządzania lasami, które zmniejszyły wpływ wylesiania na środowisko. Model obliczeniowy, który wykorzystano przy najnowszych badanach, brał pod uwagę wiele różnorodnych działań z zakresu gospodarki leśnej, które przyczyniły się do zmniejszenia negatywnego wpływu wycinki. W ciągu ostatnich stu lat dokonał się znaczący zwrot w gospodarce leśnej. Lasy zaczęto postrzegać jako zasób odnawialny, a nie nieodnawialny. Szacujemy, że działania takie jak zalesianie i inne techniki gospodarki znacząco zmniejszyły niekorzystny wpływ wycinki lasu na środowisko, mówi Sohngen i wyjaśnia, iż autorzy poprzednich badań brali pod uwagę odrastanie lasu jedynie w sposób naturalny, bez żadnej interwencji człowieka. Użytkowanie ziemi i zmiany w jej użytkowaniu mają stosunkowo niewielki wpływ na emisję węgla w porównaniu z niemal 1300 miliardami ton wyemitowanymi w tym samym czasie przez przemysł, dodaje Sohngen. Dotychczasowe szacunki mówiły, że wycinka drzew odpowiada za 27% antropogenicznej emisji węgla od roku 1900. Nowe szacunki pokazują, że odsetek ten jest mniejszy i wynosi 7%. Przeszacowano emisję, gdyż nie wzięto pod uwagę ponownego zalesiania, które jest techniką stosowaną na całym świecie od 70 lat. Zalesianie to rynkowa odpowiedź na spostrzeżenie, że do lat 90. zabraknie starych drzew. Wtedy to, w latach 50. firmy zajmujące się wycinką zaczęły również sadzić drzewa i zarządzać lasami. W ten sposób cały przemysł drzewny stopniowo zmienił się z przemysłu wydobywczego zasobów nieodnawialnych w przemysł uprawy drzew, dodaje współautor badań, Robert Mendelsohn z Yale University. W artykule opublikowanym na łamach Journal of Forest Economics, którego cały numer specjalny poświęcono metodom obliczeniowym służącym ocenie wpływu lasów na obieg węgla, naukowcy zauważają, że jeśli przyjrzymy się trendom z ostatnich dekad, to zauważymy, że w walce z globalnym ociepleniem należy skupić się przede wszystkim na emisji przemysłowej. Tym bardziej, że w ciągu ostatnich 10–15 lat wyraźnie widać, że coraz mniej starych lasów jest wycinanych i trend ten prawdopodobnie utrzyma się w przyszłości. Nie oznacza to jednak, że możemy zrezygnować z ochrony lasów. Wręcz przeciwnie. Ekonomiści zauważają, że jeśli rządy na całym świecie będą prowadziły odpowiednią gospodarkę, przyjmą rozwiązania zachęcające do ochrony lasów, to działania takie odegrają olbrzymią rolę w walce ze zmianami klimatu. Wylesianie jest postrzegane jako olbrzymie źródło emisji węgla, jednak nie jest to duże źródło. Wielkim źródłem jest sektor energetyczny i to na nim powinniśmy skupić swoją uwagę. Na nim oraz na zwiększeniu roli lasów jako czynnika chroniącego środowisko, stwierdza Sohngen. Możliwe jest takie zarządzanie światowymi lasami, by przechowywały one więcej węgla niż obecnie. Część z tego dodatkowego węgla może być przechowywana w niemal niezmiennym lesie tropikalnym, który w ogóle nie jest wycinany, a część w lasach zarządzanych przez człowieka. W dalszej przyszłości lasy mogą stać się źródłem energii. Jeśli drewno będzie spalane, a jednocześnie będziemy przechwytywać i przechowywać węgiel z tego spalania, to lasy mogą efektywnie wyłapywać węgiel z atmosfery i pomogą osiągnąć długoterminowe cele jeśli chodzi o utrzymanie średnich temperatur na Ziemi, dodaje uczony. « powrót do artykułu
