Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Teleskop w głębi Ziemi

Recommended Posts

O teleskopie Hubble'a słyszeli chyba wszyscy. Nic w tym dziwnego, gdyż jest to jeden z najważniejszych instrumentów naukowych wykorzystywanych obecnie przez człowieka. Niewiele osób jednak wie, że teleskopy wcale nie muszą spoglądać w niebo. Na Antarktydzie powstaje właśnie niezwykłe urządzenie. Teleskop IceCube (Kostka Lodu), jest budowany wewnątrz lodowej czapy pokrywającej południowy biegun naszej planety. Jego zadaniem jest wykrywanie neutrin.

Neutrino

Neutrino to jedna z cząstek elementarnych. Należy ona do grupy leptonów i wyróżniamy trzy typy neutrin: taonowe, mionowe oraz elektronowe. Neutrino ma zerowy ładunek elektryczny i niemal nie ma masy. Cząstka jest tak przenikliwa, że na przykład planety nie stanowią dla niej żadnej przeszkody. W każdej chwili przez nasze ciała, przez budynki i przez samą Ziemię przelatuje niezliczona liczba neutrin. Ich głównym źródłem jest oddziaływanie promieni kosmicznych w górnych warstwach atmosfery. Neutrina emitują też np. gwiazdy i reaktory atomowe.
Istnienie neutrin zostało przewidziane teoretycznie w 1930 roku przez Wolfganga Pauliego, ale musiało minąć aż 26 lat zanim eksperymentalnie udowodniono, że Pauli się nie mylił.

Cząsteczki te są bardzo łakomym kąskiem dla astronomów. Podróżują z prędkością światła od źródeł promieniowania, a na swej drodze nie napotykają niemal żadnych przeszkód. Neutrina powstają np. we wnętrzach gwiazd i bez najmniejszych problemów przemierzają przestrzeń kosmiczną. Badanie neutrin pozwala więc naukowcom wysnuć wnioski na temat samych źródeł, z których zostały wyemitowane.
Z tego, co wiemy obecnie, zdecydowana większość istniejących neutrin pochodzi z samych początków wszechświata, powstały w momencie Wielkiego Wybuchu.

IceCube

Neutrina badane są od kilkudziesięciu lat i od lat naukowcy opracowują nowe metody ich obserwacji. Teoretycy od dawna uważają, że do obserwacji neutrin pochodzących z bardzo odległych źródeł potrzebny jest instrument długości co najmniej kilometra. Takim instrumentem ma być IceCube. Na miejsce jego budowy wybrano Antarktydę, gdyż jej lody są wyjątkowo czyste i wolne od źródeł promieniowania. Nic nie powinno więc zakłócać pracy niezwykłego teleskopu.
Będzie się on składał z co najmniej 4200 modułów optycznych zawieszonych na 70 pionowych linach, a te z kolei będą umieszczone na głębokości od 1450 do 2450 metrów pod powierzchnią lodu. Na samej powierzchni znajdzie się kopuła zbudowana z co najmniej 280 modułów optycznych. Powierzchnia IceCube'a będzie wynosiła około 1 kilometra kwadratowego. Jak łatwo obliczyć, objętość tego niezwykłego instrumentu naukowego to około 2,5 kilometra sześciennego. Po ukończeniu prac IceCube będzie działał przez 20 lat.

Uczeni mają nadzieję, że odpowie on na tak fundamentalne pytania, jak warunki fizyczne rozbłysków gamma czy też pozwoli zbadać naturę fotonów pochodzących z pozostałości po supernowej w gwiazdozbiorze Kraba oraz z nieodległych galaktyk. Być może IceCube pozwoli również potwierdzić teorię strun.

Obecnie IceCube składa się z 40 lin. Do stycznia 2009 roku przybędzie 9 kolejnych. Rok później mają być już 63 liny, a w marcu 2010 roku urządzenie osiągnie pełną gotowość operacyjną. We wrześniu 2010 roku zakończony zostanie główny etap budowy IceCube'a.
Obecnie budżet projektu wynosi 271 milionów dolarów. W pracach bierze udział około 200 naukowców i 29 instytucji.

