Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

NASA ujawnia prototyp teleskopu dla europejskiego kosmicznego wykrywacza fal grawitacyjnych LISA

Rekomendowane odpowiedzi

NASA zaprezentowała pierwsze zdjęcia pełnowymiarowego prototypu sześciu teleskopów, które w przyszłej dekadzie rozpoczną pracę w kosmicznym wykrywaczu fal grawitacyjnych. Budowane przez ekspertów z NASA teleskopy to niezwykle ważne elementy misji LISA (Laser Interferometer Space Antenna), przygotowywanej przez Europejską Agencję Kosmiczną (ESA).

W skład misji LISA będą wchodziły trzy pojazdy kosmiczne, a na pokładzie każdego z nich znajdą się po dwa teleskopy NASA. W 2015 roku ESA wystrzeliła misję LISA Pathfinder, która przetestowała technologie potrzebne do stworzenia misji LISA. Kosmiczny wykrywacz fal grawitacyjnych ma rozpocząć pracę w 2035 roku.

LISA będzie składała się z trzech satelitów, tworzących w przestrzeni kosmicznej trójkąt równoboczny. Każdy z jego boków będzie miał długość 2,5 miliona kilometrów. Na pokładzie każdego z pojazdów znajdą się po dwa identyczne teleskopy, przez które do sąsiednich satelitów wysyłany będzie impuls z lasera pracującego w podczerwieni. Promień będzie trafiał w swobodnie unoszące się na pokładzie każdego satelity pokryte złotem kostki ze złota i platyny o boku 46 mm. Teleskopy będą odbierały światło odbite od kostek i w ten sposób, z dokładnością do pikometrów – bilionowych części metra – określą odległość pomiędzy trzema satelitami. Pojazdy będą umieszczone w takim miejscu przestrzeni kosmicznej, że na kostki nie będzie mogło wpływać nic oprócz fal grawitacyjnych. Zatem wszelkie zmiany odległości będą świadczyły o tym, że przez pojazdy przeszła fala grawitacyjna. Każdy z pojazdów będzie miał na pokładzie dwa teleskopy, dwa lasery i dwie kostki.

Formacja trzech pojazdów kosmicznych zostanie umieszczona na podobnej do ziemskiej orbicie wokół Słońca. Będzie podążała za naszą planetą w średniej odległości 50 milionów kilometrów. Zasada działania LISA bazuje na interferometrii laserowej, jest więc podobna do tego, jak działają ziemskie obserwatoria fal grawitacyjnych, takie jak np. opisywane przez nas LIGO. Po co więc budowanie wykrywaczy w kosmosie, skoro odpowiednie urządzenia istnieją na Ziemi?

Im dłuższe ramiona wykrywacza, tym jest on bardziej czuły na fale grawitacyjne o długim okresie. Maksymalna czułość LIGO, którego ramiona mają długość 4 km, przypada na zakres 500 Hz. Tymczasem w przypadku LISY będzie to zakres 0,12 Hz. Kosmiczny interferometr będzie więc uzupełnienie urządzeń, które posiadamy na Ziemi, pozwoli rejestrować fale grawitacyjne, których ziemskie urządzenia nie zauważą.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Gdyby zamiast trzech były 4 (ułożone w piramidę) i na każdym były trzy teleskopy i trzy kostki - to wykrywanie fal było by przestrzenne (a nie tylko "że są"). Można by było wykryć z którego kierunku w przestrzeni fala nadeszła. Mylę się?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 27.10.2024 o 08:18, Ergo Sum napisał:

Mylę się?

Przepraszam, ale niestety tak.