  11. Za trzy tygodnie zostanie przedstawione szczegółowe podsumowanie projektu Deep Carbon Observatory (DCO), prowadzonego od 10 lat przez amerykańskie Narodowe Akademie Nauk. W programie bierze obecnie udział niemal 1000 naukowców z niemal 50 krajów na świecie. Mediom udostępniono już główne wnioski z raportu, które zostały opublikowane w piśmie Elements. Z badań wynika, że w oceanach, najwyższej warstwie gleby oraz w atmosferze znajduje się 43 500 gigaton (Gt – miliardów ton) węgla. Cała reszta jest uwięziona w ziemskiej skorupie, płaszczu i jądrze. Całkowita ilość węgla obecnego na naszej planecie to 1,85 miliarda Gt. Każdego roku z głębi Ziemi za pośrednictwem wulkanów oraz innych aktywnych regionów emitowanych jest od 280 do 360 milionów ton (0,28–0,36 Gt) węgla. Zatem całkowita antropogeniczna emisja węgla jest od 40 do 100 razy większa, niż całkowita emisja z aktywności wulkanicznej. Obieg węgla w głębi planety wykazuje długoterminową stabilność. Czasami dochodzi do katastrofalnych wydarzeń, podczas których do atmosfery przedostają się duże ilości węgla, co powoduje ocieplenie klimatu, zakwaszenie oceanów oraz masowe wymieranie. W ciągu ostatnich 500 milionów lat Ziemia doświadczyła co najmniej 5 tego typu wydarzeń. Upadek meteorytu, który przed 66 miliony laty przyczynił się do zagłady dinozaurów, spowodował emisję od 425 do 1400 Gt CO2 powodując ogrzanie klimatu i masowe wymieranie roślin i zwierząt. Niewykluczone, że uda się opracować system wczesnego ostrzegania przed erupcjami wulkanicznymi, gdyż przed 5 laty zaobserwowano, iż przed wybuchem w gazach wulkanicznych zmniejsza się udział dwutlenku siarki, a zwiększa dwutlenku węgla. Węgiel, będący podstawą wszelkiego życia i źródłem energii dla ludzkości, obiega planetę od płaszcza po atmosferę. By zabezpieczyć naszą przyszłość, musimy lepiej zrozumieć cały cykl obiegu węgla. Kluczowe jest określenie, jak wiele jest tego węgla, gdzie on się znajduje, jak szybko i w jakiej ilości przemieszcza się pomiędzy głębokimi obszarami ziemi a atmosferą i z powrotem, mówi Marie Edmonds z University of Cambridge, która bierze udział w projekcie DCO. Z kolei Tobias Fischer z University of New Mexico przypomina, że dotychczas w ramach prac DCO powstało ponad 1500 publikacji naukowych. Cieszymy się z postępu, jednak trzeba podkreślić, że głębokie warstwy naszej planety to obszar w dużej mierze nieznany nauce. Dopiero zaczynamy zdobywać potrzebną nam wiedzę. Ponad powierzchnią Ziemi występuje 43 500 gigaton węgla. Niemal cały ten węgiel, bo 37 000 gigaton znajduje się w głębinach oceanów. Kolejne 3000 gigaton występuje w osadach morskich, a 2000 Gt w biosferze lądowej. W powierzchniowych wodach oceanów występuje 900 Gt węgla, a w atmosferze jest go 590 Gt. Eksperci z DCO oceniają też, że obecnie na Ziemi aktywnych jest około 400 z 1500 wulkanów, które były aktywne od ostatniej epoki lodowej. Kolejnych 670 wulkanów, które były aktywne przed epoką lodową, może emitować gazy. Dotychczas udokumentowano emisję ze 102 takich wulkanów, z czego 22 to wulkany, w przypadku których ostatnia erupcja miała miejsce dawniej niż 2,5 miliona lat temu. Dzięki stacjom monitorującym, modelom cyfrowym i eksperymentom wiemy, że w latach 2005–2017 mierzalne ilości CO2 emitowało do atmosfery ponad 200 systemów wulkanicznych. Jeszcze w roku 2013 ich liczbę oceniano na 150. Udokumentowano też superregiony w których dochodzi do rozproszonej emisji gazów z wnętrza Ziemi, takie jak Yellowstone, Wielki Rów Wschodni w Afryce czy wulkaniczna prowincja Technong w Chinach. Dzięki tym badaniom możliwe było stwierdzenie, że emisja z takich regionów jest porównywalna z emisją wulkaniczną « powrót do artykułu