O skali przedsięwzięcia niech świadczą liczby. Wywiercenie w lodzie każdego z 70 otworów o średniej głębokości 2454 metrów trwa średnio 48 godzin (pierwszy otwór wiercono przez 57 godzin). W tym czasie usuwane jest 757 metrów sześciennych lodu i zużyciu ulega około 2400 litrów paliwa. W każdym otworze umieszczana jest lina. Operacja ta trwa 11 godzin. Praca nie jest łatwa, gdyż Antarktyda to najzimniejsze, najbardziej wietrzne i najbardziej suche miejsce na Ziemi. W niektórych jej punktach nie padało od tysięcy lat, a średnie temperatury na Biegunie Południowym wynoszą latem około -37 stopni Celsjusza. Rekord ciepła na Biegunie to -13,8 stopnia Celsjusza. Rekord zimna na Antarktydzie to -89 stopni Celsjusza.

Najsilniejsze podmuchy wiatru zanotowano w lipcu 1972 roku. Naukowcy z francuskiej bazy Dumont d'Urville poinformowali wówczas, że wiatr wial z prędkością 320 kilometrów na godzinę. Na Antarktydzie znajduje się też największa pustynia na świecie, a rekordowy zanotowany spadek temperatury wyniósł 36 stopni w ciągu 12 minut.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Czy aby nie jest zbyt wysoka? Czytalam juz o szesciu detektorach nautrina a kazdy z nich bardzo kosztowny. Rozumiem sens badan, ale to bardziej wyglada na wyscig kto pierwszy i wyciaganie kasy podatnikow na projekty naukowe. A ten jeszcze pali jak smok 2.4 tys l paliwa w dwie doby! Powinni tego zabronic!  8)

Share this post


Link to post
Share on other sites
Wiadomo jednak, że oddziałują z jądrami atomów, prowadząc do ich rozpadu. I to właśnie ten rozpad pomaga w obserwacji neutrin.

 

Wiadomość dnia, dobrze zapamiętać.

Share this post


Link to post
Share on other sites
Wiadomo jednak, że oddziałują z jądrami atomów, prowadząc do ich rozpadu.

A nie tak dawno pisano o odkryciu że neutrina ze Słońca wpływają na tempo rozpadu. To jak to w końcu jest? Wiedziano że jądra się rozpadają pod wpływem neutrin a nie wiedziano że neutrina wpływają na tempo rozpadu? Niech mi to ktoś proszę wyjaśni.

Share this post


Link to post
Share on other sites

a rekordowy zanotowany spadek temperatury wyniósł 36 stopni w ciągu 12 minut.

 

Czy ktoś zna orginalne zródlo tej informacji?

 

z góry dziękuję Irek

Share this post


Link to post
Share on other sites

Irek tu masz link do oficjalnej strony tego projektu więc to powinno być oryginalne źródło tej informacji.

http://icecube.wisc.edu/

 

Dzięki.

 

Faktycznie znalazlem tam coś na ten temat ale dane się nie zgadzają. Podane są 65°F a to powinno odpowiadać 18°C jeśli się nie przeliczyłem.

Share this post


Link to post
Share on other sites

Dzięki.

 

Faktycznie znalazlem tam coś na ten temat ale dane się nie zgadzają. Podane są 65°F a to powinno odpowiadać 18°C jeśli się nie przeliczyłem.

