Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'Ziemia'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 68 results

  1. Brad Hansen, astronom z Uniwersytetu Kalifornijskiego w Los Angeles, wysunął nową bardzo radykalną teorię dotyczącą historii Układu Słonecznego. Uważa on, że Mars i Merkury to... produkty uboczne formowania się Ziemi i Wenus. Obecny model zakłada, że planety powstały z pierścienia pyłów i gazów otaczających młode Słońce. Jednak powstaje pytanie: skoro tak rzeczywiście było, to przecież rozkład materii w takim pierścieniu powinien być mniej więcej jednakowy, a zatem powstające planety powinny mieć podobną wielkość i podobne, zbliżone do okręgów orbity. Jednak, jak wiemy, Wenus i Ziemia są większe od Marsa i Merkurego, które mają bardziej wydłużone, eliptyczne orbity. Tradycyjnie wyjaśnia się to "chaosem", w którym rolę odegrało oddziaływanie Jowisza. Hansen zaproponował inny model. Jego zdaniem wokół Słońca utworzył się nie jeden, a wiele pierścieni pyłów i gazów - podobnie jak ma to miejsce wokół Saturna. Uważa on, że Ziemia i Wenus powstały z jednego grubego pierścienia położonego bliżej Słońca. Gdy młode planety zaczęły krążyć wokół gwiazdy, przechodziły przez chmury pyłów zawierające mniejsze i większe fragmenty materiału. Część z nich weszło w skład planet, ale inne zostały przez nie wypchnięte z pierścieni. Niektóre do nich wróciły, ale inne nie. "Weszły na inną orbitę" - mówi Hansen. Przeprowadzona przez niego symulacja komputerowa wykazała, że Mars i Merkury rzeczywiście mogły powstać z kosmicznego gruzu wybitego z pierwotnych pierścieni. Zdaniem naukowca, 90% materiału utworzyło Ziemię i Wenus, reszta weszła w skład pozostałych dwóch planet. Andrew Youdin, specjalista ds. modelowania planetarnego z Kanadyjskiego Centrum Astrofizyki Teoretycznej mówi, że model Hansena jest prosty i elegancki. Ziemia i Wenus są masywne i mają orbity zbliżone do okręgu, gdyż uformowały się z większości pobliskiego materiału. Merkury i Mars są mniejsze, a ich orbity eliptyczne, bo materiał, z którego powstały, został wypchnięty dalej od pierścieni. Z kolei Phil Armitage, astrofizyk z University of Colorado stwierdza: Model Brada jest niezwykle oryginalną próbą rozwiązania problemów, bazującą na hipotezie, która jest albo szalona, albo genialna.
  2. Na przestrzeni kilkudziesięciu lat geoglifom z peruwiańskich płaskowyżów przypisywano wiele funkcji. Miały być lądowiskami dla obcych, kalendarzem astronomicznym, systemem nawadniającym pustynię czy bieżnią do rozgrywania zawodów. Tomasz Gorka z Uniwersytetu w Monachium przychyla się jednak do koncepcji, zgodnie z którą wzory powstały na potrzeby wiernych – poruszali się oni wzdłuż ścieżek podczas odprawiania rytuałów. Wersję tę uprawomocniają pomiary geologiczne. Rysunki stworzyli Indianie Nazca. Kolejne pokolenia pracowały nad nimi od 400 r. p.n.e. do 650 r. n.e., usuwając zalegający na wierzchu czerwony żwir i odsłaniając ukryty pod nim jaśniejszy piasek. W 1994 roku linie i rysunki naziemne pustyni Nazca zostały wpisane na Listę Światowego Dziedzictwa Kulturowego UNESCO. Z najsłynniejszych warto wymienić pająka, olbrzymiego kondora, kolibra, orki, małpy oraz psy i kaktusy. Zespół Gorki badał 5 kompleksów geoglifów z okolic Palpa. Szczególnie skoncentrował się na strukturach trapezoidalnych. Poszukiwano anomalii w polu magnetycznym Ziemi, spowodowanych zmianami w gęstości gleby na różnych głębokościach. Wymagało to obejścia pól o łącznej powierzchni 60 ha. Wewnątrz struktur trapezoidalnych znaleźliśmy inne linie, niewidoczne z powietrza. Dostrzegalne dzisiaj geoglify to ostatni etap wieloletniego procesu tworzenia, podczas którego cały kompleks rysunków był stale rozbudowywany i remodelowany wskutek zużycia. Ponieważ niektóre linie silniej wpływały na pole magnetyczne, Gorka i jego koleżanka z Uniwersytetu w Konstancji Karsten Lambers zaczęli przypuszczać, że zostały one ubite nogami tysięcy wiernych, podążających wyznaczoną trasą. Wzdłuż nich poukładano muszle, które mogłyby w takim wypadku być ofiarami.