Zauważ, że co do "istoty", to w przypadku GPS wystarczą TRZY satelity, prawda? Oczywiście, że czym więcej, tym lepiej (tym większa dokładność). Tutaj trzy satelity wystarczą do "orientacji przestrzennej", choć oczywiście CZTERY (jak proponujesz) dawałyby lepszą dokładność, ale... Problem polega na tym, że 4 zamiast 3 to 5 tysięcy więcej problemów, z czego kilkaset nie do przeskoczenia technologicznie na dziś. Osobiście cieszę się z tego konceptu. Nie tylko dlatego, że ESA (z przykrością konstatuję, że KW WCIĄŻ ignoruje istnienie ESA - dymku brak... :(; Mariusza już nie oskarżam - chyba nie bardzo wie o co chodzi, a Wilk śpi... ;) ŻADNYCH dymków bowiem nie ma... :(). To i tak było (i jest) niesamowite technologiczne wyzwanie. Trzymam kciuki za powodzenie misji i życzę sukcesów.

P.S. Ooo. Dymki w komentarzach jednak działają, ale nie w samym komentowanym arcie. Trochę dziwaczne...

W dniu 25.10.2024 o 11:58, KopalniaWiedzy.pl napisał:

Pojazdy będą umieszczone w takim miejscu przestrzeni kosmicznej, że na kostki nie będzie mogło wpływać nic oprócz fal grawitacyjnych.

Oj, Mariusz. Oprócz fal grawitacyjnych i... ZWYCZAJNEJ grawitacji. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie wiem, o co z dymkami chodzi, bo o ESA cały czas było wspomniane.
Zwyczajną grawitację pominąłem, jako rzecz oczywistą. Wynikającą chociażby z obecności na orbicie, której bez grawitacji by przecież nie było :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
11 godzin temu, Astro napisał:

Problem polega na tym, że 4 zamiast 3 to 5 tysięcy więcej problemów, z czego kilkaset nie do przeskoczenia technologicznie na dziś.

hmmm... na moje laickie kobiece oko to 4 zamiast 3 to kwestia głównie skali. Owszem, same satelity musiałyby być większe, mieć więcej zasilania - bo komunikować by się musiały z 3 nie z 2, ale jeśli już zostają opracowane techniki, wynalazki, które dużo kosztują - wykonanie n urządzeń zamiast n/2 urządzeń nie powinno być już takim problemem. Pozycjonowanie i tak musi być w 3D a reszta to te same problemy co w przypadku 3. No jest jeszcze odległość od słońca czwartego satelity, a więc różnica w parametrach orbity (bo rozumiem, że te trzy będą w odległości takiej samej), ale te trzy też trzeba bardzo precyzyjnie "kopnąć" aby odpowiednio się poruszały, więc to znowu kwestia skali.
Dobra - pewnie się mylę ... ale chętnie posłucham wyjaśnień.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Astro pewnie wyjaśni bardziej szczegółowo, ale kwestia dodania kolejnego urządzenia to zawsze jest problem w misjach kosmicznych. Bo każde kolejne urządzenie, to konieczność dodania setek elementów i podzespołów, a więc znaczny wzrost ryzyka, że coś się zepsuje. Dlatego też, o ile dobrze wnioskuję, w misjach ważnych i kosztownych, montuje się niezbędne minimum.

Kojarzysz śmigłowiec latający na Marsie? To tani projekt, a dodany został wyłącznie dlatego, że to, co się z nim dzieje, w żaden sposób nie wpływa na główną misję. Można było go więc wysłać, bo nie stwarza ryzyka.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jedna więcej satelita dałaby wgląd 4D (3D+T) ale to nie oznacza dodania jednego zestawu aparatury. W obecnej wersji jedna satelita będzie posiadać aparaturę wysyłającą wiązkę lasera do dwóch satelitów, plus aparatura pomiarowa (czyli 6 układów). W przypadku czterech satelitów aparatury będzie nie 8, tylko 12. Czyli koszt wzrośnie prawie jeszcze raz tyle przy projekcie który będzie pionierski.
Poza tym pomiar 4D będzie można uzyskać wysyłając taką samą konstelację pod kątem, w tym że nowa będzie pozbawiona wad, które wyjdą przy testach pierwszej.
W pierwszej myśli chciałem zrzucić na model biznesowy pracy w takiej branży dzieląc projekty na etapy ale przy tylu niewiadomych raczej płacące instytucje nie pozwolą sobie na większe ryzyko wysłania bubla.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
5 godzin temu, Mariusz Błoński napisał:

Dlatego też, o ile dobrze wnioskuję, w misjach ważnych i kosztownych, montuje się niezbędne minimum.