 

Jednak się przeliczyłem powinno się zgadzać

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Jeszcze do niedawna Antarktyda była jedynym kontynentem, na którym nie znaleziono bursztynu. Właśnie się to zmieniło. Naukowcy z Alfred-Wegener-Institut (AWI) i TU Bergakademie Freiberg opublikowali na łamach Antarctic Science artykuł, w którym informują o odkryciu najbliższych biegunowi południowemu kawałków bursztynu. Dowodzi to, że około 90 milionów lat temu na Antarktydzie rosły drzewa, z których wyciekała żywica.
      Bursztyn znaleziono w rdzeniu pobranym podczas wyprawy badawczej na pokładzie lodołamacza Polarstern w 2017 roku. Rdzeń został pobrany w Zatoce Pine Island z osadów dennych znajdujących się na głębokości 946 metrów. Dokładne współrzędne geograficzne miejsca pochodzenia rdzenia to 73 stopnie 57 minut szerokości geograficznej południowej i 107 stopni 9 minut długości geograficznej zachodniej (73.57°S, 107.09°W).
      Żywica znajdowała się w 5-centymetrowej warstwie węgla brunatnego. Po wysuszeniu, węgiel został pokruszony na 1-milimetrowe kawałki i zbadany pod mikroskopem. Właśnie wtedy zauważono liczne fragmenty bursztynu o długości 0,5–1 mm. Miały one barwę od intensywnie żółtej po brązowawą.
      Analizowane fragmenty dają nam bezpośredni wgląd w warunki naturalne, jakie 90 milionów lat temu panowały w Zachodniej Antarktyce. To również fascynujące szczegółowe uzupełnienie wiedzy o funkcjonowaniu lasu, który opisaliśmy w Nature w 2020 roku, mówi geolog morski Johann P. Klages z AWI. Widzimy więc, że w pewnym momencie swojej historii każdy z siedmiu współczesnych kontynentów zapewniał warunki do życia drzewom wytwarzającym żywicę. Naszym celem jest dowiedzenie się jak najwięcej o tym lesie. Czy dochodziło tam do pożarów, czy w bursztynie znajdziemy ślady życia. Nasze odkrycie pozwala nam na bezpośrednią podróż w czasie, stwierdza uczony.
      Znalezienie bursztynu to kolejny kawałek układanki, dzięki któremu lepiej zrozumiemy bagnisty, pełen drzew iglastych las strefy umiarkowanej, jaki na biegunie południowym istniał we wczesnej kredzie, dodaje Henny Gerschel z TU Bergakademie Freiberg.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA zaprezentowała pierwsze zdjęcia pełnowymiarowego prototypu sześciu teleskopów, które w przyszłej dekadzie rozpoczną pracę w kosmicznym wykrywaczu fal grawitacyjnych. Budowane przez ekspertów z NASA teleskopy to niezwykle ważne elementy misji LISA (Laser Interferometer Space Antenna), przygotowywanej przez Europejską Agencję Kosmiczną (ESA).
      W skład misji LISA będą wchodziły trzy pojazdy kosmiczne, a na pokładzie każdego z nich znajdą się po dwa teleskopy NASA. W 2015 roku ESA wystrzeliła misję LISA Pathfinder, która przetestowała technologie potrzebne do stworzenia misji LISA. Kosmiczny wykrywacz fal grawitacyjnych ma rozpocząć pracę w 2035 roku.
      LISA będzie składała się z trzech satelitów, tworzących w przestrzeni kosmicznej trójkąt równoboczny. Każdy z jego boków będzie miał długość 2,5 miliona kilometrów. Na pokładzie każdego z pojazdów znajdą się po dwa identyczne teleskopy, przez które do sąsiednich satelitów wysyłany będzie impuls z lasera pracującego w podczerwieni. Promień będzie trafiał w swobodnie unoszące się na pokładzie każdego satelity pokryte złotem kostki ze złota i platyny o boku 46 mm. Teleskopy będą odbierały światło odbite od kostek i w ten sposób, z dokładnością do pikometrów – bilionowych części metra – określą odległość pomiędzy trzema satelitami. Pojazdy będą umieszczone w takim miejscu przestrzeni kosmicznej, że na kostki nie będzie mogło wpływać nic oprócz fal grawitacyjnych. Zatem wszelkie zmiany odległości będą świadczyły o tym, że przez pojazdy przeszła fala grawitacyjna. Każdy z pojazdów będzie miał na pokładzie dwa teleskopy, dwa lasery i dwie kostki.