  3. Na zlecenie Narodowej Akademii Nauk amerykańscy uczeni przygotowali raport dotyczący ewentualnych pozaziemskich form życia. Wnioski do których doszli, mogą zrewolucjonizować sposób poszukiwania życia poza naszą planetą. Zdaniem akademików, nie należy skupiać się tylko na „najpopularniejszym” potencjalnym miejscu, w którym możemy znaleźć życie, czyli na Marsie. I nie należy wiązać życia z koniecznością występowania wody. Naukowcy twierdzą, że zamiast korzystać z wody obce organizmy mogą potrzebować metanu, a energię będą czerpały nie ze słońca, a z kwasu hydrochlorowego. Autorzy raportu uważają, że należy poszerzyć listę cech charakterystycznych, które powinny wystąpić, by gdzieś w kosmosie pojawiło się życie. Przykłady organizmów żyjących w zadziwiających warunkach znajdowane są na samej Ziemi (informowaliśmy np. o bakteriach żywiących się asfaltem), więc tym bardziej prawdopodobne, że pojawią się one poza naszą planetą. Naukowcy mają też konkretną propozycję dla poszukiwaczy pozaziemskiego życia. Zamiast wysyłać sondy na Marsa, lepiej zwrócić uwagę na księżyc Saturna – Tytana. Występują na nim oceany płynnego metanu i etanu, a autorzy raportu uważają, że to najbardziej prawdopodobne miejsce w Układzie Słonecznym, w którym może występować życie. To świat węgla. Jest tam bardzo dużo różnych związków węgla i możliwe, że są tam i takie, z których powstało życie – mówi John Baross, oceanograf z University of Washington, który kierował pracami nad raportem. Głównym problemem, jaki miał do rozwiązania jego zespół, była odpowiedź na pytanie: jak bardzo inne światy mogą różnić się od naszej planety. Baross zauważa, iż przyjmując obecnie obowiązujące założenia, możemy po prostu nie rozpoznać życia, które będzie znacznie różniło się od tego, co znamy. Dotychczas wszystkie poznane przez nas formy ziemskiego życia potrzebowały do istnienia wody, zdolności do ewolucji, energii bazującej na chemii lub świetle oraz metabolizmu bazującego na węglu. Przez lata uważano, że takie warunki są konieczne do zaistnienia życia. Ostatnie badania w dziedzinie biologii i biochemii sugerują jednak, że życie może powstać też w innych warunkach. Seth Shostak, astronom z SETI Institute, który zajmuje się poszukiwaniem obcego życia uważa, że spostrzeżenia przedstawione w opisywanym raporcie są „bardzo usprawiedliwione”. Przypomina, że dotychczas sondy nie znalazły życia, być może dlatego, że szukały form podobnych do ziemskich. Zauważa przy tym, iż trudno będzie nam odnaleźć inne formy życia, gdyż nie wiemy, czego szukać.
  4. Badania brytyjskich naukowców sugerują, że ślady najwcześniejszego ziemskiego życia możemy znaleźć na... Księżycu. W 2002 roku amerykański astronom John Armstrong wysunął teorię, że gdy przed czterema miliardami lat Księżyc był bombardowany przez meteoryty, mogła nań dotrzeć z Ziemi materia biologiczna. Teorię przyjęto z zainteresowaniem, naukowcy zastanawiali się jednak, czy materia biologiczna przetrwałaby uderzenie w powierzchnię Srebrnego Globu. Ian Crawford i Emily Baldwin z BirkBeck College School of Earth Sciences na University of London przeprowadzili odpowiednie symulacje, z których wynika, że w wielu przypadkach materia biologiczna niesiona przez meteoryt powinna przetrwać upadek. Oznacza to, że Księżyc jest dobrym miejscem do poszukiwania śladów najwcześniejszego ziemskiego życia. Śladów takich nie uda się znaleźć na Ziemi. Miliardy lat aktywności wulkanicznej i erozji wszystko zniszczyły. Armstrong ocenia, że na ziemskiego satelitę trafiły dziesiątki tysięcy ton fragmentów naszej planety. Sam wyliczał, że materiał biologiczny mógłby przetrwać. Teraz zespół Crawforda i Baldwin wykorzystał oprogramowanie AUTDYN do symulacji zachowania dwóch różnych typów meteorytów uderzających w Księżyc. Musimy bowiem pamiętać, że nie da się tutaj zastosować wprost doświadczeń z meteorytami upadającymi na Ziemię. Atmosfera naszej planety znacznie spowalnia meteoryty. Co prawda powoduje też stopienie się ich powierzchni, ale wnętrze pozostaje nietknięte. Brytyjczycy symulowali wiele meteorytów uderzających w Księżyc pod różnym kątem i z różną prędkością. Na każdym z wirtualnych meteorytów "umieścili" 500 punktów, z których były zbierane dane. Okazało się, że przetrwać mógł nawet materiał na tych meteorytach, które uderzyły z Księżyc z prędkością 5 kilometrów na sekundę. W takim przypadków wskutek uderzenia część meteorytu ulegała stopieniu, ale większość pozostała nietknięta. Gdy meteoryt uderzał z prędkością 2,5 km/s lub mniejszą "żadna z jego części nie była poddawana ciśnieniu bliskiemu punktu topienia się". Znalezienie ziemskich meteorytów na Księżycu nie będzie łatwe. Brytyjczycy mają jednak i na to sposób. Ich zdaniem trzeba szukać śladów wody, a można tego dokonać za pomocą spektroskopii w podczerwieni. Wiele skał na Ziemi zawiera wodę, której brakuje skałom księżycowym. Crawford uważa, że przy obecnej technice krążący nad Księżycem satelita byłby w stanie zauważyć zawierające wodę meteoryty o średnicy co najmniej 1 metra. Pojazd poruszający się po powierzchni Srebrnego Globu może szukać mniejszych pozostałości. Być może konieczne będzie kopanie pod powierzchnią Księżyca.
