Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Neutrina miały inny wpływ na ewolucję wszechświata niż się wydawało?

Rekomendowane odpowiedzi

DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.

Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.

Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.

Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.

Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.


« powrót do artykułu
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

O widzę, że ktoś tam jeszcze kuma czaczę, że stałe kosmologiczne nie są stałe. Nie wiem co im daje ta analiza dla ujemnej masy neutrin. Tego WMAP to nie dało się ustalić dla lat z planka ? To powinno pozostawać w korelacji.  Piszą też o chłodzeniu i związanym z tym spadkiem masy. No ogólnie jak by się znali na tym co robią :) 

Edytowane przez l_smolinski

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Neutrina - jako znacznie słabiej reagujące - rozprzęgły się z materią barionową znacznie wcześniej niż fotony, to ich oczekiwana dzisiejsza temperatura wynosi jedynie 1,9K. A ponieważ są cząstkami masywnymi, to ich energia kinetyczna musi odpowiadać tej temperaturze 1,9K - czyli poruszają się bardzo powoli. Dodatkowo zaś są fermionami podlegającymi statystyce Fermiego-Diraca, więc ich fale kwantowe muszą chyba zajmować całkiem spory obszar wyłącznego wykluczenia. Ciekawym byłoby przeczytać jakąś pracę naukową modelującą taki obłok neutrinowy o temperaturze 1,9K w centrum i wyższych temperaturach na zewnątrz wraz z jego pozostałymi parametrami, także z uwzględnieniem efektów OTW i rotacji układów odniesienia...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No właśnie nie do końca.
Neutrina różnią się mocno od innych fermionów. Brak oddziaływania EM. Brak chiralności. 

Wszystkie naładowane fermiony powinny spełniać ale z neutrinami nie wiadomo bo nie są naładowane :)

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 26.09.2024 o 13:09, GROSZ-ek napisał:

Neutrina - jako znacznie słabiej reagujące - rozprzęgły się z materią barionową znacznie wcześniej niż fotony, to ich oczekiwana dzisiejsza temperatura wynosi jedynie 1,9K. A ponieważ są cząstkami masywnymi, to ich energia kinetyczna musi odpowiadać tej temperaturze 1,9K - czyli poruszają się bardzo powoli.

Rozciąganie wszechświata nie zmniejsza energii układów związanych, więc w przypadku "podświetlnej" energii kinetycznej to nie byłbym taki pewny że transformuje się dokładnie w taki sam sposób co w przypadku cząsteczek bezmasowych. Rozumowanie jest raczej takie, że jeśli obiekt został wyemitowany z prędkością V0 przez obiekt który oddala się z prędkością vu, to jego obecna prędkość wynosi V0-Vu i to ta prędkość wyznacza nam energię kinetyczną ( a dokładniej trzeba dokonać transformacji relatywistycznej).
W każdym razie jak obiekt jest bardzo lekki i jego prędkość była praktycznie równa C, to obecnie też będzie bardzo bliska C, natomiast jak była bardzo mała to obecnie też jest bardzo mała.
Zbyt wolne cząsteczki będą miały znacznie mniejszy "horyzont zdarzeń" z którego są w stanie nadlecieć.
Mam też wrażenie że po przetransformowaniu rozkład przestaje być stermalizowany.

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Rozumowanie w kategoriach "temperatury tła" ma faktycznie sens jedynie dla neutrin bezmasowych*, ale nawet przy prostym klasycznym przybliżeniu szacuję, że "bardzo powoli" to coś kole 0,01 c**.

W dniu 7.11.2024 o 11:45, peceed napisał:

natomiast jak była bardzo mała to obecnie też jest bardzo mała. Zbyt wolne cząsteczki będą miały znacznie mniejszy "horyzont zdarzeń" z którego są w stanie nadlecieć.

No nie była mała przy "oddzieleniu się", a horyzont pewnie i tak jest większy niż rozmiar Obserwowalnego Wszechświata. ;) Faktem jednak jest, bo czasu brak, że jeśli ktoś ma namiary na coś zwięzłego w temacie "ewolucji tła neutrinowego", to poproszę (i z góry dziękuję).

* Takich obecnie nie znamy (przy okazji pytanie ignoranta: skoro oscylacje nutrin to oscylacja "masy", to co z prędkością? ;)).
** Jest to raczej dolne ograniczenie, bo dla nieznanych tymczasem EMPIRYCZNIE mas neutrin mamy jedynie górne ograniczenie dla nich.