      Formacja trzech pojazdów kosmicznych zostanie umieszczona na podobnej do ziemskiej orbicie wokół Słońca. Będzie podążała za naszą planetą w średniej odległości 50 milionów kilometrów. Zasada działania LISA bazuje na interferometrii laserowej, jest więc podobna do tego, jak działają ziemskie obserwatoria fal grawitacyjnych, takie jak np. opisywane przez nas LIGO. Po co więc budowanie wykrywaczy w kosmosie, skoro odpowiednie urządzenia istnieją na Ziemi?
      Im dłuższe ramiona wykrywacza, tym jest on bardziej czuły na fale grawitacyjne o długim okresie. Maksymalna czułość LIGO, którego ramiona mają długość 4 km, przypada na zakres 500 Hz. Tymczasem w przypadku LISY będzie to zakres 0,12 Hz. Kosmiczny interferometr będzie więc uzupełnienie urządzeń, które posiadamy na Ziemi, pozwoli rejestrować fale grawitacyjne, których ziemskie urządzenia nie zauważą.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas seminarium zorganizowanego w CERN-ie naukowcy pracujący przy projekcie NA62, w ramach którego badane są rzadkie rozpady kaonów, poinformowali o jednoznacznym potwierdzeniu rejestracji ultrarzadkiego rozpadu kaonu dodatniego do dodatnio naładowanego pionu i parę neutrino-antyneutrino. Uczeni z NA62 już wcześniej obserwowali sygnały, świadczące o zachodzeniu takiego procesu, jednak teraz, po raz pierwszy, pomiary zostały dokonane z poziomem ufności 5σ, od którego możemy mówić o dokonaniu odkrycia.
      Zaobserwowane zjawisko, które zapisujemy jako K+→π+νν, to jeden z najrzadziej obserwowanych rozpadów. Model Standardowy przewiduje, że w ten sposób rozpada się mniej niż 1 na 10 miliardów kaonów dodatnich. Ta obserwacja to moment kulminacyjny projektu, który rozpoczęliśmy ponad dekadę temu. Obserwowanie zjawisk naturalnych, których prawdopodobieństwo wynosi 10-11 jest zarówno fascynujące, jak i wymagające. Wielki wysiłek, jaki włożyliśmy w badania, w końcu zaowocował obserwacją, dla której projekt NA62 powstał, mówi Giuseppe Ruggiero, rzecznik projektu badawczego.
      Po co jednak fizycy wkładają tyle wysiłku w obserwacje tak rzadko zachodzącego procesu? Otóż modele teoretyczne sugerują, że rozpad K+→π+νν jest niezwykle wrażliwy na wszelkie odchylenia od Modelu Standardowego, jest zatem jednym z najbardziej interesujących procesów dla poszukiwań zjawisk fizycznych wykraczających poza Model Standardowy.
      Uzyskany obecnie wynik jest o około 50% większy, niż zakłada to MS, ale wciąż mieści się w granicach niepewności. Dzięki zebraniu kolejnych danych naukowcy z NA62 będą w stanie w ciągu kilku lat przeprowadzić testy rozpadu pod kątem występowania tam zjawisk, których Model Standardowy nie opisuje. Poszukiwanie nowej fizyki w tym rozpadzie wymaga zgromadzenia większej ilości danych. Nasze obecne osiągnięcie to duży krok naprzód. Stanowi ono fundament dla kolejnych badań, dodaje Karim Massri z NA62.
      Grupa NA62 uzyskuje kaony kierując intensywną wiązkę protonów z Super Proton Synchrotron w CERN-ie na stacjonarny cel. W wyniku zderzenia w każdej sekundzie powstaje około miliarda cząstek, które są rejestrowane przez detektory. Dodatnie kaony stanowią około 6% z tych cząstek. NA62 dokładnie określa sposób rozpadu tych kaonów, rejestrując wszystkie powstające wówczas cząstki, z wyjątkiem neutrin. Ich obecność jest dedukowana z brakującej energii.