  5. Amerykańskie Bureau of the Census przedstawiło ostatnio swoje prognozy, zgodnie z którymi w 2012 roku liczba ludzi zamieszkujących Ziemię przekroczy 7 miliardów. Demografowie przewidują, że przyrost ludności zmaleje w pierwszej połowie XXI wieku, ale do 2050 po naszej planecie będzie chodzić aż 9,5 mld osób. W drugiej połowie XX wieku (lata 1950-1999) liczebność populacji Homo sapiens wzrosła ponaddwukrotnie – z 2,5 do 6 mld. Jeśli wyliczenia statystyków się potwierdzą, w latach 1999-2050 znów będziemy mieli z dość dużym (50-proc.) wzrostem, ale w połowie mijającego stulecia wskaźnik wzrostu zmaleje do 0,5%. Ponieważ polepsza się sytuacja życiowa wielu społeczeństw, m.in. wskutek rozwoju medycyny, stajemy się coraz starsi. Obecnie ludzie 80-letni i starsi to ok. 1,5% ludności świata, a w 2050 r. będą oni stanowić aż 5% globalnej populacji. Starzenie się społeczeństw spowodowało, że jakiś czas temu inni demografowie zaczęli prorokować, że w przyszłości przyczyni się to zmniejszenia liczby konfliktów zbrojnych. Ze względu na zaawansowany wiek nie miałby się kto w nie angażować. Pułap 1 mld ludność zamieszkująca Ziemię pokonała ok. roku 1800, potem liczebność populacji zaczęła gwałtownie rosnąć, by sięgnąć 2 mld tuż przed r. 1930.
  6. Duże zmiany temperatury atmosfery mogą unieruchomić płyty tektoniczne tworzące skorupę Ziemi (Earth and Planetary Science Letters). Na skorupę ziemską składa się kilkanaście płyt tektonicznych, które graniczą od spodu z górną warstwą płaszcza ziemskiego: nieciągłością Mohorovičicia, zwaną też nieciągłością Moho. Jej ruchy wywołują powolne ruchy płyt. Międzynarodowy zespół naukowców chciał lepiej zrozumieć, jak temperatura atmosfery może wpływać na właściwości płaszcza. Dzięki rozważaniom teoretycznym i symulacjom matematycznym stwierdzono, że gdyby temperatura powierzchni naszej planety wzrosła o ok. 100°C i pozostała taka przez kilka milionów lat, płaszcz mógłby się stać mniej lepki, co zahamowałoby ruchy płyt tektonicznych. Główny autor artykułu, profesor Adrian Lenardic z Rice University, podkreśla, że wymagane wzrosty temperatury są dużo wyższe od tych, z jakimi mielibyśmy do czynienia w przypadku zmian klimatycznych wywołanych działalnością człowieka. Do katastrofalnych zmian mogłyby za to doprowadzić zmiany w aktywności wulkanicznej czy Słońca. Wyniki badań zespołu dostarczają wskazówek odnośnie do poszukiwań planet przyjaznych życiu w obrębie Drogi Mlecznej. Louis Moresi, profesor nadzwyczajny Monash University, wyjaśnia bowiem, że płyty tektoniczne zapewniają energię konieczną do powstania życia. Opisane studium pomaga też stwierdzić, czemu Ziemia i Wenus, planety podobnej wielkości, które w dodatku leżą dość blisko siebie, ewoluowały w dwóch różnych kierunkach. Atmosfera Wenus składa się jednak głównie z dwutlenku węgla, co prowadzi do efektu cieplarnianego i podgrzania powierzchni planety. Jest ona o ponad 400°C gorętsza od powierzchni Ziemi. Brak też oznak istnienia ruchów tektonicznych. Wysoka temperatura jest przyczyną, dla której na Wenus nie ma płyt tektonicznych – podsumowuje Moresi.