P.S. Przepraszam Peceed, ale ponownie skoryguję. W tym kontekście fizyk mówi o CZĄSTCE, nie o CZĄSTECZCE.

Edytowane przez Astro

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
17 godzin temu, Astro napisał:

P.S. Przepraszam Peceed, ale ponownie skoryguję. W tym kontekście fizyk mówi o CZĄSTCE, nie o CZĄSTECZCE.

W grajdołku zwanym Polską może i tak. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W grajdołku zwanym Polską tak się mówi, a jeśli Ci nie pasuje, to kto broni mówić Ci po koreańsku (północnym koreańsku... ;)) w odpowiedniej Korei? Obawiam się tylko, że dostęp do KW z tego miejsca może być utrudniony... :D Poważniej: w Polsce mówimy po POLSKU, bo ruski znosimy gorzej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, Astro napisał:

Poważniej: w Polsce mówimy po POLSKU, bo ruski znosimy gorzej.

Poważniejwięc nie troluj w stylu ruskim.

Na całym świecie mówi się cząstka bez podziału na cząsteczka i cząstka. Robią tak Chińczycy, Amerykanie, Rosjanie i cała reszta. Nie rób z siebie już takiego eskimoska. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
20 minut temu, l_smolinski napisał:

Poważniejwięc nie troluj w stylu ruskim.

Przecież cały czas Ty to robisz. Proszę Cię jedynie o to, byś zjechał do POLSKI, czyli tam, gdzie mówimy dziękuję, proszę i takie tam po POLSKU. :) BARDZO Cię proszę.

20 minut temu, l_smolinski napisał:

Na całym świecie mówi się cząstka bez podziału na cząsteczka i cząstka.

Ale MY jesteśmy w POLSCE! :) Cieszmy się naszą INDYWIDUALNOŚCIĄ i NIEZALEŻNOŚCIĄ. Chcesz być jedynie sługą? Smutne...

20 minut temu, l_smolinski napisał:

Nie rób z siebie już takiego eskimoska.

W Polsce trudno być eskimoskiem, ale dla Ciebie albinosku polski mogę. :)

P.S. Coraz bardziej przekonany jestem, że jesteś zwykłym ruskim trollem... Przepraszam, ale tak na to patrzy po POLSKU. Bez urazy, bo ruskie trolle to też ludzie... O ile potrafią wykazać człowieczeństwo...

P.S. Wiesz co? Pisz co chcesz, ale ja odpuszczam - nie mam kompetencji najlepszych psychiatrów, a obawiam się, że i tak Ci nie pomogą...

2xP.S. Ogarniasz jeszcze pod jakim tematem rozmawiamy? Podejrzewam, że warto byś sobie przypomniał. Tylko tyle.

Edytowane przez Astro

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
14 minut temu, Astro napisał:

Ale MY jesteśmy w POLSCE!

Nie nie jesteśmy w Polsce. Możesz pisać z dowolnego miejsca na świecie. Reszta to smutna bezradność - odpocznij od klawiatury, przejdź się na spacer.  

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ja jestem, szkoda, że Ty poddańczo  nie. Bardziej szkoda, że ze swojej poddańczości podnóżku czynisz wyróżnik. Wróć do POLSKI, bo TU się mówi po POLSKU. :)

Całe szczęście, że jeszcze się mówi, i oby tak było.

P.S. WYOBRAŹ SOBIE, że na spacerze mówię po polsku. Spotkani ludzie też tak mówią... Niesamowite?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, l_smolinski napisał:

Na całym świecie mówi się cząstka bez podziału na cząsteczka i cząstka

Smolinski.

Już Tobie tłumaczono, że w polskiej terminologii naukowej są to  2 odrębne byty, niemające znaczeniowo ze sobą nic wspólnego. To nie jest zdrobnienie czy zgrubienie ani dodane sufiksy. Zawodowcy nie mają z tym problemu, ale amatorzy widać się z tym męczą.

Edytowane przez KONTO USUNIĘTE

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 10.11.2024 o 17:48, KONTO USUNIĘTE napisał:

Już Tobie tłumaczono, że w polskiej terminologii naukowej są to  2 odrębne byty, niemające znaczeniowo ze sobą nic wspólnego. To nie jest zdrobnienie czy zgrubienie ani dodane sufiksy. Zawodowcy nie mają z tym problemu, ale amatorzy widać się z tym męczą.