      Dla obecnie opisanego odkrycia kluczowe były dane zebrane w roku 2021 i 2022, które zgromadzono po udoskonaleniu detektorów. Dzięki temu NA62 może pracować z wiązkami o 30% bardziej intensywnymi. W połączeniu z nowymi technikami analitycznymi, naukowcy są w stanie prowadzić analizy o 50% szybciej, niż wcześniej, a jednocześnie tłumić sygnały, które są podobne. Nasza praca polega na zidentyfikowaniu 1 na 10 miliardów rozpadu K+ i upewnieniu się, że nie był to żaden z pozostałych 9 999 999 999, dodaje kierownik projektu, Joel Swallow.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Technicy z Fermi National Accelerator Laboratory ukończyli prototyp specjalnego nadprzewodzącego kriomodułu, jedynego takiego urządzenia na świecie. Projekt PIP-II, w którym udział biorą też polscy naukowcy, ma na celu zbudowanie najpotężniejszego na świecie źródła neutrin. Zainwestowała w nie również Polska.
      HB650 będzie najdłuższym i największym kriomodułem nowego akceleratora liniowego (linac). Wraz z trzema innymi będzie przyspieszał protony do 80% prędkości światła. Z linac protony trafią do dwóch kolejnych akceleratorów, tam zostaną dodatkowo przyspieszone i zamienione w strumień neutrin. Neturina te zostaną wysłane w 1300-kilometrową podróż przez skorupę ziemską, aż trafią do Deep Underground Neutrino Experiment and the Long Baseline Neutrino Facility w Lead w Dakocie Południowej.
      Prace nad nowatorskim kriomodułem rozpoczęły się w 2018 roku, w 2020 jego projekt został ostatecznie zatwierdzony i rozpoczęła się produkcja podzespołów. W styczniu 2022 roku w Fermilab technicy zaczęli montować kriomoduł. HB650 to 10-metrowy cylinder o masie około 12,5 tony. Wewnątrz znajduje się szereg wnęk wyglądających jak połączone ze sobą puszki po napojach. Wnęki wykonano z nadprzewodzącego niobu, który podczas pracy będzie utrzymywany w temperaturze 2 kelwinów. W tak niskiej temperaturze niob staje się nadprzewodnikiem, co pozwala efektywnie przyspieszyć protony.
      Żeby osiągnąć tak niską temperaturę wnęki będą zanurzone w ciekłym helu, nad którym znajdzie wiele warstw izolujących, w tym MLI, aluminium oraz warstwa próżni. Całość zamknięta jest w stalowej komorze próżniowej, która zabezpiecza wnęki przed wpływem pola magnetycznego Ziemi.
      Linac będzie przyspieszał protony korzystając z pola elektrycznego o częstotliwości 650 MHz. Wnętrze wnęk musiało zostać utrzymane w niezwykle wysokiej czystości, gdyż po złożeniu urządzenia nie ma możliwości ich czyszczenia, a najmniejsze nawet zanieczyszczenie zakłóciłoby pracę akceleratora. Czystość musiała być tak wysoka, że nie wystarczyło, iż całość prac przeprowadzano w cleanroomie. Wszelkie przedmioty znajdujące się w cleanroomie oraz stosowane procedury były projektowane z myślą o utrzymaniu jak najwyższej czystości. Pracownicy nie mogli na przykład poruszać się zbyt szybko, by nie wzbijać w powietrze ewentualnych zanieczyszczeń.
      Obecnie trwa schładzanie kriomodułu do temperatury 2 kelwinów. Naukowcy sprawdzają, czy całość wytrzyma. Nie bez powodu jest to prototyp. Chcemy dzięki niemu zidentyfikować wszelkie problemy, zobaczyć co do siebie nie pasuje, co nie działa, mówi Saravan Chandrasekaran z Fermilab. Po zakończeniu chłodzenia urządzenie zostanie poddane... testowi transportu. Kriomoduł trafi do Wielkiej Brytanii, a gdy wróci do Fermilab zostaną przeprowadzone testy, by upewnić się, że wszystko nadal działa.