  7. Naukowcy z Harvard-Smithsonian Center for Astrophysics opracowali technologię, która może przynieść przełom w astronomii. Dzięki ich pracom wyszukiwanie planet podobnych do Ziemi, a więc takich, na których może zaistnieć życie w znanych nam formach, stanie się znacznie łatwiejsze. Amerykańscy naukowcy wykorzystali stosunkowo niedawno odkrytą technologię laserową i dzięki niej stukrotnie zwiększyli dokładność analiz spektrograficznych. Sara Seager, profesor z MIT, mówi, że jeśli nowa technologia będzie współpracowała z współczesnymi teleskopami, to będziemy świadkami olbrzymiego przełomu. Jej kolega, George Ricker wyjaśnia, że gdy planeta krąży wokół gwiazdy, to oddziałuje na nią za pomocą własnej grawitacji i zakłóca jej ruch. Te zakłócenia powodują, zgodnie z efektem Dopplera, niewielkie zmiany w długościach fali światła, które dociera do nas z danej gwiazdy. Analizując to światło spektrografem możemy wykryć planety. Im większa jest planeta, tym łatwiej ją zauważyć. Najczęściej więc odkrywane są planety należące do kategorii gorących Jowiszy, czyli duże, gazowe ciała niebieskie. Na nich jednak nie może powstać życie takie, jak znamy je z Ziemi. Współczesne spektrografy nadają się do wykrywania w ruchach gwiazd zakłóceń rzędu około 1 metra na sekundę. Takie zmiany są jednak wywoływane przez duże planety jak Jowisz, a nie małe skaliste jak Ziemia. Naukowcy już w latach 80. ubiegłego wieku zaczęli się zastanawiać nad wykorzystanie lasera do zwiększenia rozdzielczości spektrografu, ale nie wiedzieli jak to zrobić. Dopiero Ronald Walsworth i Chih-Hao Li wpadli na pomysł, by połączyć laser i interferometr Fabry'ego-Perota, dzięki czemu powstała bardzo precyzyjna "linijka" pozwalająca zbadać właściwości światła z odległych gwiazd. W najbliższym czasie zostanie ona zamontowana w Multiple Mirror Telescope (MMT) na Mount Hopkins w Arizonie.
  8. Gdy niemal 100 lat temu niemiecki geofizyk Alfred Wegener zauważył, że zarysy kontynentów są do siebie podobne i wysnuł z tego wniosek, iż płyty tektoniczne przesuwają się, spotkał się z niedowierzaniem. Szybko jednak środowisko naukowe przekonało się do jego teorii i obecnie mamy już dowody, iż rzeczywiście płyty te są w ciągłym ruchu. Teraz dwóch amerykańskich naukowców stwierdziło, że ten ruch nie trwał i nie będzie trwał wiecznie. To właśnie ruch płyt tektoniczych przyczynił się do powstania Grzbietu Środkowoatlantyckiego, czyli ciągu podwodnych gór oddzielających Płytę Północnoamerykańską od Płyty Eurazjatyckiej i Płytę Południowoamerykańską od Płyty Afrykańskiej. Wspomniane płyty oddalają się od siebie w tempie około 2,5 centymetra rocznie, a Grzbiet to wynik działalności wulkanicznej, będącej jedną z oznak dryfu płyt tektonicznych. Po drugiej stronie kuli ziemskiej obie Ameryki zbliżają się do Azji, powodując zmniejszenie się Oceanu Spokojnego, wybuchy wulkanów i trzęsienia ziemi, do których dochodzi wskutek zagłębiania się jednej płyty pod drugą. Paul Silver z Carnegie Institution of Washington w Waszyngtonie we współpracy z Markiem Behnem z Woods Hole Oceanographic Institution w Massachusetts, dowiedli, że około 1,5 miliarda lat temu ruch płyt tektonicznych zatrzymał się. Dowodem na to jest poziom niobu, toru i dwóch izotopów wodoru w skałach. Dzięki pierwiastkom tym możemy zbadać, w jaki sposób przez miliony lat zmieniała się temperatura wewnątrz Ziemi. Spowolnienie ruchu płyt oznacza spowolnienie stygnięcia wnętrza planety. Stąd też wiadomo, że płyty zatrzymały się przed 1,5 miliarda lat. Co więcej, uczeni przewidują, że za około 350 milionów lat, gdy Ameryki połączą się z Azją i Australią, ponownie dojdzie do zatrzymania płyt tektonicznych. To będzie oznaczało wielkie zmiany dla planety. Brak ruchu spowoduje bowiem znaczy spadek aktywności wulkanicznej. A wulkany, wyrzucając do atmosfery olbrzymie ilości pyłów, przyczyniają się do schłodzenia Ziemi. Dojdzie więc do ogrzania globu, co będzie miało olbrzymie znaczenie dla klimatu i życia na Ziemi. Geofizyk Derrick Hasterok z University of Utah chwali prace swoich kolegów. Zauważył przy tym, iż odkrycie pozwala wyjaśnić tajemnicze wahania poziomu mórz, które zachodziły w ciągu ostatnich 4 miliardów lat.