Oczywiście to nie jest zdrobnienie czy zgrubienie, nigdy tak nie twierdziłem. Jest to konsekwencje niedostatków umysłowych polskich naukowców z lat 60. Dziwnym trafem tylko w Polsce istnieje ten sztuczny podział. Coś jak śmigus dyngus jako pozostałość czasów pogańskich, która ulokowała się w polskim katolicyzmie.   
No astro się z tym strasznie męczy. Dopiernicza się do tej cząsteczki czy też cząstki jakby od tego jego polskość zależała. 

Edytowane przez l_smolinski

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Szybkie rozbłyski radiowe (FRB) wciąż stanowią zagadkę. Astronomowie ciągle nie wiedzą, co jest ich źródłem, jak powstają, często nie potrafią też określić położenia źródła. Niedawno dzięki rozbudowanemu Canadian Hydrogen Intensity Mapping Experiment (CHIME) zarejestrowano najjaśniejszy z FRB i dokładnie określono jego położenie. To zaś może się przyczynić do rozwiązania zagadki rozbłysków.
      Teleskop CHIME powstał, by wykrywać i tworzyć mapę rozkładu wodoru we wszechświecie. Pracę rozpoczął w 2018 roku i od tej pory wykrył około 4000 FRB. Nie był jednak w stanie dokładnie określić lokalizacji rozbłysków. Ostatnio jednak został rozbudowany. Dodano do niego CHIME Outriggers, trzy miniaturowe wersje CHIME rozsiane po całej Ameryce Północnej. Dzięki temu teleskop jest w stanie zlokalizować miejsce rozbłysku. Precyzja narzędzia jest zadziwiająca. Wyobraź sobie, że jesteśmy w Nowym Jorku, a na Florydzie przez tysięczną część sekundy – tyle trwają FRB – rozbłysł świetlik. Zlokalizowanie tej części galaktyki, w której doszło do FRB jest jak wskazanie nie tylko tego, z którego drzewa świetlik pochodzi, ale na której gałęzi przysiadł, mówi Shion Andrew z Kavli Institute.
      Wspomniany na wstępie rozbłysk zyskał nieoficjalną nazwę RBLOAT, od „radio brightest flash of all time” (najjaśniejszy rozbłysk radiowy wszech czasów). Jego jasność, w połączeniu ze stosunkowo niewielką odległością, w jakiej do rozbłysku doszło, daje astronomom bezprecedensową okazję do badania tego typu zjawisk. RBFLOAT miał bowiem miejsce w odległości około 130 milionów lat świetlnych od Ziemi, w Gwiazdozbiorze Wielkiej Niedźwiedzicy.
      Ultrajasny rozbłysk został wykryty 16 marca 2025 roku. Był tak jasny, że początkowo naukowcy nie byli pewni, czy to FRB czy też jakieś zjawisko, do którego doszło na Ziemi. Okazało się jednak, że teleskopy CHIME Outrigger wskazały, że zjawisko miało miejsce w galaktyce spiralnej NGC4141. Mieliśmy więc do czynienia z jednym z najbliższych i najjaśniejszych z wykrytych FRB.
      Dzięki kolejnym obserwacjom tego obszaru astronomowie dowiedzieli się, że FRB pochodził zza krawędzi regionu aktywnego formowania się gwiazd. Autorzy badań wysunęli hipotezę, że źródłem RBFLOAT był magnetar, młoda gwiazda neutronowa o potężnych polach magnetycznych. Lokalizacja miejsca rozbłysku, zaraz za krawędzią regionu formowania się gwiazd, może sugerować, że to magnetar w nieco starszym wieku.
      Uczeni przeszukali cały zestaw danych CHIME i nie znaleźli w tym regionie innego rozbłysku. Zatem przynajmniej w ciągu ostatnich 6 lat nie doszło tam do podobnego wydarzenia. Wciąż nie wiadomo, czy powtarzające się i unikatowe FRB mają to samo źródło. Istnieją pewne dowody wskazujące, że nie wszystkie rozbłyski powstają tak samo. Dzięki takim urządzeniom jak CHIME naukowcy mogą rejestrować setki FRB rocznie, porównywać je ze sobą i próbować rozwiązać zagadkę tych niezwykłych zjawisk.