  12. Przemysław Gaweł i jego koledzy z Uniwersytetu w Oksfordzie zsyntetyzowali pierwszą molekułę w kształcie pierścienia, zbudowaną z czystego węgla. Uczeni rozpoczęli od trójkątnej molekuły złożonej z węgla i tlenu, a następnie – manipulując nią za pomocą prądu elektrycznego – stworzyli 18-atomowy węglowy pierścień. Wstępne badania cyklokarbonu, bo taką nazwę zyskała molekuła, wykazały, że jest ona półprzewodnikiem, co daje nadzieję na wykorzystanie jej i jej podobnych molekuł do budowy podzespołów elektronicznych. To absolutnie niesamowite osiągnięcie. Wielu naukowców, w tym i ja, próbowało stworzyć cyklokarbon i zbadać jego strukturę molekularną, ale na próżno, mówi Yoshito Tobe, chemik z Uniwersytetu w Osace. Czysty węgiel występują w wielu różnych postaciach. Znajdziemy go w diamencie czy graficie. W diamencie każdy atom węgla łączy się z czterema innymi tworząc piramidę. Z kolei w grafenie tworzy heksagonalne wzorce łącząc się z trzema sąsiadami. Jednak, jak przewidywało wielu teoretyków, w tym noblista Roald Hoffman, węgiel mógłby łączyć się jedynie z dwoma sąsiadującymi atomami, albo tworząc z każdym z nich podwójne wiązanie z każdej strony lub też potrójne z jednej i pojedyncze z drugiej. Wiele zespołów naukowych próbowało utworzyć łańcuchy lub pierścienie zbudowane według takiego schematu. Uzyskanie takiej struktury jest jednak niezwykle trudne, gdyż jest ona bardzo reaktywna, a co za tym idzie, niestabilna. Szczególnie, gdy zostaje zagięta. Ustabilizowanie wymagało zwykle dodania innych atomów, niż węgiel. Pojawiły się też doniesienia o uzyskaniu cyklokarbonu w chmurze gazu, jednak nie przedstawiono jednoznacznych dowodów potwierdzających takie twierdzenia. Naukowcy z Oksfordu najpierw za pomocą standardowych metod uzyskani kwadraty z czterech atomów węgla wychodzące z pierścienia, do którego były przyłączone za pomocą atomów tlenu. Następnie próbki zostały wysłane do laboratoriów IBM-a w Zurichu. Tam umieszczono je na podłożu z chlorku sodu znajdującego się w komorze próżniowej. Następnie za pomocą prądu manipulowano każdym kwadratem z osobna, by usunąć elementy zawierające tlen. Po wielu próbach i błędach mikroskop wykazał, że w końcu uzyskano 18-atomowy pierścień z czystego węgla. Dalsze badania ujawniły, że pierścień ma naprzemienną strukturę potrójnych i pojedynczych wiązań. To właśnie taka struktura nadała całości właściwości półprzewodnika. To zaś sugeruje, że jeśli uda się uzyskać podobnie zbudowane łańcuchy, to i one będą półprzewodnikami, co daje nadzieję na wykorzystanie ich do budowy molekularnej wielkości podzespołów elektronicznych. Na razie prowadzimy badania podstawowe, mówi Gaweł. Obecnie naukowcy chcą zbadać właściwości cyklokarbonu oraz znaleźć bardziej wydajne metody jego pozyskiwania. Wciąż nie wiadomo, czy cyklokarbon pozostanie stabilny po jego zdjęciu z podłoża oraz czy uda się go tworzyć szybciej niż molekuła po molekule. « powrót do artykułu