  9. lt;!-- @page { size: 21cm 29.7cm; margin: 2cm } P { margin-bottom: 0.21cm } --> Niewielu z nas chciałoby wiedzieć, kiedy nastąpi nasz koniec, ani jak on będzie wyglądał. Jednak zahamowania te są obce astronomom – właśnie udało im się sprecyzować... harmonogram końca świata. Dotychczas wiadomo było, że życie na Ziemi wyginie po zmianie charakteru reakcji termojądrowych zachodzących w Słońcu. Nasza gwiazda zwiększy swą objętość, z czasem wchłaniając wewnętrzne planety Układu Słonecznego. Przed konsumpcją zostaną one oczywiście porządnie upieczone. Ziemia miała uniknąć całkowitej zagłady dzięki potężnemu wiatrowi słonecznemu, który powinien wypchnąć ją na wyższą orbitę. Za sprawą wysiłków astronomów z University of Sussex znamy nieco więcej szczegółów procesu, którego końcowa faza ma nastąpić za 7,6 miliarda lat. Najnowsze obliczenia wskazują niestety, że nasza planeta również stanie się częścią Słońca. Zwiększenie promienia orbity nie pozwoli uniknąć pochwycenia przez atmosferę gwiazdy. Wywołane w ten sposób tarcie doprowadzi do zmniejszenia prędkości liniowej Ziemi oraz jej powolnego opadania na Słońce. Finał tej wędrówki jest raczej jasny: nasza planeta wyparuje. Jeszcze posępniejsze prognozy dotyczą życia na Ziemi. Okazuje się, że pozostał nam już tylko miliard lat. Ponieważ organizmy są obecne od około 3,7 mld lat, nasza planeta ma za sobą niemal 80% całkowitego czasu "życia". Później Słońce stanie się wystarczająco duże, by wygotować wszystkie oceany. Podobno scenariusza tego można uniknąć. Kierujący wspomnianymi badaniami Robert Smith twierdzi, że wystarczy co parę tysięcy lat przyspieszać ruch Ziemi za pomocą asteroidy, by utrzymać bezpieczną odległość od Słońca. Zabiegi te mają wystarczyć na co najmniej 5 miliardów lat.
  10. Uczeni od dawna zastanawiali się, które kraje mogą ponieść największe szkody w wyniku zderzenia Ziemi z meteorytem. Przeprowadzali symulację rozprzestrzeniania się fal tsunami czy trzęsień Ziemi. Dopiero teraz jednak mogli skorzystać ze szczegółowych informacji dotyczących gęstości zaludnienia poszczególnych obszarów oraz istniejącej infrastruktury. Po odpowiedniej obróbce komputerowej okazało się, że wśród tych, które najbardziej ucierpią znajdą się przede wszystkim Chiny i Stany Zjednoczone. Nick Bailey i jego zespół z University of Southampton w Wielkiej Brytanii opracowali specjalny program komputerowy, za pomocą którego przeprowadzili obliczenia. Sprawdzali tysiące wariantów, w których symulowano uderzenie asteroidów o średnicy od 100 do 500 metrów, poruszającego się z prędkością około 20 000 kilometrów na sekundę. Uczeni skupili się na małych asteroidach, ponieważ zderzenie z nimi jest bardziej prawdopodobne. Ciała niebieskie o średnicy kilkuset metrów uderzają w naszą planetę średnio raz na 10 000 lat, a te większe od 1 kilometra – raz na 100 000 lat. Ponadto małe asteroidy jest trudniej zauważyć. Możemy zostać uderzeni bez ostrzeżenia – stwierdził Bailey. Badania Brytyjczyków wykazały, co nie było zaskoczeniem, że największe straty poniosą te kraje, na wybrzeżach których żyje najwięcej osób. Najbardziej zagrożone są Chiny, Indonezja, Indie, Japonia i USA. Znacznie trudniejsze od oszacowania liczby ofiar, było wyliczenie strat gospodarczych. Gęstość zaludnienia i wielkość infrastruktury oszacowano na podstawie oświetlenia widocznego na nocnych zdjęciach satelitarnych. Okazało się, że największe straty ekonomiczne poniosą Stany Zjednoczone, które narażone są na fale tsunami z dwóch oceanów. Kolejnym krajem, którego gospodarka najbardziej ucierpi będą Chiny, a następnie Szwecja, Kanada i Japonia. Symulacje różnych scenariuszy dały też odpowiedź na pytanie, dotyczące najbardziej zgubnych dla ludzkości miejsc zderzenia asteroidów. Okazało się, że największe ofiary w ludziach spowoduje upadek ciała niebieskiego u azjatyckich wybrzeży Oceanu Spokojnego. Natomiast największe straty gospodarcze spowoduje asteroida, która spadnie w północnych rejonach Atlantyku. Wówczas fale tsunami uderzą w Europę i Amerykę Północną. Brytyjczycy nie sprawdzali natomiast scenariuszy, w których asteroida rozpada się w atmosferze i w Ziemię uderza wiele mniejszych kawałków. Clark Chapman z Southwest Research Institute w stanie Kolorado mówi, że konieczne są dalsze badania i przeprowadzanie podobnych symulacji dla poszczególnych krajów. Każde państwo ma bowiem inną infrastrukture i inne możliwości reagowania na zagrożenia. Czytaj również: Uratuj Ziemię i wygraj 50 000 USD Eksplodujące roboty w walce z asteroidami
  11. Wokół gwiazdy znajdującej się w odległości 424 lat świetlnych od Ziemi prawdopodobnie formuje się właśnie planeta podobna do naszej. Amerykańscy astronomowie odkryli w pobliżu gwiazdy HD 113766 pas gorącego pyłu. Z czasem powinien on utworzyć planetę. Pas ten znajduje się w takiej odległości od swojej gwiazdy, że na planecie może istnieć woda w stanie płynnym i może powstać życie. Wiek samej gwiazdy ocenia się na 10 milionów lat, a więc znajduje się ona w takim okresie swojego życia, że mogą wokół niej powstawać planety o skalistym podłożu.