      Badania zostały szczegółowo opisane na łamach Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Państwowego Instytutu Geologicznego-Państwowego Instytutu Badawczego i Uniwersytetu Jagiellońskiego dokonali przełomowego odkrycia, zmieniającego pogląd nauki na ewolucję kręgowców lądowych. W Górach Świętokrzyskich znaleźli najstarsze ślady poruszania się kręgowców na lądzie. Ślady pochodzą sprzed ponad 400 milionów lat i dowodzą, że pierwszymi kręgowcami, które próbowały wyjść na ląd, były ryby dwudyszne. Ta próba zasiedlenia nowego środowiska miała miejsce 10 milionów lat przed wyjściem na ląd terapodów – ostatecznych zwycięzców wyścigu o poruszanie się suchą stopą.
      Piotr Szrek, Katarzyna Grygorczyk, Sylwester Salwa, Patrycja Dworczak i Alfred Uchman znaleźli skamieniałe ślady, które nazwali Reptanichnus acutori czyli „Czołgający się pionier”. Całość terminologii naukowej brzmi Reptanichnus acutori igen. et isp. nov., gdzie „Reptanichus” to nazwa nowego ichnorodzaju, czyli rodzaju wyznaczonego na podstawie śladów kopalnych, a nie skamieniałych szczątków zwierzęcia; „acutori” to nazwa gatunku, a zapis „igen. et isp. nov.” oznacza nowy ichnorodzaj i nowy ichnogatunek.
      Ślad składa się z elementów o różnej morfologii. Badacze zidentyfikowali odciski płetw, tułowia, ogona i pyska, którym zwierzę podpierało się, by podciągnąć resztę ciała. Analiza śladów przyniosła dodatkowe sensacyjne odkrycie. Okazało się, że wędrujące po lądzie ryby niemal zawsze podpierały się pyskiem, przechylając głowę na lewą stronę. To sugeruje dominację prawej półkuli mózgu i jest najstarszym dowodem na lateralizację u kręgowców. Może to też oznaczać, że preferencja dla lewej strony, która u ludzi została wyparta przez praworęczność, pojawiła się ewolucyjnie wcześniej.
      Niezwykłe ślady najpierw zauważono w murach słynnego zamku Krzyżtopór. Wówczas naukowcy rozpoczęli badania w regionie i odkryli kolejne ślady w niewielkim opuszczonym kamieniołomie we wsi Ujazd.
      Interpretację odnośnie powstania skamieniałości potwierdzają eksperymenty ze współcześnie żyjącymi rybami dwudysznymi z Afryki. Pozostawiają one niemal identyczne ślady.
      Więcej na temat badań przeczytasz w artykule Traces of dipnoan fish document the earliest adaptations of vertebrates to move on land.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lód w przestrzeni kosmicznej jest inny, niż dotychczas sądzono, wynika z badań przeprowadzonych przez uczonych z University College London i University of Cambridge. Ich zdaniem, zawiera on niewielkie kryształki i nie jest całkowicie nieuporządkowanym amorficznym materiałem, jak woda. Przez dekady uważano, że lód poza Ziemią nie posiada struktury, jest amorficzny, gdyż znacznie niższe niż na Ziemi temperatury nie zapewniają wystarczająco dużo energii, by podczas zamarzania uformowały się kryształy.