Oczywiście, jak najbardziej, ale to mały problem jeśli chodzi o ideę. W zasadzie może nie minimum, bo czasem się dubluje pewne rzeczy, ale masz rację.

9 godzin temu, Ergo Sum napisał:

4 zamiast 3 to kwestia głównie skali

Zdecydowanie nie, bo fundamentalny problem to idea. Zajrzyj proszę w następujący link. Szczególnie przeczytaj "Budowa".
Satelity mają mieć orbity dobrane tak, aby ich wzajemne położenie się nie zmieniało, przy czym oczywiście odpada stosowanie jakichś silniczków korygujących ("lewitujące" kostki przestałyby w momencie manewru lewitować przywalając w coś tam czy cuś). O ile dla trzech satelitów daje się dobrać orbity, to formacja czterech raczej szybko by się "rozjechała". To problem nie do przejścia.

P.S. Z pewnością "rozjechałaby się" w konfiguracji zaproponowanej przez Ciebie (pamiętajmy, że odległości satelitów to ponad dwa miliony km).

2xP.S. Myślę, że poniższy obrazek z Wikipedii poraża pięknem i prostotą w jednym :)

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f4/LISA-orbit.jpg/307px-LISA-orbit.jpg

3xP.S. Złośliwie dla Mariusza. Jeśli nie wyjdzie, to zwiedzie oczywiście LISA, ale skoro obstajesz przy tym, że "Gaia zaobserwował" (beznadziejne), to małe wyzwanie. Kogo nam zabraknie, jeśli ktoś nazywa się Jan Maria Iksiński? ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, Astro napisał:

3xP.S. Złośliwie dla Mariusza. Jeśli nie wyjdzie, to zwiedzie oczywiście LISA, ale skoro obstajesz przy tym, że "Gaia zaobserwował" (beznadziejne), to małe wyzwanie. Kogo nam zabraknie, jeśli ktoś nazywa się Jan Maria Iksiński? ;)

Zabraknie oczywiście Jana Marii Iksińskiego :) No chyba, że będzie to Maria Jan Iksińska. :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
14 minut temu, Mariusz Błoński napisał:

oczywiście

Oczywiście tak. Dlaczego tak trudno łyknąć Ci Gaię (Gaję?)? :P Wszyscy piszą inaczej niż Ty, a Twój "impact" w netu (polskim) w końcu jest istotny - upierasz się tylko dlatego, że Ty? Wiem, język jest rzeczą dynamiczną, ale...

P.S. Pewnie podobnie jak Ty nie mam już sił powtarzać, że satelita jest rodzaju męskiego, ale w końcu to TWOJE forum. Mylę się? Akceptujemy głupoty dla dobra głupoty? W końcu masz coś takiego jak REGULAMIN - jeśli nie pamiętasz, to zajrzyj. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Drogi jeszcze bardziej Mariuszu. Przyjmuję z uznaniem te zmiany jako wyraz mojej bardziej niż dobrze pokładanej ufności w lepiej niż dobrze oceniany portal KW. :)  Dziękuję i tylko sukcesów. Tak trzymać (oczywiście żeńskie satelity mógłbyś nieco ostudzić w walce płci, ale co ja tam wiem ;)). Pozdrowienia jednak dla tej mądrzejszej części rodziny. :D