  13. Słonie, choć to sprzeczne z intuicją, zjadając i zadeptując roślinność, pomagają lasom przechowywać więcej węgla pobranego z atmosfery. Jeśli słonie wyginą, ilość węgla składowanego w lasach tropikalnych centralnej Afryki zmniejszy się o 7%. Fabio Berzaghi i jego koledzy z Laboratorium Klimatu i Nauk Przyrodniczych w Gif-sur-Yvette we Francji chcieli sprawdzić czy słonie, niszcząc roślinnośc, wspomagają większe drzewa, by te rosły jeszcze większe. Naukowcy stworzyli model matematyczny, w którym opisali różnorodność roślin i symulowali wspływ słoni polegający na tym, że eliminują one częśc mniejszych roślin. Model wykazał, że słonie zmniejszają gęstość roślinności w lesie, ale przez to zwiększają średni obwód pni drzew i ogólną ilość biomasy roślinnej. Dzięki nim długo rosnące drzewa żyją dłużej i przechwytują większą ilość węgla. Dane z modelu zgadzają się z danych obserwacyjnych z Kongo, gdzie porównywano roślinność w miejscach, w których żyją słonie i miejscach, gdzie zwierzęta te nie występują. Istnienie słoni może też wyjaśniać widoczne różnice pomiędzy lasami deszczowymi Afryki i Ameryki Południowej. W Ameryce brak jest wielkich roślinożerców, w lesie deszczowym liczba drzew na hektar jest większa, ale zwykle drzewa te są mniejsze, mniejsza jest też ich łączna masa. Sądzimy, że do istnienia tych różnic przyczyniają się wielcy roślinożercy, mówi Berzaghi. Jako, że wielkie afrykańskie drzewa długo żyją, gwałtowny spadek populacji słoni, do jakiego doszło w ciągu ostatnich stu lat, gdy ich liczebność zmniejszyła się z 1 000 000 do obecnych 100 000, nie jest jeszcze widoczny w wyglądzie lasu. Jednak, jak wynika z obliczeń, spadek ten oznacza, że biomasa afrykańskiego lasu deszczowego zmniejszy się o 3 gigatony węgla, czyli o tyle ile np. Wielka Brytania emituje w ciągu 14 lat. Jak zauważa Berzaghi, słonie wyświadczają nam bezpłatnie usługę, dzięki której w atmosferze jest mniej węgla, a więc zmniejszają efekt cieplarniany. « powrót do artykułu
  14. Pojawiają się coraz większe obawy o to, że ludzkość może doprowadzić do nieodwracalnych katastrofalnych zmian klimatycznych. Wiele wskazuje na to, że potrzebne są radykalne działania, na ich przeprowadzenie zostało niewiele czasu, a nikt nie kwapi się, by działania takie rozpocząć. Jeśli nic się nie zmieni, to do roku 2030 średnia temperatura na Ziemi może być o 1,5 stopnia Celsjusza wyższa niż w epoce przedprzemysłowej. Jednak, jak dowiadujemy się z najnowszego raportu IPCC, jeśli posadzimy dodatkowo 1 miliard hektarów lasu, to wspomniany wzrost temperatury o 1,5 stopnia Celsjusza przeciągniemy do roku 2050. Zyskamy więc dodatkowe 2 dekady na wprowadzenie zmian. Miliard hektarów to 10 milionów kilometrów kwadratowych czyli nieco więcej niż powierzchnia USA. Ekolodzy Jean-Francois Bastin i Tom Crowther ze Szwajcarskiego Federalnego Instytutu Technologii w Zurichu postanowili sprawdzić, czy obecnie na Ziemi da się zasadzić tyle dodatkowych drzew i gdzie można by je zasadzić. Naukowcy przeanalizowali niemal 80 000 zdjęć satelitarnych, badając obecną pokrywę leśną naszej