  12. Najnowsze obserwacje sugerują, że planety krążące blisko swojej gwiazdy nie muszą być skazane na zagładę. Dotychczas sądzono, że Słońce pochłonie Ziemię, gdy wejdzie w fazę czerwonego olbrzyma. Okazało się jednak, że nie musi to być prawda. W pobliżu gwiazdy V391 Pegasi odkryto planetę. Astronomów zdumiała jej obecność, gdyż gwiazda przeszła już fazę czerwonego olbrzyma i jest obecnie podkarłem typu B. Wydaje się, że pobliska planeta przetrwała okres, gdy V391 była olbrzymem. W gwiazdach podobnych do Słońca z czasem wypala się wodór zawarty w ich wnętrzu. Gwiazda zaczyna się kurczyć. W końcu do wnętrza wypełnionego gorącym helem zapadają się jej zewnętrzne warstwy, zawierające wodór. Dochodzi wówczas do gwałtownej reakcji, która rozgrzewa gwiazdę tak, jak nigdy wcześniej. Gorąca gwiazda gwałtownie się rozszerza osiągając średnicę nawet 100-krotnie większą niż dotychczas i zostaje czerwonym olbrzymem. Wszystko, co znajduje się na jej drodze, zmienia swój stan w gazowy i zostaje wchłonięte przez olbrzyma. Wielu specjalistów prognozowało, że za około 5 miliardów lat taki los spotka też Ziemię. Odkrycie Roberto Silvottiego z Narodowego Instytutu Astrofizyki w Neapolu zdaje się przeczyć tej teorii. Silvotti zauważył, że w odległości 1,7 jednostek astronomicznych (j.a. jest równa odległości Ziemi od Słońca) od V 391 Pegazi znajduje się planeta V 391 Peg b. Zgodnie z obecnym stanem wiedzy planeta, by przetrwać fazę czerwonego olbrzyma powinna znajdować się w odległości co najmniej 4 j.a. od swojej gwiazdy. Planeta okrąża V 391 Pegasi w ciągu 3,2 roku i jest jedną z najstarszych znanych nam planet. Czy odkrycie Silvottiego oznacza, że Ziemia przetrwa? Niekoniecznie. Co prawda za 5 miliardów lat będzie bardziej oddalona od Słońca niż obecnie, ale różni się ona chociażby masą od V 391 Peg b. Ponadto V 391 Pegasi i Słońce nie są identycznymi gwiazdami. Nasze Słońce skończy prawdopodobnie jako biały karzeł, a nie gorący podkarzeł. Jednym ze współautorów artykułu opisujących odkrycie jest Polak, doktor Stanisław Zoła z Obserwatorium Astronomicznego Uniwersytetu Jagiellońskiego.
  13. Astrobiolog z Cardiff University, Chandra Wickramasinghe i jego zespół poinformowali, że z ich wyliczeń wynika, iż życie pochodzi z wnętrza komet, a nie powstało na Ziemi. Naukowcy przeprowadzili kalkulacje i stwierdzili, iż prawdopodobieństwo powstania życia w kometach jest kwadrylion (1024) razy większe, niż powstanie go na naszej planecie. Komety i ich gorące, wypełnione wodą wnętrze jest miejscem, gdzie organiczne molekuły dały początek życiu. Zaistnienie takiego procesu jest bardziej prawdopodobne we wnętrzu komety, niż w jakimś zbiorniku wodnym na Ziemi – mówi Wickramasinghe. Większość naukowców zgadza się z tezą, że komety mogły przynieść na Ziemię wodę i materiał organiczny. Jednak niektórzy krytykują Wickramasinghe mówiąc, że jego stwierdzenia są czystymi spekulacjami. Moim zdaniem wysnuł on wnioski z szeregu spekulacji, które nie zostały poparte dowodami – mówi David Morrison, naukowiec z należącego do NASA Ames Research Center. Brytyjski astrobiolog oparł się na założeniu, że komety są porowate i mogą od milionów lat przechowywać wodę w stanie ciekłym. Morrison zwraca jednak uwagę, iż nie wiadomo, czy komety zawierają wodę. Nie wiadomo również, czy komety istnieją poza naszym systemem słonecznym. Dotychczas żadnej takiej komety nie odkryto. W rewelacje Wickramasinghe nie wierzy też Paul Falkowski, biochemik z Rutgers University. Jego zdaniem miejsca powstania życia nie można po prostu wyliczyć. To wymaga uczynienia podstawowych założeń. A my nie znamy szans na powstanie życia. Wiemy tylko o jednej planecie, na której ono istnieje. O innych nie wiemy nic – mówi. Sam Falkowski ze swoim zespołem jest autorem badań, które sugerują, iż życie nie byłoby w stanie przetrwać daleko w kosmosie, w warunkach, w jakich podróżują komety. Badał on liczące sobie 8 milionów lat DNA wydobyte z lodów Antarktyki. Było ono mocno zdegradowane. Na jego podstawie wyliczono, że okres rozpadu DNA wynosi na Ziemi około 1,1 miliona lat. Do jego degradacji przyczynia się promieniowanie z kosmosu. W przestrzeni kosmicznej jest ono znacznie większe, niż na Ziemi, a to oznacza, że wszelkie życie organiczne, które powstałoby na kometach, bardzo szybko zostałoby zniszczone. Falkowski wyliczył, że przetrwałoby ono najwyżej kilkaset tysięcy lat.