Edytowane przez Astro
  • Dzięki! (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Właśnie uruchomione Obserwatorium im. Very C. Rubin – o jego publicznym debiucie informowaliśmy tutaj  – pokazało swoją moc. W ciągu zaledwie 10 godzin obserwacji, przeprowadzonych w ciągu 7 nocy, obserwatorium astronomiczne okryło 2104 nowe asteroidy, w tym 7 asteroid bliskich Ziemi, 11 asteroid trojańskich i 9 obiektów transneptunowych.
      Na prezentowanym poniżej wideo możecie zobaczyć 7 nieznanych wcześniej asteroid bliskich Ziemi. To te szybko poruszające się żółto-pomarańczowe. Kolejnych 2015 obiektów to obiekty z głównego pasa asteroid, który znajduje się między Marsem a Jowiszem.
      Wspomnianych 11 asteroid trojańskich (tzw. Trojańczyków) to asteroidy, które dzielą z Jowiszem orbitę wokółsłoneczną. W dwóch punktach libracyjnych Jowisza znajdują się dwie grupy asteroid. Jedna to „Grecy”, druga „Trojańczycy”. Trojańczycy gonią Greków, a w każdej z grup znajduje się szpieg strony przeciwnej. Więcej o nich znajdziecie w naszym tekście na temat misji Lucy. Mamy też w końcu 9 obiektów transneptunowych, czyli takich, które znajdują się poza orbitą Neptuna.
      Powtórzmy jeszcze raz: 1 wyjątkowe obserwatorium astronomiczne, 10 godzin obserwacji i 2104 nieznane dotychczas asteroidy. Wszystkie naziemne i kosmiczne obserwatoria wykrywają około 20 000 nowych asteroid w ciągu roku. To pokazuje, jak olbrzymie możliwości ma Vera C. Rubin Observatory. A musimy pamiętać, że wciąż nie pracuje ono pełną mocą.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedawno astronomowie usłyszeli głos z kosmicznych zaświatów. Potężny krótkotrwały impuls na chwilę przyćmił wszystkie źródła sygnałów radiowych. Clancy James z australijskiego Curtin University i jego zespół skanowali nieboskłon za pomocą Australian Square Kilometre Array Pathfinder (ASKAP) – zestawu 36 radioteleskopów znajdujących się w Zachodniej Australii – odebrali krótki, bardzo silny sygnał. 
      Niezwykle podekscytowani stwierdzili, być może odkryli nowy pulsar lub inny obiekt, a że źródło sygnału  wydawało się pochodzić z naszej galaktyki, stwierdzili, że nowy obiekt powinien być widoczny za pomocą teleskopów optycznych. Jednak gdy bardziej szczegółowo przeanalizowali sygnał okazało się, że jego źródło było tak blisko, iż ASKAP nie skupić na nim jednocześnie wszystkich swoich anten. A to oznaczało, że źródło sygnału musi znajdować się mniej niż 20 tysięcy kilometrów od Ziemi. Impuls trwał zaledwie 30 nanosekund i przez tę chwilę silniejszy, niż wszystko inne rejestrowane za pomocą radioteleskopów.
      Gdy Australijczycy przeanalizowali pozycję źródła sygnału i porównali ją z pozycjami wszystkich znanych satelitów okazało się, że jedynym możliwym źródłem sygnału jest Relay 2. To jeden z pierwszych satelitów w historii. Został wystrzelony w 1964 roku i służył NASA jako eksperymentalne urządzenie komunikacyjne. Agencja przestała używać Relay 2 już w 1965 roku, natomiast pokładowa elektronika satelity działała do roku 1967. Wówczas Relay 2 zamilkł i od tej pory krąży wokół Ziemi jako bezwładny kawałek metalu.
      Teraz, po niemal 60 latach satelita znowu wysłał sygnał. Jednak jego urządzenie nie działają, więc źródłem sygnału musiały być czynniki zewnętrzne. Clancy i jego koledzy sądzą, że albo na powierzchni satelity zebrały się ładunki elektrostatyczne i doszło do wyładowania, albo uderzył w niego mikrometeoryt, który wywołał pojawienie się chmury plazmy. Sygnały z obu tych wydarzeń wyglądają podobnie, więc trudno byłoby je odróżnić. Przede wszystkim ktoś musiałby chcieć przeprowadzić takie badania. Tylko po co?
      Źródło: A nanosecond-duration radio pulse originating from the defunct Relay 2 satellite, https://arxiv.org/abs/2506.11462