planety. Następnie skategoryzowali poszczególne obszary Ziemi biorąc pod uwagę 10 cech charakterystycznych gleby i klimatu. Dzięki temu zidentyfikowali obszary, na których może rosnąć konkretny typ lasu. Od powierzchni tych obszarów odjęli powierzchnię zajmowaną obecnie przez lasy, miasta i pola uprawne. W ten sposób obliczyli, ile lasu można zasadzić obecnie na Ziemi. Okazało się, że na Ziemi jest obecnie miejsce na 900 milionów hektarów lasu, który można zasadzić nie zajmując przy tym pól uprawnych i terenów miejskich. Ten dodatkowy las w ciągu kilku dekad usunąłby z atmosfery 205 milionów ton węgla, czyli sześciokrotnie więcej niż ludzkość wyemitowała w roku 2018. To pokazuje rolę, jaką odgrywają lasy, mówi Greg Asner z Arizona State University. Jeśli chcemy osiągnąć cele, jakie ludzkość sobie wyznaczyła, musimy zaprzęgnąć las do pomocy. Warto tutaj zauważyć, że rola lasów nie ogranicza się tylko do usuwania węgla z atmosfery. Lasy m.in. zwiększają bioróżnorodność, poprawiają jakość wody, zapobiegają erozji gleby. Pozostaje też pytanie, ile kosztowałoby zalesianie Ziemi na masową skalę. Crowther szacuje koszt posadzenia jednego drzewa na około 30 centów, a to oznacza, że koszt całego przedsięwzięcia wyniósłby około 300 miliardów USD. Naukowcy przyznają, że szacunki dotyczące ilości węgla pochłanianego przez przyszłe lasy nie są zbyt precyzyjne. Jednak wkrótce się to zmieni. Pod koniec ubiegłego roku NASA wysłała na Międzynarodową Stację Kosmiczną urządzenie GEDI (Global Ecosystem Dynamics Investigation), które za pomocą laserów tworzy precyzyjną trójwymiarową mapę lasów, od ściółki po korony drzew. Dane z GEDI pozwolą uczonym znacznie bardziej precyzyjnie oceniać ilość węgla pochłanianego przez roślinność. « powrót do artykułu
  15. Australia zgodziła się na budowę dużej kopalni węgla. Jej istnienie może zagrozić m.in. Wielkiej Rafie Koralowej. W mijającym tygodniu władze stanu Queensland zatwierdziły program zarządzania zasobami wód podziemnych dla kopalni odkrywkowej Adani Carmichael, co było ostatnią przeszkodą prawno-środowiskową, która trzeba było rozwiązać przed rozpoczęciem prac konstrukcyjnych. Debata nad projektem trwała niemal 10 lat. Poruszano m.in. kwestię odejścia od paliw kopalnych w związku z ociepleniem klimatu. Przeciwnicy budowy kopalni podkreślali, że eksportowany węgiel będzie spalany w Indiach i Chinach i przyczyni się do dalszej degradacji planety. Szacuje się, że rocznie ze złoża Galilea będzie się wydobywać do 60 mln ton węgla. Ponieważ budowana jest także linia kolejowa, może to pozwolić na dalszą eksploatację dużych obszarów Queensland (zgodnie z planem, dwutorową linią węgiel będzie dowożony do portu Abbot w pobliżu Bowen). Roczna emisja CO2 ze spalania paliw kopalnych jest w Australii sporo niższa niż w Chinach i USA, które zajmują dwa pierwsze miejsca. Australia pozostaje jednak czołowym eksporterem węgla i w ten sposób kształtuje klimat. Ekolodzy alarmują, że działanie kopalni może źle wpłynąć na gatunki narażone na wyginięcie (VU). Poza tym węgiel będzie transportowany z portu położonego w pobliżu Wielkiej Rafy Koralowej. Zwolennicy oponują, że Adani Carmichael zapewni tak potrzebne w tych okolicach nowe miejsca pracy. Lucas Dow z Adani Australia wylicza, że w kopalni znajdzie pracę ok. 1,5 tys. osób, a zatrudnienie niebezpośrednie sięgnie nawet 6750 etatów. Adani podkreśla, że prace budowlane zaczną się na dniach i potrwają ok. 2 lat. Pierwsza bryłka węgla ma zostać sprzedana ok. 2021 r. Pozwolenia stanu Queensland to jedno, jednak nim zacznie się wydobycie, Adani musi uzyskać także pozwolenia federalne. « powrót do artykułu