      Autorzy nowych badań przyjrzeli się najpowszechniej występującej formie lodu we wszechświecie, amorficznemu lodowi o niskiej gęstości, który występuje w kometach, na lodowych księżycach czy w chmurach materiału, z których powstają gwiazdy i planety. Przeprowadzone przez nich symulacje komputerowe wykazały, że lód taki najlepiej odpowiada wynikom analiz gdy nie jest w pełni amorficzny, a zawiera niewielkie kryształki o średnicy 3 nanometrów. Naukowcy przeprowadzili też badania, w czasie których krystalizowali (np. poprzez podgrzewanie) uzyskane w różny sposób próbki amorficznego lodu. Zauważyli, że ostateczna struktura krystaliczna lodu zależała od tego, w jaki sposób został oryginalnie utworzony. Stwierdzili też, że gdyby taki lód był w pełni amorficzny, to nie zachowałby żadnych informacji o swojej wcześniejszej strukturze.
      Teraz mamy dobre pojęcie, jak na poziomie atomowym wygląda najbardziej rozpowszechniony lód we wszechświecie. To bardzo ważna wiedza, gdyż lód bierze udział w wielu procesach kosmologicznych, na przykład w formowaniu się planet, ewolucji galaktyk czy przemieszczaniu materii we wszechświecie, wyjaśnia główny autor badań doktor Michael B. Davies.
      Lód na Ziemi to kosmologiczny ewenement z powodu wysokich temperatur panujących na naszej planecie. Ma dzięki nim uporządkowaną naturę. Uznawaliśmy, że lód w pozostałych częściach wszechświata jest jak unieruchomiona ciekła woda, nieuporządkowana struktura. Nasze badania pokazują, że nie jest to do końca prawda. I każą zadać pytanie o amorficzne struktury w ogóle. Takie materiały są niezwykle ważne dla nowoczesnych technologii. Na przykład światłowody powinny być amorficzne. Jeśli jednak zawierają niewielkie kryształki, a my będziemy potrafili je usunąć, poprawimy ich wydajność, dodaje profesor Christoph Salzmann.
      Badania prowadzono zarówno metodą symulacji komputerowych, jak i tworząc amorficzny lód. Metodami obliczeniowymi sprawdzano dwa rodzaje wirtualnego lodu. Jeden powstawał podczas obniżania temperatury wirtualnych molekuł wody do -120 stopni Celsjusza. W zależności od tempa schładzania otrzymany lód składał się ze struktury krystalicznej i amorficznej w różnych proporcjach. Okazało się, że właściwości wirtualnego lodu zawierającego 20% struktury krystalicznej i 80% amorficznej blisko odpowiadają właściwościom prawdziwego lodu amorficznego o niskiej gęstości, który badano metodą dyfrakcji promieniowania rentgenowskiego. Drugi rodzaj lodu składał się z niewielkich ściśniętych razem kryształków pomiędzy którymi symulowano istnienie struktury amorficznej. Taki lód wykazywał największe podobieństwo do prawdziwego kosmicznego lodu gdy zawierał 25% kryształków.
      Natomiast podczas badań eksperymentalnych uzyskiwano amorficzny lód o niskiej gęstości albo poprzez osadzanie pary wodnej na bardzo zimnej powierzchni, albo podgrzewając amorficzny lód o dużej gęstości. Następnie tak uzyskany amorficzny lód o niskiej gęstości był delikatnie podgrzewany, by miał wystarczająco dużo energii do utworzenia kryształów. Różnice w uzyskanej w ten sposób strukturze zależały od pierwotnej metody wytworzenia lodu. W ten sposób naukowcy doszli do wniosku, że gdyby lód taki był całkowicie amorficzny, nie zachowałby pamięci o swojej pierwotnej strukturze.
      Lód to potencjalnie bardzo przydatny materiał w kosmosie. Mógłby posłużyć do ochrony pojazdu kosmicznego przed promieniowaniem czy do wytworzenia paliwa. Dlatego musimy lepiej rozumieć jego różne rodzaje i właściwości, podsumowuje doktor Davies.
      Źródło: Low-density amorphous ice contains crystalline ice grains, https://journals.aps.org/prb/abstract/10.1103/PhysRevB.112.024203