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Inżynierowie misji Voyager wyłączyli niedawno CRS (Cosmic Ray Subsystem) na Voyagerze 1, a za dwa tygodnie wyłączą Low-Energy Charged Particle (LECP) na Voyagerze 2. Instrumenty, jak można domyślić się z ich nazw, odpowiadają za badanie promieniowania kosmicznego oraz niskoenergetycznych jonów. Po wyłączeniu wspomnianych urządzeń na każdej z sond będzą działały po 3 instrumenty naukowe. Odłączanie instrumentów ma na celu zaoszczędzenie energii i przedłużenie czasu działania sond – jedynych wysłanych przez człowieka obiektów, które opuściły Układ Słoneczny.
      Voyagery zasilane są przez radioizotopowe generatory termoelektryczne, generujące energię z rozpadu dwutlenku plutonu-238. Początkowo generatory wytwarzały energię o mocy około 475 W, jednak w miarę zużywania się paliwa tracą rocznie około 4,3 W. W przestrzeni kosmicznej przebywają już od 48 lat. Sposobem na poradzenie sobie ze zmniejszaniem mocy, jest wyłączanie kolejnych instrumentów. Jeśli byśmy nie wyłączali instrumentów, Voyagerom zostałoby prawdopodobnie kilka miesięcy pracy, mówi Suzanne Dodd.
      Na pokładzie każdej z sond znajduje się 10 identycznych instrumentów naukowych. Zadaniem części z nich było zabranie danych z gazowych olbrzymów Układu Słonecznego, zostały więc wyłączone zaraz po tym, jak sondy skończyły badania tych planet. Włączone zostały te instrumenty, które naukowcy uznali za potrzebne do zbadania heliosfery i przstrzeni międzygwiezdnej. Voyager 1 dotarł do krawędzi heliosfery w 2012 roku, Voyager 2 – w roku 2018.
      W październiku ubiegłego roku na Voyagerze 2 wyłączono instrument badający ilość plazmy i kierunek jej ruchu. W ostatnich latach instrument ten zebrał niedużą ilość danych, gdyż jest zorientowany w kierunku przepływu plazmy w ośrodku międzygwiezdnym. Voyager 1 przestał badać plazmę wiele lat temu, ze względu na spadającą wydajność urządzenia.
      Wyłączony właśnie CRS na Voyagerze 1 to zestaw trzech teleskopów badających m.in. protony z przestrzeni międzygwiezdnej i Słońca. Dane te pozwoliły określić, w którym miejscu i kiedy Voyager 1 opuścił heliosferę. LECP na Voyagerze 2, który ma zostać wkrótce wyłączony, bada różne jony, elektrony i promieniowanie kosmiczne zarówno z Układu Słonecznego, jak i spoza niego.
      Oba instrumenty wykorzystują obracające się platformy, mogą więc prowadzić badania w promieniu 360 stopni. Platformy wyposażono w silniki krokowe, które o obracały je co 192 sekundy. Na Ziemi platformy zostały przetestowane na 500 000 kroków. Tyle, ile potrzeba było, by misje doleciały do Saturna. Okazały się jednak znacznie bardziej wytrzymałe. Mają za sobą już ponad 8,5 miliona kroków.
      Voyagery miały zbadać zewnętrzne planety Układu Słonecznego i już dawno przekroczyły przewidywany czas działania. Każdy bit dodatkowych danych, które od tej pory udało się zebrać, to nie tylko wartościowa informacja dla heliofizyki, ale też świadectwo niezwykłych osiągnięć inżynieryjnych, stwierdza Patrick Koehn, odpowiedzialny za program naukowy Voyagerów.
      Inżynierowie NASA starają się, by instrumenty naukowe na sondach działały jak najdłużej, gdyż dostarczają unikatowych danych. W tak dalekich regionach kosmosu nie pracował jeszcze żaden instrument i przez najbliższe dziesięciolecia żaden nowy nie zostanie tam wysłany.
      Wyłączenie wspomnianych urządzeń oznacza, że sondy będą miały wystarczająco dużo energii, by działać przez około rok, zanim zajdzie konieczność wyłączenia następnych urządzeń. W tej chwili na Voyagerze 1 pracuje magnetometr i Plasma Wave Subsystem (PWS), odpowiedzialny za badanie gęstości elektronowej. Działa też LECP, który zostanie wyłączony w przyszłym roku. Na Voyagerze 2 działają zaś – nie licząc LECP, który wkrótce będzie wyłączony – magnetometr, PWS oraz CRS. W przyszłym roku inżynierowie wyłączą ten ostatni.
      Eksperci z NASA mają nadzieję, że dzięki tego typu działaniom jeszcze w latach 30. bieżącego wieku na każdym z Voyagerów będzie pracował jeszcze co najmniej 1 instrument naukowy. Czy tak się stanie, tego nie wiadomo. Trzeba pamiętać, że obie sondy od dziesięcioleci ulegają powolnej degradacji w surowym środowisku pozaziemskim.
      Obecnie Voyager 1 znajduje się w odległości ponad 25 miliardów kilometrów od Ziemi, a do Voyagera 2 dzieli nas 21 miliardów km. Sygnał radiowy do pierwszego z nich biegnie ponad 23 godziny, do drugiego – 19,5 godziny.
      W każdej minucie każdego dnia Voyagery badają zupełnie nieznane nam regiony, dodaje Linda Spilker z Jet Propulsion Laboratory. Oba pojazdy można na bieżąco śledzić na stronach NASA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed trzema dniami, gdy świat świętował Wigilię Bożego Narodzenia, sonda Parker Solar Probe przeleciała rekordowo blisko Słońca. Operatorzy misji z Johns Hopkins Applied Physics Laboratory odebrali przed kilkoma godzinami dane potwierdzające, że przelot przebiegł zgodnie z planem. To pierwszy sygnał z PSP od czasu, gdy rozpoczęła ona procedurę bliskiego przelotu.