  16. To kolizja, w wyniku której powstał Księżyc, dostarczyła na Ziemię składniki niezbędne do powstania życia, uważają naukowcy z Rice University. Ponad 4,4 miliarda lat temu Ziemia zderzyła się z inną planetą, a skutkiem tej kolizji było powstanie Księżyca. Amerykańscy uczeni twierdzą, że nie był to jej jedyny efekt. Ich zdaniem podczas zderzenia nasza planeta zyskała większość obecnego na niej węgla i azotu. Z badań nad prymitywnymi meteorytami wiemy, że Ziemia i inne wewnętrzne planety Układu Słonecznego są ubogie w lotne pierwiastki. Czas i sposób ich pojawienia się na Ziemi jest przedmiotem debaty naukowej. Nasza teoria jest pierwszą, która wyjaśnia, zgodnie ze wszystkimi dowodami geochemicznymi, czas i sposób pojawienia się tych pierwiastków na naszej planecie, mówi współautor badań Rajdeep Dasgupta. Prowadzone przez Dasguptę laboratorium specjalizuje się w badaniu reakcji geochemicznych zachodzących w głębi planety w warunkach wysokiej temperatury i ciśnienia. Podczas serii eksperymentów Dasgupta i jego student Damanveer Grewal postanowili przetestować hipotezę, że lotne związki chemiczne trafiły na Ziemię wskutek zderzenia z protoplanetą, której jądro było bogate w siarkę. Zawartość siarki jest tutaj istotna, gdyż dysponujemy licznymi dowodami eksperymentalnymi wskazującymi, że węgiel, siarka i azot są obecne w każdej części Ziemi, z wyjątkiem jej jądra. Jądro nie wchodzi w interakcje z resztą Ziemi, ale wszystko ponad nim, płaszcz, skorupa, hydrosfera i atmosfera są ze sobą połączone i wymieniają się materiałem, mówi Grewal. Od dawna istnieje teoria mówiąca, że Ziemia zyskała lotne pierwiastki z bogatych w nie meteorytów, które bombardowały planetę już po uformowaniu się jądra. Co prawda sygnatury izotopowe tych pierwiastków są zgodne z sygnaturami izotopowymi pierwiastków znajdowanych obecnie na prymitywnych meteorytach zwanych chondrytami węglowymi, to stosunek węgla do azotu jest różny. Na Ziemi wynosi on około 40:1, tymczasem w chondrytach węglowych jest to 20:1. Podczas swoich eksperymentów, w czasie których symulowano ciśnienie i temperatury podczas formowania się jądra ziemi, Grewal i jego zespół testowali hipotezę, zgodnie z którą mamy bogate w siarkę jądro, ale brakuje w nim azotu i węgla, przez co poza jądrem stosunek tych pierwiastków jest inny niż powinien. Podczas serii testów z uwzględnieniem różnych temperatur i ciśnienia Grewal obliczał, jak dużo węgla i azotu może dostać się do jądra przy trzech różnych scenariuszach: gdy nie ma w nim siarki, gdy jest 10% siarki i gdy siarka stanowi 25% jądra. Na azot niemal nie miało to wpływu. Pozostawał on rozpuszczalny w stopach powiązanych z krzemianami. Jedynie przy założeniu najwyższej koncentracji siarki obserwowaliśmy, że rozpoczynało się jego usuwanie z jądra. Węgiel zaś zachowywał się zupełnie inaczej. Znacznie gorzej rozpuszczał się w