  14. Najnowsze badania skał księżycowych sugerują, że satelita Ziemi posiada żelazne jądro. Mogłoby to potwierdzać teorię o powstaniu Księżyca, wedle której uformował się on z resztek oderwanych od Ziemi, w którą uderzył obiekt wielkości Marsa. To najmocniejszy jak dotychczas dowód na to, że Księżyc posiada jądro – mówi Larry Taylor z University of Tennessee. On bardziej przypomina planetę – dodaje. Zdaniem Taylora nasz Księżyc jest zbyt duży, by być księżycem. Jest olbrzymi w porównaniu z księżycami innych planet i od zawsze podejrzewano, że w jego powstaniu leży jakaś tajemnica. Nie wszyscy uczeni zgadzają się z tymi wnioskami. Richard Walker, geolog z University of Maryland mówi, że skład różnych warstw formującej się Ziemi w czasach jej młodości, gdy uderzył w nią olbrzymi obiekt, mógł znacząco różnić się od składu dzisiejszego. Stąd też wnioskowanie o istnieniu księżycowego jądra na podstawie badań skał, może być błędne. O istnieniu żelaznego jądra naszej planety wiemy z odczytu sejsmografów rozmieszczonych na całej jej powierzchni. Na Księżycu sejsmografów jest zbyt mało, by dokładnie zbadać wnętrze satelity.
  15. Najnowsze pomiary wykazały, że nasza planeta jest odrobinę mniejsza niż do tej pory sądzono. Ogólnie rzecz ujmując, Ziemia nadal ma średnicę ok. 12 714 km i obwód 40 073 km, ponieważ zmiana przyjmowanych wymiarów jest rzędu milimetrów, nie kilometrów (Journal of Geodesy). Naukowcy z Uniwersytetu w Bonn posłużyli się przy ocenie obwodu Ziemi dość nową techniką, zwaną interferometrią wielkobazową/międzykontynentalną (VLBI, Very Long Baseline Interferometry). Wykorzystuje ona sieć ponad 70 radioteleskopów, odbierających sygnały wysyłane przez kwazary. Do systemu należą dwa urządzenia z obserwatorium Uniwersytetu Mikołaja Kopernika w Piwnicach. Ponieważ radioteleskopy są rozrzucone na dużym obszarze, ten sam sygnał dociera do nich z pewnym opóźnieniem. Opierając się na tej różnicy, możemy oznaczyć dzielącą je odległość z dokładnością do 2 milimetrów na 1000 kilometrów – powiedział szef projektu Axel Nothnagel. Dzięki temu Niemcy mogli stwierdzić, że Europa i Ameryka Północna odsuwają się od siebie w tempie 1,7 cm rocznie. Szacowany obwód Ziemi zmieniał się w zależności od sposobu pomiaru, ponieważ nasza planeta nie jest idealną sferą. Ruch wirowy powoduje wybrzuszenie okolic równika, w efekcie mamy więc do czynienia ze spłaszczonym na biegunach sferoidem. Dodatkowo ciężar Ziemi nie jest równo rozłożony ani w jej wnętrzu, ani na powierzchni. Z tych dwóch powodów grawitacja w różnych punktach globu nie jest taka sama.
  16. Astrobiolodzy z NASA uważają, że rośliny Obcych wcale nie muszą być zielone. Ich zdaniem, na planetach podobnych do Ziemi, które okrążają gwiazdy nieco jaśniejsze od naszego Słońca, roślinność będzie żółta lub pomarańczowa. Natomiast tam, gdzie gwiazda macierzysta jest ciemniejsza, rośliny mogą być czarne. Dla astrobiologów takie rozważania nie są zabawą. Kolor roślinności poza Układem Słonecznym jest ważny, gdyż dzięki jego określeniu uczeni będą wiedzieli, czego mają szukać badając inne systemy planetarne. Na Ziemi fotosynteza zależy przede wszystkim od światła czerwonego, którego jest najwięcej, i niebieskiego, które daje roślinom najwięcej energii. Rośliny odbijają przede wszystkim światło zielone, dlatego też widzimy je jako zielone. Pozaziemska roślinność będzie wyglądała inaczej, ponieważ rozwinęła własne pigmenty, w zależności od tego, jakie światło dociera do powierzchni planety – uważa Nancy Kiang z NASA Goddard Institute for Space Sciences. Kiang chciała dowiedzieć się, jaki kolor będzie najlepszy do fotosyntezy poza naszym układem słonecznym. Podjęła więc współpracę z należącym do NASA Wirtualnym Laboratorium Planetarnym (Virtual Planetary Laboratory) na Caltechu (Politechnika Kalifornijska). Razem z zespołem tamtejszych naukowców badała różne warianty warunków oświetleniowych panujących na planetach rozmiarów Ziemi, które znajdują się od swoich gwiazd w takiej odległości, że może na nich występować woda w stanie ciekłym. Okazało się, że wszystko zależy od jasności gwiazdy i atmosfery