      Parker Solar Probe znalazła się w odległości 6,1 miliona kilometrów od powierzchni Słońca, pędząc z prędkością 692 tysięcy km/h. Teraz nadzór misji czeka na informacje o stanie sondy. Mają one nadejść w ciągu najbliższych godzin. Natomiast 1 stycznia na Ziemię powinny trafić dane, z których dowiemy się więcej na temat warunków panujących w obszarze, w który zapuściła się sonda. Żaden wykonany przez człowieka obiekt nigdy nie znalazł się tak blisko gwiazdy, Parker dostarczy nam informacji z niezbadanych obszarów, mówi Nick Pinkine, menedżer misji.
      Parker Solar Probe została wystrzelona w sierpniu 2018 roku. Po raz pierwszy „dotknęła Słońca” dnia 28 kwietnia 2021 roku. Zewnętrzna krawędź Słońca jest wyznaczana przez powierzchnię krytyczną Alfvéna. To miejsce poniżej którego Słońce i jego siły grawitacyjne i magnetyczne bezpośrednio kontrolują wiatr słoneczny. W kwietniu 2021 roku PSP spędziła 5 godzin poniżej powierzchni krytycznej Alfvéna, w obszarze, gdzie ciśnienie i energia pola magnetycznego gwiazdy są silniejsze niż ciśnienie i energia cząstek przezeń emitowanych. Tym samym PSP stała się pierwszym pojazdem kosmicznym, który dotknął atmosfery naszej gwiazdy.
      Parker Solar Probe to urządzenie rozmiarów małego samochodu. Jego celem jest atmosfera Słońca znajdująca się w odległości około 6,5 miliona kilometrów od powierzchni gwiazdy. Głównym zadaniem misji jest zbadanie, w jaki sposób w koronie Słońca przemieszcza się energia i ciepło oraz odpowiedź na pytanie, co przyspiesza wiatr słoneczny. Naukowcy wiążą z misją olbrzymie nadzieje, licząc, że zrewolucjonizuje ona rozumienie Słońca, Układu Słonecznego i Ziemi.
      Pojazd może przetrwać temperatury dochodzące do 1370 stopni Celsjusza. Pomaga mu w tym gruba na 11,5 centymetra osłona termiczna (Thermal Protection System) z kompozytu węglowego. Jej zadaniem jest ochrona czterech instrumentów naukowych, które badają pola magnetyczne, plazmę, wysokoenergetyczne cząstki oraz obrazują wiatr słoneczny. Instrumenty mają pracować w temperaturze pokojowej.
      TPS składa się z dwóch paneli węglowego kompozytu, pomiędzy którymi umieszczono 11,5 centymetra węglowej pianki. Ta strona osłony, która jest zwrócona w kierunku Słońca została pokryta specjalną białą warstwą odbijającą promieniowanie cieplne. Osłona o średnicy 2,5 metra waży zaledwie 72,5 kilograma. Musiała być ona lekka, by poruszająca się z olbrzymią prędkością sonda mogła wejść na odpowiednią orbitę wokół naszej gwiazdy.
      Parker Solar Probe jest pierwszym pojazdem kosmicznym NASA nazwanym na cześć żyjącej osoby. W ten sposób uhonorowano profesora astrofizyki Eugene'a Parkera z University of Chicago. Zwykle misje NASA zyskują nową, oficjalną nazwę, po starcie i certyfikacji. Tym razem było inaczej. W uznaniu zasług profesora Parkera na polu fizyki Słońca oraz dla podkreślenia, jak bardzo misja jest związana z prowadzonymi przez niego badaniami, zdecydowano, że oficjalna nazwa zostanie nadana przed startem. Tym samym Parker stał się pierwszym człowiekiem, który zobaczył start misji NASA nazwanej jego imieniem. Uczony zmarł w 2022 roku, w wieku 94 lat.
      Aby nie ulec potężnej grawitacji Słońca, które stanowi przecież 99,8% masy Układu Słonecznego, PSP musiał osiągnąć prędkość nie mniejszą niż 85 000 km/h. Nie jest to łatwe, dlatego też pojazd aż siedmiokrotnie korzystał z asysty grawitacyjnej Wenus.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      O teleskopie Hubble'a słyszeli chyba wszyscy. Nic w tym dziwnego, gdyż jest to jeden z najważniejszych instrumentów naukowych wykorzystywanych obecnie przez człowieka. Niewiele osób jednak wie, że teleskopy wcale nie muszą spoglądać w niebo. Na Antarktydzie powstaje właśnie niezwykłe urządzenie. Teleskop IceCube (Kostka Lodu), jest budowany wewnątrz lodowej czapy pokrywającej południowy biegun naszej planety. Jego zadaniem jest wykrywanie neutrin.
      Neutrino
      Neutrino to jedna z cząstek elementarnych. Należy ona do grupy leptonów i wyróżniamy trzy typy neutrin: taonowe, mionowe oraz elektronowe. Neutrino ma zerowy ładunek elektryczny i niemal nie ma masy. Cząstka jest tak przenikliwa, że na przykład planety nie stanowią dla niej żadnej przeszkody. W każdej chwili przez nasze ciała, przez budynki i przez samą Ziemię przelatuje niezliczona liczba neutrin. Ich głównym źródłem jest oddziaływanie promieni kosmicznych w górnych warstwach atmosfery. Neutrina emitują też np. gwiazdy i reaktory atomowe.
      Istnienie neutrin zostało przewidziane teoretycznie w 1930 roku przez Wolfganga Pauliego, ale musiało minąć aż 26 lat zanim eksperymentalnie udowodniono, że Pauli się nie mylił.