stopach z obecnością siarki i było go w nich około 10-krotnie mniej pod względem wagowym niż w stopach bez siarki. Po uzyskaniu takich wyników naukowcy, znając koncentrację i stosunek pierwiastków zarówno na Ziemi jak i na meteorytach, stworzyli symulację komputerową, której celem było opracowanie najbardziej prawdopodobnego scenariusza, wedle którego mamy na Ziemi takie a nie inny rozkład lotnych pierwiastków. Uzyskanie odpowiedzi wymagało sprawdzenia około miliarda(!) różnych scenariuszy i porównania uzyskanych w każdym z nich wyników z warunkami, jakie obecnie panują w Układzie Słonecznym. Okazało się, że wszystkie dostępne dowody – sygnatury izotopów, stosunek węgla do azotu oraz całkowita ilość węgla, azotu i siarki na Ziemi z wyjątkiem jej jądra – wskazują na to, że pierwiastki te trafiły na naszą planetę wskutek kolizji z planetą wielkości Marsa o bogatym w siarkę jądrze, w wyniku której powstał Księżyc, mówi Grewal. Nasze badania sugerują, że skaliste podobne do Ziemi planety mają większą szansę na nabycie pierwiastków niezbędnych do powstania życia, jeśli doszło tam do zderzenia z inną planetą zbudowaną z innych pierwiastków, prawdopodobnie pochodzącą z innej części dysku protoplanetarnego, mówi Dasgupta, który jest też głównym badaczem w finansowanym przez NASA programie CLEVER Planets. Celem tego programu jest badanie, jak niezbędne do życia pierwiastki mogły trafić na Ziemię i inne skaliste planety. Zdaniem Dasgupty jest mało prawdopodobne, by Ziemia zyskała wspomniane pierwiastki samodzielnie, w czasie swojego formowania się. To zaś oznacza, że możemy rozszerzyć obszar poszukiwań sposobu, w jaki pierwiastki lotne trafiają na jedną planetę i tworzą życie w znanej nam formie, dodaje Dasgupta. « powrót do artykułu
  17. Ostatnie wydarzenia wskazują, że przyszłość amerykańskiego górnictwa węgla wygląda gorzej, niż dotychczas sądzono. W ostatni poniedziałek producent energii elektrycznej, PacifiCorp, jeden z największych amerykańskich konsumentów węgla poinformował, że większość z jego 22 elektrowni jest nierentowna. Z kolei wczoraj US Energy Information Administration opublikowała raport, z którego dowiadujemy się, że w bieżącym roku zapotrzebowanie na węgiel będzie najniższe od 1979 roku. Spadek konsumpcji węgla zbiegł się z niemal rekordową liczbą zamykanych elektrowni węglowych. W bieżącym roku w USA zostaną zamknięte elektrownie o łącznej mocy niemal 14 gigawatów. To ponaddwukrotnie większa moc niż moc elektrowni zamkniętych w roku 2017. Inny duży amerykański producent energii, firma Xcel Energy, która jest właścicielem m.in. 13 elektrowni węglowych, oświadczył, że do roku 2030 zmniejszy emisję o 80%, a do roku 2050 będzie produkował energię wyłącznie ze źródeł niezawierających węgla. Przyspieszamy proces rezygnacji z węgla, gdyż zachęcają nas do tego zarówno nowe możliwości technologiczne, konsumenci, którzy chcą kupować czystą energię, jak i partnerzy, którzy nam w tym procesie pomagają, stwierdził dyrektor Xcel Ben Fowke. Jeszcze w 2017 roku Xcel wyemitował do atmosfery 55 milionów ton węgla. Firma należy do jednej z najszybciej redukujących emisję w USA. Przed kilkoma miesiącami odpowiednie urzędy w stanie Kolorado zgodziły się na wcześniejsze niż planowane wyłączenie