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje nawet 100 bilionów tych cząstek subatomowych. Mimo tej obfitości neutrino jest najsłabiej poznaną cząstką elementarną. Bardzo słabo oddziałuje ono z materią, dlatego też trudno jest je zarejestrować i badać. Tymczasem fizycy od kilkunastu lat coraz bardziej interesują się neutrinami, gdyż mogą one wyjaśnić wiele tajemnic, na przykład, dlaczego we wszechświecie jest więcej materii niż antymaterii.
      Jedną z pierwszych cech neutrin, jakie powinniśmy poznać, są ich rozmiary. Znajomość tego parametru pozwoli na zaprojektowanie bardziej precyzyjnych detektorów, dzięki którym można będzie lepiej zbadać neutrina. Międzynarodowy zespół naukowy opisał na łamach Nature opracowaną przez siebie metodę pomiaru rozmiarów neutrino elektronowego oraz uzyskane wyniki.
      Uczeni przeprowadzili eksperyment, podczas którego obserwowali radioaktywny rozpad berylu (7Be). Rozpada się on do litu (7Li). Podczas tego procesu ma miejsce wychwyt elektronu, kiedy to elektron atomu jest przechwytywany przez proton z jego jądra. Powstaje w ten sposób neutron pozostający w jądrze nowego pierwiastka – litu-7 – oraz emitowane jest neutrino elektronowe.
      Uwalniana jest energia, która odrzuca nowo powstały atom litu-7 w jednym kierunku, a neutrino w przeciwnym. Badacze obserwowali ten proces w akceleratorze, w którym umieścili bardzo czułe detektory neutrin. Dzięki temu mogli zbadać pęd atomu litu i na tej podstawie obliczyć rozmiary neutrino.
      Pomiar oddaje kwantową naturę neutrino. Co oznacza, że „rozmiar” należy tutaj rozumieć jako pewien stopień niepewności co do przestrzeni zajmowanej przez neutrino. Z obliczeń wynika, że dolną granicą rozmiarów pakietu falowego neutrino elektronowego jest 6,2 pikometrów. To oznacza, że pakiet falowy neutrin jest znacznie większy niż pakiet falowy typowego jądra atomowego, który liczy się w femtometrach. Dla jądra wodoru jest to ok. 1,2 fm, dla jądra węgla, ok 3,5 fm.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania nad szympansami pomogą zrozumieć nam, jak u człowieka rozwinęły się zdolności inżynieryjne. Pierwsze narzędzia, jakimi posługiwali się ludzie, zostały wykonane z nietrwałych materiałów, nie zachowały się, więc nie możemy ich badać. Na szczęście możemy przyglądać się, w jaki sposób narzędzi używają zwierzęta. Naukowcy z Wielkiej Brytanii, Portugalii, Mozambiku, Tanzanii i Niemiec zauważyli, że szympansy przygotowujące patyki, by łowić nimi termity z gniazd, wykazują się pewną wiedzą inżynieryjną, celowo wybierając odpowiednio elastyczne gałęzie.
      Termity są dobrym źródłem energii, tłuszczu, witamin, minerałów i białka. Owady żyją w kopcach, wewnątrz których znajdują się kręte tunele. Badacze wysunęli więc hipotezę, że podczas ich łowienia, lepiej sprawdzają się odpowiednio elastyczne gałęzie niż sztywne patyki. Chcąc przetestować narzędzia używane przez szympansy, uczeni zabrali specjalistycznych sprzęt do Parku Narodowego Gombe i na miejscu badali elastyczność gałęzi, które wykorzystywały szympansy, porównując je z gałęziami, które były dostępne, ale nieużywane przez zwierzęta.
      Stwierdzili, że gatunki roślin, z których małpy nigdy nie korzystały do łowienia termitów, miały gałęzie o 175% bardziej sztywne, niż rośliny preferowane przez szympansy. Nawet porównanie roślin znajdujących się w bezpośrednim pobliżu gniazda termitów pokazało wyraźne różnice między materiałem używanym i nigdy nie używanym przez szympansy.
      To pierwszy wyczerpujący dowód, że dziko żyjący szympansy kierują się właściwościami mechanicznymi materiału, wybierając gałęzie do łowienia termitów, mówi doktor Alejandra Pascual-Garrido z University of Oxford, która od dekady bada materiały używane przez szympansy z Gombe.
      Co więcej, niektóre gatunki roślin, jak te z rodzaju Grewia, są preferowane też na przykład przez szympansy żyjące 5000 kilometrów od Gombe. Sugeruje to, że dzikie szympansy rozumieją właściwości materiałów, dzięki czemu mogą wybierać najlepsze narzędzia do wykonania konkretnego zadania. Łowiąc termity nie wybierają jakiegokolwiek dostępnego patyka. Szukają takiego, który uczyni ich wysiłki najbardziej efektywnymi. To odkrycie, łączące biomechanikę z zachowaniami zwierząt, pomaga nam lepiej zrozumieć procesy poznawcze stojące za wytwarzaniem narzędzi przez szympansy, dokonywaniem ich oceny i wyboru, dodaje Pascual-Garrido.
      Jak z każdym odkryciem, tak i tutaj rodzą się pytania o to, w jaki sposób szympansy nabywają tę wiedzę, utrzymują ją i przekazują pomiędzy pokoleniami oraz czy podobne procesy mają miejsce w wyborze narzędzi do innych zadań, na przykład podczas łowienia mrówek czy pozyskiwania miodu. To z kolei prowadzi nas do pytania o to, w jaki sposób ludzie nabyli podobnych umiejętności i jak przebiegała ich ewolucja. Badając, w jaki sposób szympansy wybierają materiał na swoje narzędzia, możemy lepiej zrozumieć, jak robili to nasi przodkowie. Ich narzędzia z nietrwałych materiałów nie przetrwały próby czasu, więc nie jesteśmy w stanie ich zbadać.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...