      Cząsteczki te są bardzo łakomym kąskiem dla astronomów. Podróżują z prędkością światła od źródeł promieniowania, a na swej drodze nie napotykają niemal żadnych przeszkód. Neutrina powstają np. we wnętrzach gwiazd i bez najmniejszych problemów przemierzają przestrzeń kosmiczną. Badanie neutrin pozwala więc naukowcom wysnuć wnioski na temat samych źródeł, z których zostały wyemitowane.
      Z tego, co wiemy obecnie, zdecydowana większość istniejących neutrin pochodzi z samych początków wszechświata, powstały w momencie Wielkiego Wybuchu.
      IceCube
      Neutrina badane są od kilkudziesięciu lat i od lat naukowcy opracowują nowe metody ich obserwacji. Teoretycy od dawna uważają, że do obserwacji neutrin pochodzących z bardzo odległych źródeł potrzebny jest instrument długości co najmniej kilometra. Takim instrumentem ma być IceCube. Na miejsce jego budowy wybrano Antarktydę, gdyż jej lody są wyjątkowo czyste i wolne od źródeł promieniowania. Nic nie powinno więc zakłócać pracy niezwykłego teleskopu.
      Będzie się on składał z co najmniej 4200 modułów optycznych zawieszonych na 70 pionowych linach, a te z kolei będą umieszczone na głębokości od 1450 do 2450 metrów pod powierzchnią lodu. Na samej powierzchni znajdzie się kopuła zbudowana z co najmniej 280 modułów optycznych. Powierzchnia IceCube'a będzie wynosiła około 1 kilometra kwadratowego. Jak łatwo obliczyć, objętość tego niezwykłego instrumentu naukowego to około 2,5 kilometra sześciennego. Po ukończeniu prac IceCube będzie działał przez 20 lat.