dwóch elektrowni węglowych Xcel i zastąpienie ich odnawialnymi źródłami energii. Wspomniana na wstępie PacifiCorp również chce wcześniej niż planowała wyłączyć 16 z 22 swoich elektrowni. Przedsiębiorstwo obliczyło, że ich wyłączenie będzie tańsze dla klientów, niż ich dalsze utrzymywane. Podczas naszych wyliczeń porównaliśmy koszty obsługi tych elektrowni w kosztami alternatywnych metod pozyskiwania energii (ze źródeł odnawialnych, gazu, zakupu od innych producentów itp.). Wnioski, do jakich doszliśmy, są zgodne ze skutkami,  jakie na ceny energii z węgla mają działania regulatorów oraz siły rynkowe, oświadczył rzecznik prasowy firmy. Do roku 2022 firma chce wyłączyć cztery elektrownie, dzięki czemu jej klienci zaoszczędzą 317 milionów dolarów. Ostateczna decyzja zapadnie w przyszłym roku, gdyż na wcześniejsze wyłączenie muszą zgodzić się władze stanów, do których elektrownie te dostarczają energię. PacifiCorp musi przedstawić im plan niezakłóconych dostaw energii po ewentualnym wyłączeniu elektrowni. PacifiCorp ma zamiar do 2020 roku wybudować farmy wiatrowe zdolne do obsłużenia 400 000 gospodarstw domowych. O tym, w jakiej sytuacji znalazła się energetyka oparta na węglu, dobrze świadczą słowa Jeremy'ego Fischera, doradcy technicznego i strategicznego organizacji Sierra Club. PacifiCorp, ze wszystkich producentów energii, ma najbliżej do jednego z największych w kraju regionów wydobycia węgla. Skoro zaś elektrownie węglowe znajdujące się blisko tego regionu są nieopłacalne, to można sobie wyobrazić, jak to wygląda w innych częściach kraju. Z raportu US Energy Information Administration dowiadujemy się, że w bieżącym roku amerykańska konsumpcja węgla spadnie do 691 milionów ton. To o 4% mniej niż w roku ubiegłym. W przyszłym zaś roku spodziewany jest spadek o kolejne 8%. Od roku 2007 w USA wyłączono elektrownie węglowe o łącznej mocy 55 GW. To więcej niż łączna moc wszystkich polskich elektrowni, która wynosi 43 GW. « powrót do artykułu
  18. Badacze z University of North Carolina (UNC) i Texas A&M wykorzystali zdjęcia satelitarne, pomiary terenowe oraz metody statystyczne, by dowiedzieć się, jak duża część powierzchni naszej planety jest pokryta rzekami i strumieniami. Z ich obliczeń wynika, że powierzchnia cieków wodnych jest o 45% większa, niż dotychczas sądzono. Rzeki i strumienie są ważnym źródłem emisji gazów cieplarnianych, zatem znajomość ich powierzchni jest ważna dla zrozumienia emisji węgla. W sytuacji, w której staramy się uniknąć zmian klimatycznych, ważne jest, by rozumieć, co się dzieje z węglem, który emitujemy, a do tego z kolei konieczne jest dokładne policzenie globalnego cyklu obiegu węgla, mówi Tamlin Pavelski z UNC. Nasze badania pomogą obliczyć, ile dwutlenku węgla przedostaje się każdego roku z rzek i strumieni do atmosfery. Wcześniejsze badania tego typu opierały się na ekstrapolacji małego zestawu danych na cały glob. Autorzy najnowszych badań byli w stanie bezpośrednio mierzyć powierzchnię zarówno największych rzek jak i najmniejszych strumieni. W ramach badań naukowcy stworzyli bazę danych Global River Widths from Landsat, która zawiera niemal 60 milionów pomiarów szerokości rzek i strumieni z całego śwaita. « powrót do artykułu
×
×
  • Dodaj nową pozycję...