      Gdy HB650 przejdzie pomyślnie wszystkie testy, rozpocznie się budowa właściwego kriomodułu. Wezmą w nim udział partnerzy projektu PIP-II (Photon Improvement Plan-II) z Polski, Indii, Francji, Włoch, Wielkiej Brytanii i USA.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uniwersytet Jagielloński wyśle w przestrzeń kosmiczną teleskop, który będzie poszukiwał śladów wodoru i deuteru wokół małych ciał Układu Słonecznego. Projekt HYADES, który właśnie został dofinansowany kwotą 3 milionów euro przez Europejską Radę ds. Badań Naukowych, ma na celu zbadanie pochodzenia wody na Ziemi oraz poszukiwanie jej źródeł w Układzie Słonecznym.
      Woda to jeden z najważniejszych składników, niezbędnych do rozwoju życia. Wiemy, że występuje ona na Marsie i wchodzi w skład komet. Jednak jej bezpośrednia obserwacja na kometach jest trudna. Znacznie łatwiej jest zaobserwować atomy wodoru uwolnione w gazowych otoczkach komet wskutek rozpadu cząsteczek wody, mówi kierownik projektu HYADES, doktor Michał Drahus.
      Atomy wodoru emitują dużo światła przez linię widmową Lyman alfa, dzięki czemu są bardzo czułym wskaźnikiem obecności wody. Jednak ten zakres promieniowania jest trudny w obserwacji. Znajduje się bowiem w zakresie dalekiego ultrafioletu, który jest całkowicie pochłaniany przez atmosferę Ziemi. Dlatego też naukowcy z UJ postanowili przenieść swoje obserwacje w kosmos.
      W ramach pięcioletniego projektu powstanie satelita wyspecjalizowany w poszukiwaniu wody. Jego głównym celem będzie zbadanie różnych grup komet pod kątem jej występowania. Jest to o tyle istotne, że zgodnie z obecnym stanem wiedzy, Ziemia uformowała się bez wody. Dopiero później ten życiodajny składnik trafił na naszą planetę. Jedna z hipotez mówi, że została ona przyniesiona przez komety. Dlatego też ich obserwacje mogą pomóc w określeniu, skąd wzięła się woda na Ziemi. O tym, czy komety mogły być źródłem wody na Błękitnej Planecie może świadczyć stosunek izotopów wodoru. Jeśli znajdziemy na kometach wodę o składzie izotopowym takim, jaki ma woda na Ziemi, będzie to silnym potwierdzeniem hipotezy o pochodzeniu wody.
      Misja HYADES może zrewolucjonizować naszą wiedzę na ten temat. O ile bowiem w ciągu ostatnich 35 lat tego typu badania przeprowadzono na próbce 12 komet uzyskując niejednoznaczne wyniki, to polscy naukowcy mają zamiar przebadać 50 komet w ciągu zaledwie 3 lat.
      Na tym jednak możliwości HYADES się nie kończą. Kosmiczny teleskop z UJ poszuka też nieznanych zasobów wody w Układzie Słonecznym. Naukowcy chcą przyjrzeć się m.in. grupie planetoid przypominających komety. Uzyskane informacje na temat sublimacji lodu wodnego z tych ciał dadzą nam unikalny wgląd w zawartość wody w pasie głównym planetoid, mówi doktor Drahus. Niezwykle interesującym celem badawczym mogą być też obiekty międzygwiezdne, które podróżują przez Układ Słoneczny. Obiekty te mają niesłychane znaczenie dla nauki, gdyż uformowały się wokół innych gwiazd, w związku z czym przynoszą nam unikalne informacje o swoich macierzystych układach planetarnych, mówi Michał Drahus. Dotychczas zidentyfikowaliśmy dwa tego typu obiekty – 1I/Oumuamua oraz 2I/Borisov – naukowcy sądzą jednak, że jest ich znacznie więcej.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...