planety. Gwiazdy jaśniejsze od Słońca emitują więcej światła niebieskiego i ultrafioletowego. W atmosferze, w której występuje tlen, pojawi się też i ozon, który zablokuje światło ultrafioletowe, a więc do powierzchni planety dotrze więcej światła niebieskiego niż dociera do Ziemi. W wyniku tego wyewoluują tam rośliny, które będą absorbowały przede wszystkim światło niebieskie oraz dużo zielonego. Będą więc odbijały kolory żółty, pomarańczowy i czerwony. Zatem tamtejsza roślinność będzie przypominała jesienne kolory Ziemi. Tam, gdzie gwiazda macierzysta jest nieco tylko ciemniejsza od Słońca, do powierzchni planety dotrze światło podobne do ziemskiego, więc rośliny będą podobnego koloru. Z zupełnie inną sytuacją będziemy mieli do czynienia tam, gdzie planety krążą wokół czerwonych karłów. Masa tego typu gwiazd wynosi od 10 do 50 procent masy Słońca. Czerwone karły, które stanowią 85% wszystkich gwiazd, emitują bardzo dużo światła w podczerwieni, ale mało niebieskiego. Zdaniem Kiang roślinność znajdująca się w systemach planetarnych czerwonych karłów będzie absorbowała przede wszystkim światło podczerwone. Najprawdopodobniej też zaabsorbuje całe pasmo światła widzialnego, gdyż będzie odnosiła z tego korzyści. Odbijane będą więc te długości fali, których człowiek nie widzi. Rośliny będą czarne. Kiang zastrzega jednak, że mogą przyjąć każdy inny kolor. Dla człowieka jednak będą prawdopodobnie wyglądały na bardzo ciemne, ponieważ w systemach planetarnych czerwonych karłów do powierzchni planety dociera bardzo mało światła widzialnego. Victoria Meadows z Virtual Planetary Laboratory zwraca uwagę, że fotosynteza w takich warunkach może być niewystarczająca, by wytworzyć tlen konieczny do zablokowania przez atmosferę planety niebezpiecznego światła ultrafioletowego emitowanego przez czerwonego karła. Wystarczy jednak, by na powierzchni planety znajdowały się zbiorniki wodne o głębokości co najmniej 9 metrów. Wówczas żyjące w nich algi byłby chronione przed zgubnym ultrafioletem. Jej zdaniem algi mogą przybliżać się do powierzchni wody i rozwijać intensywniej w okresach spokoju czerwonego karła. Gdy gwiazda ponownie wejdzie w fazę większej aktywności, algi mogą zanurzać się głębiej. Nancy Kiang zwraca uwagę na to, że podobne badania przestają być li tylko spekulacjami. Kiedyś myśleliśmy, że życie na Ziemi jest czymś wyjątkowym. Jednak obecnie, dzięki coraz doskonalszym instrumentom, odkrywamy coraz więcej planet podobnych do Jowisza. Nie ma więc powodu by sądzić, że nie istnieje wiele planet podobnych do Ziemi. Czytaj również: Odkryto wodę poza Układem Słonecznym
  17. Europejska Agencja Kosmiczna wystrzeliła w przestrzeń kosmiczną satelitę, którego zadaniem będzie poszukiwanie planet podobnych do Ziemi. W ramach francuskiego projektu COROT na orbitę okołoziemską trafi teleskop zdolny do wykrywania planet mniejszych, niż obecnie znane. Będą to obiekty jedynie kilkukrotnie większe od Ziemi i skaliste, a nie, jak dotychczas, gazowe olbrzymy. COROT będzie w stanie wykryć planety spoza Układu Słonecznego bez względna ich rozmiary i naturę – mówi Claude Catala, jeden z naukowców zaangażowanych w projekt. Naukowcy mają nadzieję, że dzięki projektowi COROT odkryją od 10 do 40 niewielkich planet nowego typu znajdujących się niedaleko swoich gwiazd oraz dziesiątki gazowych gigantów. W 2008 roku NASA chce wysłać w przestrzeń kosmiczną pierwszy teleskop, który będzie mógł wykryć planety wielkości Ziemi znajdujące się w podobnych odległościach od swoich gwiazd, co nasza planeta.
  18. Dzisiejszego (7 października) wieczoru warto spojrzeć w niebo. Dlaczego? Ponieważ jak informuje NASA, Księżyc w pełni będzie o ok. 12% większy niż podczas innych tegorocznych pełni. Stanie się tak, ponieważ nasz satelita znajduje się blisko perygeum, czyli najbliższego Ziemi punktu swojej orbity. Księżyc Żniwny, czyli pełnia przypadająca najbliżej jesiennej równonocy, nie zawsze oznacza, że Księżyc znajduje się bliżej Ziemi i wydaje się w związku z tym większy. Wschód Księżyca będzie miał miejsce o 18.17 naszego czasu. Pełnię można obserwować o 23.30.
×
×
  • Create New...