      Uczeni mają nadzieję, że odpowie on na tak fundamentalne pytania, jak warunki fizyczne rozbłysków gamma czy też pozwoli zbadać naturę fotonów pochodzących z pozostałości po supernowej w gwiazdozbiorze Kraba oraz z nieodległych galaktyk. Być może IceCube pozwoli również potwierdzić teorię strun.
      Obecnie IceCube składa się z 40 lin. Do stycznia 2009 roku przybędzie 9 kolejnych. Rok później mają być już 63 liny, a w marcu 2010 roku urządzenie osiągnie pełną gotowość operacyjną. We wrześniu 2010 roku zakończony zostanie główny etap budowy IceCube'a.
      Obecnie budżet projektu wynosi 271 milionów dolarów. W pracach bierze udział około 200 naukowców i 29 instytucji.
      O skali przedsięwzięcia niech świadczą liczby. Wywiercenie w lodzie każdego z 70 otworów o średniej głębokości 2454 metrów trwa średnio 48 godzin (pierwszy otwór wiercono przez 57 godzin). W tym czasie usuwane jest 757 metrów sześciennych lodu i zużyciu ulega około 2400 litrów paliwa. W każdym otworze umieszczana jest lina. Operacja ta trwa 11 godzin. Praca nie jest łatwa, gdyż Antarktyda to najzimniejsze, najbardziej wietrzne i najbardziej suche miejsce na Ziemi. W niektórych jej punktach nie padało od tysięcy lat, a średnie temperatury na Biegunie Południowym wynoszą latem około -37 stopni Celsjusza. Rekord ciepła na Biegunie to -13,8 stopnia Celsjusza. Rekord zimna na Antarktydzie to -89 stopni Celsjusza.
      Najsilniejsze podmuchy wiatru zanotowano w lipcu 1972 roku. Naukowcy z francuskiej bazy Dumont d'Urville poinformowali wówczas, że wiatr wial z prędkością 320 kilometrów na godzinę. Na Antarktydzie znajduje się też największa pustynia na świecie, a rekordowy zanotowany spadek temperatury wyniósł 36 stopni w ciągu 12 minut.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...